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(1) is convex and nondecreasing.

Assumption {: For each n, and over the domain z,, = (.
the utility function U7, (z,, ) is concave, nondecreasing, and con-
tinuously differentiable (where we interpret [7},(0) as the right
directional derivative of [/, at 0).



We assume that both utility and cost are measured in mone-
tary units, so that an efficient allocation 1s characterized as an
optimal solution of the following optimization problem:

maximize Z Unlzn)—C (Z .'L'”) (1)
subjectto x, =0, n=1,...,N. (2)

We refer to the objective function (1) as the aggreeate surplus
[17]. Since p(yq) — 00 as g — oo, while [/, only grows at most
linearly, it follows that an optimal solution exists.

Notice that this problem is convex and easy to solve in a centralized fashion.

However, we are talking about a distributed network with selfish users!




1. Price Taker Users (Users are not really smart!)

Each user n chooses a desired rate @,,. Given the
vector & = (1,...,2q ). the link sets a single price j(z) =

p(> ., @n). User ny then pays z, (). We first consider the case
where, given a price ¢ > (), user n. chooses ,, to maximize

HI(IH;H':I — Ura [Iu} = L. (3)

Motice that in the previous expression, each user is acting as a
price taker; that is, he does not anticipate the effect of a change
in his strategy on the resulting price.

FProposition [: There exists a competitive equilibrium
. that 1s, a vector 2 and a scalar

pi. such that g = p(> " x,, ), and
Pulzxu; F‘} — EIE:EE:}PH[EH; .“'}: m=1y.., N, (4)

m_

Any such vector & solves (1) and (2). If the functions [, are
strictly concave, such a vector & 18 unique.



2. Price Anticipator Users (Smart Users!)

When the price taking assumption i1s violated. however,
the model changes into a game and the guarantee of Propo-
sition 1 15 no longer valid.

Q: What do we mean by “price anticipating?”

We use the notation £—,, to denote

the vector of all rates chosen by users other than n: 1.e.,
I—” — (Il: -EE: [ I | :'I:”_-—.'- I”—'—]: EEa I-_.rd-r_--‘ll.ll,ll.jl- T‘:]E"!, gi\"E“ I_” 5

each user n. chooses 25, = 0 to maximize

(p}n(i"ri;x—uj — Uulzxu} = Lnpp (Z-Tm) . (3)

It

The pavoff function ¢, is similar to the payoff function I5,,
except that the user now anticipates that the price will be set ac-
cording to F(Em T ). A Nash equilibrium of the game defined
by ((21,-..,0x) is a vector T > 0 such that for all n

&

Qn(ﬂjn;I—n) = Gy [IH;I—H}: forall T, =10. (6)



Minor Questions:

1. Does the Nash equilibrium always exist?

Answer: Yes. 2 Rosen’s Existence Theorem =2 Convex Game

2. Does the Nash equilibrium unique?

Answer: Yes.

3. How can we obtain Nash equilibrium?

Answer: By analyzing users’ “Best Reponses”.

Because the pavoff (), is concave in 1, for fixed £_,,. a
vector x 1s a Nash equilibrinm if and only if the following first-
order conditions are satisfied for each n, where g = Em Tyt

Ul (zn) =plg) +zup'(q), if z, > 0 (7)
{-",ﬂ (0) <plqg), fz,=0 (&)



Major Questions:

Before seeing the question, a few things you should keep in mind:

Clearly, the network aggregate surplus (i.e., our objective function for our
networking design problem) is not necessarily optimal at Nash equilibrium.

Clearly, Nash equilibrium changes if we change the system parameters
(e.g., utility functions, price functions, etc.)

« This will also change the network efficiency

Here is our question:

What is the worst-case efficiency among all possible Nash equilibria
points?

This is also called “Price of Anarchy”.

In fact, we want to know how bad the performance can be if the users are
smart and selfish and DO NOT FOLLOW what the network admin wants.




Assumption: Prices are “affine”:

p(@=aq+b

Lemma:
Worst-case efficiency occurs when the utility functions are also linear:

U_i(x) =\gamaa_i x_i



We start by computing the maximal aggregate surplus under
these assumptions. Since the price function is p{g) = ag + b.
the maximal aggregate surplus 1s achieved when p(qS] = 1l.1e.,
when q° = (1 — b)/a; this rate is entirely allocated to user 1.

