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Abstract— Transmitted-Reference (TR) signaling, in conjunc-
tion with an autocorrelation receiver (AcR), offers a low-
complexity alternative to Rake reception. Due to its simplicity,
there is renewed interest in TR signaling for ultrawide bandwidth
(UWB) systems. Different variations of TR signaling have been
proposed and investigated, including differential TR (DTR)
signaling and noise averaging at the AcR. This paper provides
performance analysis of various TR schemes by developing an
analytical framework based on the sampling expansion approach.
Specifically, we derive uncoded bit error probability (BEP) of
different TR signaling schemes such as DTR and noise averaging
at the AcR for a broad class of fading channels.

I. INTRODUCTION

Recently, there has been renewed interest in utilizing ul-
trawide bandwidth (UWB) spread-spectrum communications
for future military, homeland security and commercial appli-
cations. UWB systems involve the transmission of a train of
extremely narrow pulses by employing either time-hopping
(TH) or direct sequence (DS) techniques for multiple access
and pulse position modulation (PPM) or pulse amplitude
modulation (PAM) for data transmission [1]. The key moti-
vation for using UWB systems is the ability to highly resolve
multipath components, as well as the availability of technol-
ogy to implement and generate UWB signals with relatively
low complexity. These fine delay resolution properties make
UWB radio a viable candidate for communications in dense
multipath environments such as short-range or indoor wireless
communications [2]–[4].

This paper considers a signaling scheme referred to as
transmitted-reference (TR) signaling [5]–[7]. TR signaling
involves the transmission of a reference and data signal pair,
separated either in time [6], [7] or in frequency [8]. In order for
this pair of separated signals to experience the same channel,
either the time separation must be less than the channel
coherence time, or the frequency separation must be less than
the channel coherence bandwidth. The receiver can simply be
an autocorrelation receiver (AcR), which may also be modified
to include noise averaging for better performance [9]–[12].
Since TR signaling allocates a significant part of the symbol
energy by transmitting reference pulses, differential encoding
over consecutive symbols can also be used to alleviate this
communication resource wastage problem. This alternative TR
signaling is referred to as differential transmitted-reference

(DTR) signaling [10], [13]. The performance analysis of
TR and DTR signaling published in literature is based on
averaging numerically the conditional bit error probability
(BEP) via a quasi-analytical/simulation approach [10] or quasi
analytical/experimental approach [9], whose results rely on
either simulation parameters or experimental data. Therefore,
there is a need to provide an analytical tool to compare TR
and DTR signaling schemes. We aim to provide an analytical
framework to derive BEP of these schemes in dense resolv-
able multipath channels. We adopt the sampling expansion
approach, which is an extension of our previous work [11],
[12]. We derive the BEP for TR and DTR signaling when AcR
or modified AcR is used for a broad class of fading channels
in dense resolvable multipath channels.

The remainder of the paper is organized as follows. Section
II presents the system and channel models for both TR and
DTR signaling schemes of a single link system. In Section
III, a unified BEP analysis of TR and DTR signaling based
on the sampling expansion approach is developed. To illustrate
our proposed methodology, we consider Nakagami-m fading
channels and present numerical results in Section IV. Finally,
Section V comprises concluding remarks.

II. SIGNAL AND CHANNEL MODELS

A. Transmitted-Reference

In TR signaling, the transmitted signal for a single user can
be decomposed into a reference signal block br(t) and a data
modulated signal block bd(t) as given by

sTR(t) =
∑

i

br(t− iNsTf) + dibd(t− iNsTf), (1)

where Tf is the average repetition period, di ∈ {−1, 1} is
the data symbol, and each block has symbol duration NsTf

[9]–[12] as shown in Fig. 1. Each block, containing Ns/2
transmitted signal pulses, can be written as1

br(t) =

Ns
2 −1∑

j=0

√
Epajp(t− j2Tf − cjTp),

1Note that other combination of data and reference pulses is also possible.
Here, without loss of generality, we have adopted the conventional TR
signaling where the number of reference and data pulses are equal for
simplicity [9].
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Fig. 1. TR signaling.

