Capacity and Mutual Information of Wideband Multipath Fading Channels

by I.E. Telatar and D.N.C. Tse (IEEE Trans. IT, July 2000) proposed by Jan

CTG Reading Group Feb. 15, 2008

Outline

Capacity Bounds for Wideband Multipath Fading Channels

- Basic Assumptions
- Upper Bound on Capacity
- Lower Bound on Capacity

Mutual Information Achieved by Spread-Spectrum Signaling

- Motivation and Assumptions
- Bounds on Mutual Information
- Practical Implications

Outline

Capacity Bounds for Wideband Multipath Fading Channels

- Basic Assumptions
- Upper Bound on Capacity
- Lower Bound on Capacity

2 Mutual Information Achieved by Spread-Spectrum Signaling

- Motivation and Assumptions
- Bounds on Mutual Information
- Practical Implications

- E - F

Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - ▶ Still narrowband in the sense $W \ll f_c$ (f_c : carrier frequency)
- Channel model:

- y(t): received waveform, x(t): transmitted waveform, z(t): AWGN
- L: number of physical multipaths
- $a_I(t)$: path amplitudes, constant during coherence time T_c , unknown at receiver
- d_l(t): path delays, slowly time-varying, perfectly known at receiver

Capacity derivation:

• Constraint on average received power $P \Rightarrow$ SNR = P/N_0

э

Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - ▶ Still narrowband in the sense $W \ll f_c$ (f_c : carrier frequency)
- Channel model:

$$y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)$$

- ▶ y(t): received waveform, x(t): transmitted waveform, z(t): AWGN
- L: number of physical multipaths
- ► a_l(t): path amplitudes, constant during coherence time T_c, unknown at receiver
- d_l(t): path delays, slowly time-varying, perfectly known at receiver
- Capacity derivation:
 - Constraint on average received power $P \Rightarrow$ SNR = P/N_0

3

Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - ▶ Still narrowband in the sense $W \ll f_c$ (f_c : carrier frequency)
- Channel model:

$$y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

4

- ▶ y(t): received waveform, x(t): transmitted waveform, z(t): AWGN
- L: number of physical multipaths
- $a_l(t)$: path amplitudes, constant during coherence time T_c , unknown at receiver
- $d_l(t)$: path delays, slowly time-varying, perfectly known at receiver

Capacity derivation:

• Constraint on average received power $P \Rightarrow$ SNR = P/N_0

Basic Assumptions

- Wideband multipath fading channel, bandwidth W
 - Wideband: received power spread out over large bandwidth
 - ▶ Still narrowband in the sense $W \ll f_c$ (f_c : carrier frequency)
- Channel model:

$$y(t) = \sum_{l=1}^{L} a_l(t) x(t - d_l(t)) + z(t)$$

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

- ▶ y(t): received waveform, x(t): transmitted waveform, z(t): AWGN
- L: number of physical multipaths
- ► a_l(t): path amplitudes, constant during coherence time T_c, unknown at receiver
- $d_l(t)$: path delays, slowly time-varying, perfectly known at receiver
- Capacity derivation:
 - Constraint on average received power $P \Rightarrow$ SNR = P/N_0

4

э.

Upper Bound on Capacity

 Capacity of infinite bandwidth fading channel with SNR *P*/*N*₀ and perfect channel state information (CSI) at receiver:

$$C^* = \frac{P}{N_0}$$

 Wideband multipath fading channel: path amplitudes a_l(t) unknown at receiver ⇒

$$C \leq C^* = \frac{P}{N_0}$$

< ロ > < 同 > < 回 > < 回 >

• C* corresponds to capacity of infinite bandwidth AWGN channel (non-fading, perfect CSI at receiver):

$$\lim_{W \to \infty} W \log \left(1 + \frac{P}{N_0 W} \right) \approx \lim_{W \to \infty} W \frac{P}{N_0 W} = \frac{P}{N_0} =: C_{AWGN}$$

