
Presenter: Serhat ErküçükUniversity of British Columbia Slide 1

March 28, 2008CTG Reading Group: Convex Optimization for Communications

CTG Reading GroupCTG Reading Group
An Introduction to Convex Optimization forAn Introduction to Convex Optimization for

Communications and Signal ProcessingCommunications and Signal Processing
by Zhi-Quan Luo and Wei Yu (IEEE JSAC, Aug. 2006)

Dept. of Electrical and Computer Engineering
University of British Columbia, Vancouver, B.C.

Presenter: Serhat Erküçük
E-mail: serkucuk@ece.ubc.ca



Presenter: Serhat ErküçükUniversity of British Columbia Slide 2

March 28, 2008CTG Reading Group: Convex Optimization for Communications

OutlineOutline
• Part 1: Introduction

• Part 2: Background on Convex Optimization

• Part 3: Applications to Communications

• Summary



Presenter: Serhat ErküçükUniversity of British Columbia Slide 3

March 28, 2008CTG Reading Group: Convex Optimization for Communications

Part 1 Part 1 –– IntroductionIntroduction

• Motivation:
Many communication 
problems 

• Convex optimization:
Minimize convex objective function
Optimal solutions 
Efficient calculation

• Applications:
Optimization concepts used in engineering
(Lagrangian duality, SDP relaxation method, etc.)

Convex optimization 
problems
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Part 2 Part 2 –– BackgroundBackground

• Convex sets:

e.g.: The unit ball, 

• Convex cones:
Special convex set closed under positive scaling
E.g.: Nonnegative orthant, SOC, etc.

• Convex functions:

e.g.: 

Basic Concepts (1/2)
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Part 2 Part 2 –– BackgroundBackground

• Convex optimization problems:

Basic Concepts (2/2)
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Part 2 Part 2 –– BackgroundBackground

• Lagrangian Duality:

Properties (1/2)
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Part 2 Part 2 –– BackgroundBackground

• Karush-Kuhn-Tucker (KKT) Condition:

Properties (2/2)
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Part 3 Part 3 –– ApplicationsApplications

• Downlink Beamforming Problem:

Conic Programming (1/3)
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Not convex!

SOCP

i
wh

wh

w

i

ij i
H
i

i
H
i

K

j
j

∀≥
+∑

∑

≠

=

,    subject to

     minimize

22

2

1

2

λ
σ

Hermitiancomplex  is,0

)()(    subject to

)(tr     minimize

2

1

ii

i
ij

jiiii

K

j
i

BB

BHtrBHtr

B

f

σγγ ≥− ∑

∑

≠

=

∑
=

≤

∀≥+

K

j
j

H
i

i
H
i

i

w

i
Wh

wh

1

,11    subject to

     minimize

τ

σγ

τ



Presenter: Serhat ErküçükUniversity of British Columbia Slide 9

March 28, 2008CTG Reading Group: Convex Optimization for Communications

Part 3 Part 3 –– ApplicationsApplications

• Uplink-Downlink Duality:

Conic Programming (2/3)
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Part 3 Part 3 –– ApplicationsApplications

• Capacity Region Duality:

Conic Programming (3/3)
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Not convex!
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Part 3 Part 3 –– ApplicationsApplications

• Two Examples:
Eg-1: Multiuser Detection
Eg-2: Multicast Beamforming

Problem formulation: Nonconvex!
Use SDP relaxations (Refer to Slide-8)

SDP Relaxations

Robust Optimization
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Ideal case Corrupted by noise
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Further reading:
S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge Univ. Press, 2004.
(also freely available online)

SummarySummary
• Convex optimization: Powerful tool in engineering

• Helpful concepts: Duality, SDP relaxation 

• Open problems: Lots!