bd(t) =

Ns
2 −1∑

j=0

√
Epajp(t− j2Tf − cjTp − Tr), (2)

where p(t) is the normalized signal pulse with duration Tp

and
∫ +∞
−∞ |p(t)|2dt = 1. The energy of the transmitted pulse

is then Ep = Es/Ns, and symbol energy is Es. In our case
of binary signaling, Es = Eb, where Eb is the energy per
bit. To enhance the robustness of TR systems to interference
as well as to allow multiple access, DS and/or TH spread
spectrum techniques can be used as shown in (2). In DS
signaling, {aj} is the bipolar pseudo-random sequence. In TH
signaling, {cj} is the pseudo-random TH sequence, where cj is
an integer in the range 0 ≤ cj < Nh, and Nh is the maximum
allowable integer shift. The duration of the received UWB
pulse is Tg = Tp + Td, where Td is the maximum excess
delay of the channel. To preclude inter-symbol interference
(ISI) and intra-symbol interference (i.s.i.)2, we assume that
Tr ≥ Tg and NhTp + Tr ≤ 2Tf − Tg, where Tr is the time
separation between each pair of data and reference pulses such
that these received pulses will not overlap. Note that the inter-
pulse delay between each data-modulated monocycle and its
corresponding reference monocycle is given by Tr.

B. Differential Transmitted-Reference

In DTR signaling, the transmitted signal for a single user
is given by

sDTR(t) =
∑

i

eib(t− iNsTf), (3)

where b(t) is the block-modulated signal with symbol duration
NsTf . The data symbol di is now differentially encoded such
that ei = ei−1di, where di = ±1. Within each b(t)-shaped

2ISI and i.s.i. may not always be negligible due to constraints on Tf and
data-rate requirements. In this case, our results will serve as a lower bound.

block, there are Ns transmitted signal pulses and it can be
written as

b(t) =
Ns−1∑

j=0

√
Epajp(t− jTf − cjTp), (4)

where {aj} and {cj} are the DS and TH sequences that
provide the multiple access capability of DTR systems. The
length of {aj} is now Ns. The TH sequence is pseudo-
random with the range 0 ≤ cj < Nh, where Nh satisfies
Tf ≥ (Nh − 1)Tp + Tg to preclude ISI and i.s.i. The channel
is assumed to be constant over two symbols in order to use
differential encoding over every two symbols.3

C. Channel model

The received signal for TR signaling is r(t) = (h∗sTR)(t)+
n(t), where h(t) is the impulse response of the channel and
n(t) is zero-mean, white Gaussian noise with two-sided power
spectral density N0/2. Note that similar equation also applies
to DTR signaling by replacing sTR(t) with sDTR(t). The
channel impulse response being modelled as linearly time-
invariant can be written as h(t) =

∑L
l=1 αlδ(t − τl) where

αl and τl denote respectively the attenuation and delay of
l-TH path, and L is the number of resolvable multipath
components. We can also express αl = |αl| exp(jφl), where
φl = 0 or π with equal probability. As in [2], [3], we consider
the resolvable channel, i.e., |τl − τj | ≥ Tp,∀l 6= j, where
τl = τ1+(l−1)Tp. However, depending on whether the UWB
channel is uncorrelated scattering [3] or correlated scattering
[4], {αl} can be statistically independent or correlated random
variables (r.v’s).
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Fig. 2. AcR for TR and DTR signaling.