Upper Bound on Capacity

 Capacity of infinite bandwidth fading channel with SNR *P*/*N*₀ and perfect channel state information (CSI) at receiver:

$$C^* = \frac{P}{N_0}$$

• Wideband multipath fading channel: path amplitudes $a_l(t)$ unknown at receiver \Rightarrow

$$C \leq C^* = \frac{P}{N_0}$$

< ロ > < 同 > < 回 > < 回 >

• *C** corresponds to capacity of infinite bandwidth AWGN channel (non-fading, perfect CSI at receiver):

$$\lim_{V \to \infty} W \log \left(1 + \frac{P}{N_0 W} \right) \approx \lim_{W \to \infty} W \frac{P}{N_0 W} = \frac{P}{N_0} =: C_{AWGN}$$

Upper Bound on Capacity

 Capacity of infinite bandwidth fading channel with SNR *P*/*N*₀ and perfect channel state information (CSI) at receiver:

$$C^* = \frac{P}{N_0}$$

 Wideband multipath fading channel: path amplitudes a_l(t) unknown at receiver ⇒

$$C \leq C^* = rac{P}{N_0}$$

< ロ > < 同 > < 回 > < 回 > < 回 > <

• C* corresponds to capacity of infinite bandwidth AWGN channel (non-fading, perfect CSI at receiver):

$$\lim_{W\to\infty} W \log\left(1+\frac{P}{N_0W}\right) \approx \lim_{W\to\infty} W \frac{P}{N_0W} = \frac{P}{N_0} =: C_{AWGN}$$

Lower Bound on Capacity I

Design efficient signaling scheme and assess mutual information (MI)

- Choose symbol duration T_s such that $2T_d \le T_s \le T_c$ (T_d : delay spread, $T_d \ll T_c$ assumed)
- Convey message $m \in \{1, ..., M\}$ using signal

$$m{x}_m(t) = \left\{egin{array}{cc} \sqrt{\lambda} \exp(j2\pi f_m t) & 0 \leq t \leq T_{
m s} \ 0 & else \end{array}
ight.$$

- \Rightarrow Single sinusoid at frequency f_m (\doteq FSK scheme)
- Receiver correlates received signal against all possible $x_m(t)$, $m \in \{1, ..., M\} \Rightarrow$ non-coherent detection
- Choose frequencies as $f_m := n/(T_s 2T_d)$ (*n* integer) to obtain *orthogonal* scheme
- Repeat transmission of $x_m(t)$ on N disjoint time intervals \Rightarrow receiver can average over fading

Lower Bound on Capacity I

Design efficient signaling scheme and assess mutual information (MI)

- Choose symbol duration T_s such that $2T_d \le T_s \le T_c$ (T_d : delay spread, $T_d \ll T_c$ assumed)
- Convey message $m \in \{1, ..., M\}$ using signal

$$x_m(t) = \left\{ egin{array}{c} \sqrt{\lambda} \exp(j2\pi f_m t) & 0 \leq t \leq T_s \ 0 & else \end{array}
ight.$$

 \Rightarrow Single sinusoid at frequency f_m (\doteq FSK scheme)

- Receiver correlates received signal against all possible *x_m(t)*,
 m ∈ {1,..., *M*} ⇒ *non-coherent* detection
- Choose frequencies as $f_m := n/(T_s 2T_d)$ (*n* integer) to obtain *orthogonal* scheme

• Repeat transmission of $x_m(t)$ on N disjoint time intervals \Rightarrow receiver can average over fading

Lower Bound on Capacity I

Design efficient signaling scheme and assess mutual information (MI)

- Choose symbol duration T_s such that $2T_d \le T_s \le T_c$ (T_d : delay spread, $T_d \ll T_c$ assumed)
- Convey message $m \in \{1, ..., M\}$ using signal

$$x_m(t) = \left\{ egin{array}{c} \sqrt{\lambda} \exp(j2\pi f_m t) & 0 \leq t \leq T_s \ 0 & else \end{array}
ight.$$

 \Rightarrow Single sinusoid at frequency f_m (\doteq FSK scheme)

