Cognitive Radio: An Information Theoretic Perspective

Jovićić and Vishwanath, Trans. on IT (Submitted 2006.. cited N times)

Reading Group Discussion

Jan 5, 2009

(日) (圖) (E) (E) (E)

Overview

Intro.

- Basic Idea: Allocated spectrum is underutilized ..in some cases it being as low as 5%..so use it either
 - Opportunistically or
 - Simultaneously \rightarrow (overlay/underlay).
- In both cases the idea is to not decrease the performance/level of satisfaction of a primary user.
- What is this paper about : What does IT tell us about what enhancements in system utilization is possible
- Assumptions in the paper
 - Generate NO interference for primary user in vicinity.
 - No changes to the decoder for primary user there could be multiple reasons for this.

(Note that in general interference does not have to be zero for the primary user .)

Transmission Model

Who knows what

- Secondary user knows primary user's message (..how is this relevant in practice)
- INR quantizes the interference caused the primary's base station by secondary.
- ► All noise + interference is iid (usually this will not be the case → implications ??)

Main Result

- Precoding helps how?? \rightarrow rest of the paper.
- Largest rate at which *reliable* transmission is possible.
- \blacktriangleright Closest to \rightarrow Interference Channel with degraded message sets.

・ロット (雪) (日) (日) (日)

The basics

Received Signal at each base station

We get

$$egin{aligned} & ilde{\mathsf{Y}}_{
ho} = \mathcal{p} ilde{\mathsf{X}}_{
ho} + f ilde{\mathsf{X}}_c + ilde{\mathsf{Z}}_{
ho} \ & ilde{\mathsf{Y}}_c = g ilde{\mathsf{X}}_{
ho} + c ilde{\mathsf{X}}_c + ilde{\mathsf{Z}}_{
m s} \end{aligned}$$

► The above equations are *transformed* into standard form to have unity gains for the desired users. Resulting channel → (1, a, b, 1) channel

Achievable Rate R_p

- ▶ R_p is achievable if \exists encoding map $E_p : \{1, 2, \cdots, 2^{nR_p}\} \mapsto \mathcal{X}_p^n$
- In contrast a Cognitive encoding code map is

$$E_c^n: \{1, 2, \ldots, 2^{nR_p}\} \times \{1, 2, \ldots, 2^{nR_p}\} \mapsto \mathcal{X}_c^n$$

Defn. 2.2 and 2.3 define achievability and capacity for the cognitive user (same as the conventional defns.)

Main Result : Mathematically

Capacity

The capacity of the (1,a,b,1) cognitive radio channel is

$$R_c^* = \frac{1}{2}\log(1 + (1 - \alpha^*)P_c)$$

for a < 1 and α from Eqn.(17) in paper.

Above holds for a *low interference gain* regime $\rightarrow \frac{f}{\sqrt{N_p}} \leq \frac{c}{\sqrt{N_s}}$

Other than the factor $(1 - \alpha^*)$ everything is the same as the conventional cap. formula

A little digression: 2-user conventional GMAC

- ▶ If individual rates are R_1 and R_2 you get $R_1 + R_2 \leq 2C(P/\sigma_N^2)$ where C(x) is Shannon Cap. and P is average power constraint.
- Achievable rate pair
 - Naive TDMA :[*R*₁, *R*₂] = {*αC*(*P*/*σ*²), (1 − *α*)*C*(*P*/*σ*²)}
 Smart TDMA :[*R*₁, *R*₂] = {{*αC*(*P*/*ασ*²), (1 − *α*)*C*(*P*/(1 − *α*)*σ*²)

(日)

Strategies for achieving capacity

Coding options

- Use Gaussian codebook for primary user according $\mathcal{N}(0, P_p)$.
- Use superposition coding (refer your notes on multiterminal source coding) with

$$X_c^n = \hat{X}_c^n + \sqrt{\frac{\alpha P_c}{P_p}} X_p^n$$

thereafter use DPC (writing on Dirty paper). This channel is considered similar to *Costa's Channel* (non-causal CSIT) .

Value of α

• P_e for primary user vanishes as $n \to \infty$ for

$$R_{\rho} < \frac{1}{2} \log \left(1 + \frac{(\sqrt{P_{\rho}} + a\sqrt{\alpha P_{c}})^{2}}{1 + a^{2}(1 - \alpha)P_{c}} \right) \text{Eqn(14) from paper}$$

Now when you equate this with C(P_p) you get α as the root of the resulting quadratic eqn.

Practical Implementations.. or are they ?

Issues

- Joint code design is advocated (Sect 4.2.5):
- ► For high interference gain a ≥ 1
 - P knows m_c and C knows m_p ..everybody cancels out everything and the world is good..
 - PROBLEM: How do you propose to do this !!!
- This brings us to system level considerations.

Optimal Scheme

- Avoids Hidden Terminal problem or Why CR will never be truly opportunistic . . .
- Robust to noise statistics I am not convinced (argument is vague).

What is practical

Obtaining Side - Information

- ► Estimates of *p* and *f* are required for implementing the scheme.
- Cognitive radio tuned to primary user's control channel and gets the feedback of p from it. (Highly improbable)
- It is assumed that the CR can decode m_p faster than P's base station due to physical proximity. (Again.. is this practical?)

All of Section 5 sounds like a fairy tale ... (although one can learn a lot from the excellent proofs in this paper.. I am still learning..)

Improvisation on an Interference Channel

- Causality has got a great role to play.
- Knowing all of m_p might be an over-idealization.
- Cooperation is key... However the assumption of non-causal information is ???

A D A A B A A B A A B A B A

Where do we stand now?

Current focus - Finite State channels (and please correct me here if you know more)

- Number of papers where the cognitive transmitter is assumed to have non-causal information about the primary user
- Adv: Costa proved that if you non-causally know the state of the channel at transmitter, $C^{CSIT} = C^{AWGN}$
- Recent variation : Cognitive interference channel with finite state sequence Sⁿ (Verdu, ISIT08)
- But rate region again obtained with S^n known non-causally... relevant? why?

Open Issues

- We know that information needs to be shared -¿ Efficient ways? (Public/Private messages)
- Above is impossible where secondary keeps moving b/w multiple cells : Too much control information