III. RECEIVER MODEL

A. Autocorrelation Receiver

As shown in Fig. 2, the AcR first passes the received
signal through an ideal bandpass zonal filter (BPZF), with

3We can relax this assumption by encoding the data differentially across
pairs of pulses.
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bandwidth W and center frequency fc around the signal band
to eliminate the out-of-band noise. If W is wide enough, then
the signal spectrum will pass undistorted through the BPZF.
Consequently, the ISI and i.s.i. caused by filtering will be
negligible. The filtered received signal is then passed through
a correlator with integration interval T (Tp ≤ T ≤ Tg), as
shown in Fig. 2, to collect the received signal energy. The
integration interval T determines the number of multipath
components (or equivalently, the amount of energy) captured
by the receiver as well as the amount of noise and interference
accumulation. Without loss of generality, we consider the
detection of the data symbol at i = 0. In addition, we assume
perfect synchronization at the receiver. The decision statistics
generated at the AcR for TR and DTR signaling are given
respectively by

ZTR =

Ns
2 −1∑

j=0

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

r̃TR(t) r̃TR(t− Tr)dt, (5)

and

ZDTR =
Ns−1∑

j=0

∫ jTf+cjTp+T

jTf+cjTp

r̃DTR(t) r̃DTR(t−NsTf)dt, (6)

where r̃TR(t) = (h ∗ sTR)(t) + ñ(t) and r̃DTR(t) = (h ∗
sDTR)(t) + ñ(t). Note that ñ(t) is a zero-mean, Gaussian
random process with autocorrelation function

Ren(τ) = WN0 sinc(Wτ) cos(2πfcτ). (7)

When W À 1/Tg, Ren(t − u) in (7) is approximately equal
to zero for |t − u| ≥ Tg. Hence, the noise samples separated
by more than Tg or a multiple of 1/W can assume to be
statistically independent.

B. Modified Autocorrelation Receiver

The AcR performance can be improved for TR and DTR
signaling by averaging respectively over Ns/2 and Ns received
reference pulses from the previous symbol respectively, to be
used as an estimate of the channel [9]–[12]. This approach
requires that the channel remains constant over two symbols.
The decision statistics of this modified AcR for TR and DTR
signaling are given respectively by

ZATR =

Ns
2 −1∑

j=0

aj

∫ j2Tf+Tr+cjTp+T

j2Tf+Tr+cjTp

r̃TR(t)

(
2

Ns

Ns
2 −1−j∑

k=−j

aj+kr̃TR(t− (Ns − 2k)Tf

− (cj − cj+k)Tp − Tr)
)

dt, (8)

and

ZADTR =
Ns−1∑

j=0

aj

∫ jTf+cjTp+T

jTf+cjTp

r̃DTR(t)

(
1

Ns

Ns−1−j∑

k=−j

aj+kr̃DTR(t− (Ns − k)Tf

− (cj − cj+k)Tp)
)

dt. (9)

Next, we develop an analytical framework based on the
sampling expansion approach to provide a unified performance
analysis of TR and DTR systems in dense multipath channels
[11], [12]. Our methodology does not adopt the Gaussian
approximation that is commonly used to derive the conditional
BEP in terms of the Gaussian Q-function. The methodology
still allows us to obtain BEP of TR and DTR systems for a
broad class of fading channels.

IV. PERFORMANCE ANALYSIS

A. Transmitted-Reference

It can be shown that ZTR in (5) can be written as [11], [12]

ZTR

=

Ns
2 −1∑

j=0

∫ T

0

(
b̆r(t + j2Tf + cjTp) + ñ(t + j2Tf + cjTp)

)

×
(
d0b̆d(t + j2Tf + cjTp + Tr)

+ñ(t + j2Tf + cjTp + Tr)
)
dt, (10)

where b̆r(t) , (br ∗h ∗hZF)(t), b̆d(t) , (bd ∗h ∗hZF)(t), and
hZF(t) is the impulse response of the BPZF. Note that if the
symbol duration is less than the coherence time, all pairs of
separated pulses will experience the same channel, implying
that b̆r(t + j2Tf + cjTp) = b̆d(t + j2Tf + cjTp + Tr) for all
t ∈ (0, T ) and cj . In this case, we can significantly simplify
the expression in (10) as follows:

ZTR =

Ns
2 −1∑

j=0

∫ T

0

(wj(t) + η1,j(t))(d0wj(t) + η2,j(t))dt

=

Ns
2 −1∑

j=0

Uj , (11)

where we have used wj(t) , b̆r(t + j2Tf + cjTp) =√
Epaj

∑L
l=1 αlp(t − τl), η1,j(t) , ñ(t + j2Tf + cjTp) and

η2,j(t) , ñ(t + j2Tf + cjTp + Tr) defined over the interval
[0, T ].