- Receiver correlates received signal against all possible *x_m(t)*,
 m ∈ {1, ..., *M*} ⇒ *non-coherent* detection
- Choose frequencies as $f_m := n/(T_s 2T_d)$ (*n* integer) to obtain *orthogonal* scheme
- Repeat transmission of *x_m*(*t*) on *N* disjoint time intervals ⇒ receiver can average over fading

Lower Bound on Capacity II

• Using low duty cycle above scheme achieves MI

$$I(x; y|d_l) = \left(1 - 2\frac{T_d}{T_c}\right) \frac{P}{N_0}$$

Due to average power constraint we have $\lambda := P/\theta \gg P$ ($\theta \rightarrow 0$)

r: $\left(1-2\frac{T_d}{T_c}\right)C_{AWGN} \leq C \leq C_{AWGN}$

 $(C_{AWGN} = P/N_0)$

Since $T_d \ll T_c$, lower and upper bound approximately *coincide*

 Capacity-achieving signaling is "peaky" in time and frequency domain

3

Lower Bound on Capacity II

• Using low duty cycle above scheme achieves MI

$$I(x; y|d_l) = \left(1 - 2\frac{T_d}{T_c}\right) \frac{P}{N_0}$$

Due to average power constraint we have $\lambda := P/\theta \gg P$ ($\theta \rightarrow 0$)

• Altogether: $\left(1-2\frac{T_d}{T_c}\right)C_{AWGN} \leq C \leq C_{AWGN}$

 $(\textit{C}_{\textit{AWGN}} = \textit{P}/\textit{N}_{0})$

- Since $T_d \ll T_c$, lower and upper bound approximately *coincide*
- Capacity-achieving signaling is "peaky" in time and frequency domain

э.

Capacity Bounds for Wideband Multipath Fading Channels Basic Assumptions

- Basic Assumptions
- Upper Bound on Capacity
- Lower Bound on Capacity

Mutual Information Achieved by Spread-Spectrum Signaling

- Motivation and Assumptions
- Bounds on Mutual Information
- Practical Implications

Spread-spectrum (SS) schemes (DS-CDMA, code-spread CDMA, ...) commonly used for communication over wideband channels

Key result

• Capacity-achieving signaling for wideband multipath fading channels *maximal different* from SS signaling

 \Rightarrow SS signals are "white-like" and non-peaky in time

Question

How good is SS signaling for wideband multipath fading channels?

・ロッ ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・

3

Spread-spectrum (SS) schemes (DS-CDMA, code-spread CDMA, ...) commonly used for communication over wideband channels

Key result

• Capacity-achieving signaling for wideband multipath fading channels *maximal different* from SS signaling

 \Rightarrow SS signals are "white-like" and non-peaky in time

Question

• How good is SS signaling for wideband multipath fading channels?

э.

MI bounds for Spread-Spectrum Signaling II

Assumptions

Discrete-time channel model:

$$Y_i = \sqrt{rac{\mathcal{E}}{\mathcal{K}_c}} \sum_{l=1}^{\tilde{L}} G_l X_{(i-D_l)} + Z_i$$

- Y_i: received sample, X_i: transmitted symbol, Z_i: AWGN sample
- \tilde{L} : number of *resolvable* multipaths at system bandwidth W ($\tilde{L} \leq L$)
- ► G₁, D₁: amplitudes/delays of resolvable multipaths
- $\mathcal{E} := PT_c/N_0$, K_c normalization factor

Two different notions of "white-like" signals

Assumptions

Discrete-time channel model:

$$Y_i = \sqrt{rac{\mathcal{E}}{\mathcal{K}_c}} \sum_{l=1}^{\tilde{L}} G_l X_{(i-D_l)} + Z_i$$

< ロ > < 同 > < 回 > < 回 > .