The maximal aggregate surplus is thus
1—-0b _ (1—0) _ b1 —b) B (1—0)
0 2a a 2a




Since the maximal aggregate surplus is fixed as (1—b)* /(2a).
by (7) and (8) the worst case game is identified bv solving
the following optimization problem (with unknowns

Il:"':I'rJ:"--f'_:'-- Ckpy 5 )2

T Z vy Ty — Cl7) (12)

n=1

subject to «,, = plg) + .0 (q), if z,, > 0,

n=1....N (13)
n-,, <plg),ifey,=0, n=1....,N (14
Z:ﬂ:ﬂquﬂ (15)

n=1

mp=10<n,<1, n=2....N (16)
T, =0, n=1...,N. (17)



We start by assuming that ¢ > 0 is fixed, and optimize only
over T and ex. In this case, we start by noting that we may assume
without loss of generality that o, = p(gq) + xnp'(g) for all
users n = 2,..., V. Indeed, if (e, &) is a feasible solution and
T = 0 forsomen = 2,...,N.,then (13) and ( 14) imply that
ttn = p() + znp'(g). On the other hand, if z,, = 0 for some
n=2,,..,N.we can set oy, = p(q) = aq + b; this preserves
feasibility, but does not impact the term ¢y, x,, in the objective
function (12). We can. therefore. restrict attention to feasible

solutions for which

Cry ZF[Q}+Ir1p’(Q):ﬁq+b+ﬂIri: n=2,...,N. (18)

Having done so. observe that the constraint ( 16), that v, < 1.
may be written as

L—ag—=10h
i1 1

In =

T!':EI-_llll-_J.n‘irl

Finally, the constraint ( 16) that r,, > 0 becomes redundant, as
it is guaranteed by the fact that @ = 0, b = 0, and q > 0.



It follows from (16) together with (13) that a candidate so-
lution satisfying (15) can only exist if xy > (0, in which case
we have 1 = p(q) + x19'(q) = ag + b 4 axy. so that x; =
(1=ag—"b)/a. In particular, we conclude immediately that for a
feasible solution to exist, we must have 0 < (L —ag—>b)/a < q.
This yields the following reduced optimization problem:

. N
1 =—ag—h

Iminimize %—I—Z[ﬂq—l—b—l—ﬂ,ﬂ:“}x“—ﬂ’(q} (19)

==

N | — a0 —b

subject to Z:E” —q— —Tag=o (20)
n—==" o
Ir,i$, n=2,.... N (21)
T =0, n=2,...,N. (22)

-

The objective function (19} is equivalent to (12) upon substitu-
tion for ry, [from (13)] and 2, [also from (13)]. The constraint
(20) 15 equivalent to the allocation constraint (15); and the con-
straint (21) ensures o, < 1, as required in (16).



For fixed ¢ > 0, the resulting problem is symmetric in the
rates o, forn = 2,..., N. It is clear that a feasible solution

k) E

exists if and only if

i
ﬂ—ri

< 1. (23)

I —ag—10h
(1.

In this case, the following svmmetric solution is feasible:
[1—ag—L)
q= i
N-1

I =

Furthermore, since the objective function ( 19} 1s strictly convex,
this svmmeftric solution must in fact be optimal. If we substi-
tute in the objective function (19), the resulting optimal value
is strictly decreasing as NV increases; the worst case occurs as

N — no, and the optimal objective value (19) becomes




Until now, we have kept the price function and the total rate g
fixed, and found the worst case game. We now optimize over all
possible choices of price function p(i.e.,overa > O and b = 0},
as well as over possible Nash equilibrinm rates (i.e., overg > ).
Recall that the maximal aggregate surplus is (1 — b)%/(2a).
Thus, the worst case ratio is identified by the following opti-
mization problem over g, a., and f:

L 20 1-6
miniimize e ( — = q+ (ag+b)
1—b aq”
X (Zf,r — T) —5 —E:f,r)
subject to % <ag=1—-b a>=>0b620,q>0,

If we let @ = au, then this problem becomes equivalent to the
following problem:

animize: i
(1—b)2
1-b6 . 1—5h 7
} 1-6 .
suhject to Tf_imil—b._ a >0, b =10,

If we define = =a/(1-h) then the above problem becomes a single variable
convex optimization problem. - Optimal = 2/3.



Key result:

Theorem 3: Suppose that Assumption 1 holds, and that
plg) = ag + b for some a > 0, b = 0. Suppose also that
{7,(0) = 0 for all n. If £° is any solution to (1), (2). and Z is
any Nash equilibrium of the game defined by ((Jq,.... 00, ).
then

ZL”(.L”} G’(E.L”) (ZL” T ::*(Z.L“)).

(9)

Q: What does that mean?