Since the received signal is a real bandpass signal of
bandwidth W , one can think of it in terms of its complex
baseband equivalent model. In this case, the signal is complex
and bandlimited to W/2. The Sampling Theorem then states
that this must be sampled at a sampling frequency greater than
or equal to W . This gives WT complex dimensions or 2WT
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real dimensions [14]. Following this sampling approach [11],
[12], we can then represent Uj as

Uj =
1
W

2WT∑
m=1

(
d0w

2
j,m + wj,mη2,j,m + d0wj,mη1,j,m

+ η1,j,mη2,j,m) , (12)

where the m-th sample of wj(t), η1,j(t) and η2,j(t) in (11)
are respectively wj,m, η1,j,m, and η2,j,m in the interval [0, T ].
Note that since the noise samples are taken at least Tg apart,
they are essentially independent, regardless of cj . Hence, no
further assumption on cj is required in our analysis. We further
observe that Uj is simply the integrator output of the j-th
received modulated monocycle.

Due to the statistical symmetry of Uj with respect to d0, we
simply need to calculate the BEP conditioned on d0 = +1.
Hence, conditioned on d0, we can express (12) in the form of
a summation of squares

Uj|d0=+1 =
2WT∑
m=1

[(
1√
W

wj,m + β1,j,m

)2

− β2
2,j,m

]
,

Uj|d0=−1 =
2WT∑
m=1

[
−

(
1√
W

wj,m − β2,j,m

)2

+ β2
1,j,m

]
,

(13)

where β1,j,m = 1
2
√

W
(η2,j,m + η1,j,m), β2,j,m =

1
2
√

W
(η2,j,m − η1,j,m), and these are statistically independent

Gaussian r.v.’s with variance σ2
TR = N0

4 . Recall from the
definition of wj(t), the contribution of the sequence {aj} is
embedded inside wj,m. From (13), we can observe that when
conditioned on the channel, Uj|d0=+1 has the same probability
density functions (pdfs) for aj = +1 and aj = −1. Due to this
symmetry and aj being equally probable, we can assume that
aj = +1 in the following analysis without loss of generality.
For notational simplicity, we define the normalized r.v.’s Y1,
Y2, Y3, and Y4 as

Y1 , 1
2σ2

TR

Ns
2 −1∑

j=0

2WT∑
m=1

(
1√
W

wj,m + β1,j,m)2,

Y2 , 1
2σ2

TR

Ns
2 −1∑

j=0

2WT∑
m=1

β2
2,j,m,

Y3 , 1
2σ2

TR

Ns
2 −1∑

j=0

2WT∑
m=1

(
1√
W

wj,m − β2,j,m)2,

Y4 , 1
2σ2

TR

Ns
2 −1∑

j=0

2WT∑
m=1

β2
1,j,m. (14)

Conditioned on the channel, Y1 and Y3 are noncentral chi-
squared r.v.’s with NsWT degrees of freedom, whereas Y2

and Y4 are central chi-squared r.v.’s with the same degrees of
freedom as Y1 and Y3. Both Y1 and Y3 have the same non-

centrality parameter given by

µTR =
1

2σ2
TR

Ns
2 −1∑

j=0

∫ T

0

w2
j (t)dt =

Es

N0

LCAP∑

l=1

α2
l , (15)

where LCAP , dmin{WT,WTg}e denotes the actual number
of multipath components captured by the AcR. Note that
γTR = µTR/2 is the instantaneous received SNR of TR sig-
naling with AcR [11], [12]. The pdfs of Y1 and Y2 conditioned
on γTR are given by

fY1|γTR(y1) = fNC(y1, µTR, qTR), (16)
fY2|γTR(y2) = fC(y2, qTR), (17)

where qTR = NsWT
2 . We have defined the following pdfs for

notational convenience

fNC(y, µ, n) , e−(y+µ)