- Y_i: received sample, X_i: transmitted symbol, Z_i: AWGN sample
- \tilde{L} : number of *resolvable* multipaths at system bandwidth W ($\tilde{L} \leq L$)
- G₁, D₁: amplitudes/delays of resolvable multipaths
- $\mathcal{E} := PT_c/N_0$, K_c normalization factor
- Two different notions of "white-like" signals

MI bounds for Spread-Spectrum Signaling III

Bounds on MI

Upper bound on MI per unit time (holds for large W and large L

;
equal average path energies assumed):

$$I(X; Y|D_I) \leq \frac{\mathcal{E}^2}{T_c^2 \tilde{L}}$$

Lower bound on MI per unit time (holds for large W and any L):

$$I(X; Y|D_l) \geq \frac{\mathcal{E}}{T_c} - \frac{\tilde{L}}{T_c} \log \left(1 + \frac{\mathcal{E}}{\tilde{L}}\right)$$

- ▶ If $\tilde{L} \ll \mathcal{E}$, lower bound close to $\mathcal{E}/T_c = P/N_0 = C_{AWGN}$, i.e., SS signaling *near-optimal*
- If *L̃* ≫ *E*, upper bound holds and is close to zero, i.e., SS signaling *highly suboptimal* (!)

 $\Rightarrow \mathcal{E} =: \tilde{L}_{crit}$ critical system parameter indicating overspreading

MI bounds for Spread-Spectrum Signaling III

Bounds on MI

Upper bound on MI per unit time (holds for large W and large L

;
equal average path energies assumed):

$$I(X; Y|D_I) \leq \frac{\mathcal{E}^2}{T_c^2 \tilde{L}}$$

Lower bound on MI per unit time (holds for large W and any L
):

$$I(X; Y|D_l) \geq \frac{\mathcal{E}}{T_c} - \frac{\tilde{L}}{T_c} \log \left(1 + \frac{\mathcal{E}}{\tilde{L}}\right)$$

- If *L̃* ≪ *E*, lower bound close to *E*/*T_c* = *P*/*N*₀ = *C_{AWGN}*, i.e., SS signaling *near-optimal*
- If *L̃* ≫ *E*, upper bound holds and is close to zero, i.e., SS signaling *highly suboptimal* (!)

 $\Rightarrow \mathcal{E} =: \hat{L}_{crit}$ critical system parameter indicating overspreading

MI bounds for Spread-Spectrum Signaling III

Bounds on MI

 Upper bound on MI per unit time (holds for large W and large L̃; equal average path energies assumed):

$$I(X; Y|D_I) \leq \frac{\mathcal{E}^2}{T_c^2 \tilde{L}}$$

Lower bound on MI per unit time (holds for large W and any L̃):

$$I(X; Y|D_l) \geq \frac{\mathcal{E}}{T_c} - \frac{\tilde{L}}{T_c} \log\left(1 + \frac{\mathcal{E}}{\tilde{L}}\right)$$

- If $\tilde{L} \ll \mathcal{E}$, lower bound close to $\mathcal{E}/T_c = P/N_0 = C_{AWGN}$, i.e., SS signaling *near-optimal*
- ► If $\tilde{L} \gg \mathcal{E}$, upper bound holds and is close to zero, i.e., SS signaling *highly suboptimal* (!)

 $\Rightarrow \mathcal{E} =: \tilde{L}_{crit}$ critical system parameter indicating overspreading

Critical Parameter \tilde{L}_{crit}

- Critical parameter also plays key role for detection error probability of (specific) binary orthogonal modulation schemes (W→∞)
- Interpretation of case $\tilde{L} \gg \tilde{L}_{crit}$:
 - \Rightarrow energies of resolvable paths very small
 - \Rightarrow poor estimates of complex gains
 - \Rightarrow effective multipath combining at the receiver difficult

Question

How good are DS-UWB systems?

Critical Parameter \tilde{L}_{crit}

- Critical parameter also plays key role for detection error probability of (specific) binary orthogonal modulation schemes (W→∞)
- Interpretation of case $\tilde{L} \gg \tilde{L}_{crit}$:
 - \Rightarrow energies of resolvable paths very small
 - \Rightarrow poor estimates of complex gains
 - \Rightarrow effective multipath combining at the receiver difficult

Question

How good are DS-UWB systems?

< ロ > < 同 > < 回 > < 回 > .