(
y

µ

) (n−1)
2

In−1 (2
√

yµ) , y ≥ 0

fC(y, n) , y(n−1)

(n− 1)!
exp (−y) , y ≥ 0

where In−1(·) is the (n − 1)-th order Bessel function of the
first kind, and fNC(y, µ, n) and fC(y, n) are respectively the
pdfs of the noncentral and central chi-squared r.v.’s with 2n
degrees of freedom and non-centrality parameter µ [15]. Using
(16) and (17), the BEP of TR signaling with AcR is given by

Pe,TR = P {ZTR ≤ 0|d0 = +1}
= EγTR{P {Y1 < Y2|d0 = +1}}

=
1

2qTR

[
qTR−1∑

i=0

(
(−j)i

i!

)
di

dvi
ψγTR(jv)

∣∣∣∣
jv=−1

qTR−1∑

k=i

1
2k

(k + qTR − 1)!
(k − i)!(qTR + i− 1)!

]

, Pe(ψγTR(jv), qTR), (18)

where ψγTR(jv) , E
{
ejvγTR

}
is the characteristic function

(CF) of γTR and Pe(ψγTR(jv), qTR) is defined for con-
venience. Under the resolvable multipath and uncorrelated
scattering assumption [3], multipath components are statisti-
cally independent and ψγTR(jv) =

∏LCAP
l=1 ψl( Es

2N0
jv), where

ψl(jv) is the CF of α2
l and it is known in closed form

for a wide range of channel fading statistics [15]. When
the uncorrelated scattering assumption is no longer valid,
multipath components are correlated [4]. In this case, the CF of
γTR can then be found by using eigenvalue decomposition and
partial fraction expansion [16], [17]. The detailed derivation
of (18) can be found in [11], [12].

Next, we extend the above analysis to derive the BEP of
TR signaling with modified AcR [11], [12]. The non-centrality
parameter of Y1 in (14) is given by

µATR =
2

1 + 2
Ns

(
Es

N0

LCAP∑

l=1

α2
l

)
. (19)
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As shown in [11], [12], the BEP of TR signaling with modified
AcR becomes

Pe,ATR = Pe(ψγATR(jv), qTR), (20)

where the instantaneous received SNR of TR signaling with
modified AcR is given by γATR = µATR/2.

B. Differential Transmitted-Reference

Following an approach similar to the case of TR signaling,
we can represent Uj as

Uj =
1
W

2WT∑
m=1

(
d0w

2
j,m + e−1wj,mη2,j,m + e0wj,mη1,j,m

+ η1,j,mη2,j,m) , (21)

where wj,m, η1,j,m, and η2,j,m are the m-th sample of wj(t),
η1,j(t) and η2,j(t) in the interval [0, T ], and wj(t) , (b ∗ h ∗
hZF)(t + jTf + cjTp) =

√
Epaj

∑L
l=1 αlp(t− τl), η1,j(t) ,

ñ(t + jTf + cjTp −NsTf) and η2,j(t) , ñ(t + jTf + cjTp).
As for the case of TR signaling, no assumption on cj is

needed for our analysis. For aj , we exploit symmetry and
consider aj = +1 for all j. Conditioned on d0 = +14, in this
case, we can express (21) in the form of (13), where β1,j,m =

1
2
√

W
(e−1η2,j,m + e0η1,j,m), β2,j,m = 1

2
√

W
(e−1η2,j,m −

e0η1,j,m), and these are statistically independent Gaussian
r.v.’s. with variance σ2

DTR = N0
4 . Due to symmetry, we only

need to consider Y1 and Y2 defined in (14), where the non-
centrality parameter of Y1 is now given by

µDTR , 1
2σ2

DTR

Ns−1∑

j=0

2WT∑
m=1

w2
j,m

W
=

2Es

N0

LCAP∑

l=1

α2
l , (22)

and the pdfs of Y1 and Y2 conditioned on γDTR are given by

fY1|γDTR(y1) = fNC(y1, µDTR, qDTR), (23)
fY2|γDTR(y2) = fC(y2, qDTR), (24)

where qDTR = NsWT and γDTR = µDTR/2. Following (18),
the BEP of DTR signaling with AcR is given by

Pe,DTR = Pe(ψγDTR(jv), qDTR). (25)

Comparing (18) and (25), we can observe that the basic
difference between TR and DTR signaling lies not only in a
doubled non-centrality parameter, but also in a doubled degree
of freedom.

For DTR signaling with modified AcR, the new non-
centrality parameter of Y1 in (14) due to noise averaging in
(9) is given by

µADTR , 1
2σ2

ADTR

Ns−1∑

j=0

2WT∑
m=1

w2
j,m

W

=
4Ns

(Ns + 1)

(
NsEp

N0

LCAP∑

l=1

α2
l

)
, (26)

4When d0 = +1, the pairs of differentially encoded bits are either
(e−1, e0) = (+1, +1) or (e−1, e0) = (−1,−1) with probability 1

2
each.

By symmetry, we only need to consider (e−1, e0) = (+1, +1).

where the variance σ2
DATR of β1,j,m and β2,j,m is

σ2
ATR =

N0(Ns + 1)
8Ns

, (27)

and the reduced variance of η1,j,m/
√

W in (21) is N0/2Ns.
The pdfs of Y1 and Y2 conditioned on γADTR are now given
by

fY1|γADTR(y1) = fNC(y1, µADTR, qDTR), (28)
fY2|γADTR(y2) = fC(y2, qDTR), (29)

where γADTR = µADTR/2. Following (18), the BEP of DTR
signaling with modified AcR is given by

Pe,ADTR = Pe(ψγADTR(jv), qDTR). (30)

Note that the analytical framework based on sampling ap-
proach can also be used to derive the BEP of TH-PPM
signaling with energy detector [18].

V. NUMERICAL RESULTS

In this section, we provide some numerical results of both
TR and DTR signaling based on our analysis in section III.
We consider Ns = 16 and L = 32. For UWB channels,
it has been verified through experimental results that the
fading distribution of the multipath gains can be modeled by
the Nakagami-m distribution [3]. As a result, we consider
a dense resolvable multipath Nakagami-m fading channel.
For simplicity, we consider uniform power dispersion profile
(PDP), which serves as a benchmark. Moreover, for such a
PDP, the optimum integration interval T is shown to be equal
to L [11], [12]. Under uncorrelated scattering assumption,
{α2

l } are statistically independent and the CF of α2
l is given

by [15]

ψl(jv) =

(
1

1− jv
mL

)m

, (31)

where the fading severity index m is assumed to be identical
for all faded paths.

The BEP performance of TR and DTR signaling with
different receiver structures in uncorrelated scattering channels
are compared in Fig. 3. The solid and dashed lines indicate the
results for TR and DTR signaling respectively. The difference
between TR and DTR signaling is about 2 dB, slightly less
than the 3 dB expected from the doubling of the non-centrality
parameter in DTR signaling in (22) compared to that of
TR signaling in (15). The loss of 1 dB is associated to the
doubled degrees of freedom in DTR signaling (which can be
seen by comparing (18) and (25)), which constitutes to more
noise accumulation. By comparing the performance between
modified AcR and AcR, we can observe that the modified AcR
performs better than the AcR by about 3 dB for both signaling
schemes [11], [12].
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Fig. 3. BEP performance of TR and DTR signaling with AcR and modified
AcR in independent Nakagami-m fading channels with uniform PDP, m = 3.
The solid and dashed lines indicate the TR and DTR signaling respectively.

VI. CONCLUSIONS

In this paper, we developed an analytical framework and
provided a unified performance analysis of TR and DTR
signaling for both AcR and modified AcR in dense resolvable
multipath channels. Specifically, we derived uncoded BEP
of TR and DTR signaling schemes with different receiver
structures for a broad class of fading channels, including
correlated and uncorrelated scattering channels. The analytical
framework is based on the sampling expansion approach,
without adopting conventional Gaussian approximation.
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