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Outline
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•Motivation

Questions that this paper answers:

•What is Compressed Sensing?

•How does it work? (answer is easy)

•Why does it work? (answer is subtle)

•Some revolutionary applications
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Motivation
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•Consider example of a digital camera ...

•Tens of mega-pixels of raw data is sampled. Then 
transform coded to say 10 kilo-pixels. Thus most of the 
raw data is “thrown out” ...

•The optimal transform depends on type of scene.

•What if we directly measure relevant linear 
functionals, perhaps via analog processing? 
Bonus: make the transform universal!

•Result: extremely sensitive SINGLE-PIXEL camera!
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What is CS?
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•An efficient way to encode and reconstruct sparse 
signals.

•Universal Encoder! Only the decoder needs to know 
the sparsity basis.

•Reconstruction algorithm is tractable.

•Robust to erasures or errors in encoded data.
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How does it work?
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F ⊂ RN is said to be a sparse family with sparsity |T | in the basis formed by
the columns of an N ×N orthonormal matrix Φ if

∀f ∈ F , ||ΦT f ||0 = |T |.

Let K measurements be obtained for a generic f ∈ F as y = FΩf .

Let FΩ be a K ×N random mesasurement marix
with i.i.d entries with bounded variance, say N (0, 1/N).

Let the reconstruction be made by the basis pursuit linear program:

f̂ = arg min
g:FΩg=y

||ΦT g||1

.
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Guarantees
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Paraphrase:  With a small oversampling factor we can 
achieve exact reconstruction with high probability.

If
|T | ≤ α

K

log N

where α is a positive constant independent of f , then

f̂ = f

with probability 1−O(N−ρ/α), where ρ > 0 is a universal constant.
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What if strict sparsity is not 
satisfied by signals?
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Suppose signals satisfy a power low decay

|(ΦT f)n| ≤ R n−1/p

where R, p are some positive parameters.
Then with probability 1−O(N−ρ/α) the reconstruction MSE satisfies

||f − f̂ ||2 ≤ Cp,α R

(
K

log N

)−r

where r = 1/p− 1/2.

Paraphrase: With a small oversampling factor the MSE 
decays just as in transform coding.
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How does it work?
Heuristics ...
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•Close analogy to the technique of holography.

•Main requirement: sparsity basis should be incoherent 
w.r.t. the measurement ensemble. (Thats weird!)

•The energy of each sparsity basis element should be 
more or less evenly distributed in all linear 
measurement functionals. 

•CS works because a random measurement ensemble 
is universally decoherent w.r.t. any sparsity basis. 
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How does it work?
The math (theorem 1.2) ...
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Recall uncertainty principle from signal processing:  A 
signal with a small support in time must necessarily 
have a wide frequency support.
While this holds automatically for time-frequency, we 
can axiomatize this property:

FΩ is said to satisfy the Uniform Uncertainty Principle if, with probability
1−O(N−ρ/α),

|T | ≤ α
K

λ
⇒ 1

2
K

N
≤ λmin(FΩFT

Ω ) ≤ λmax(FΩFT
Ω ) ≤ 3

2
K

N
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How it works? (contd.)
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Another related axiom is the Exact Reconstruction 
Property (ERP). In some cases, but not always, ERP is 
implied by UUP.
Paraphrase of Theorem 1.2: 
CS “works” (in the sense described earlier) for signal 
families with power law decay provided the 
measurement ensemble satisfies the UUP and ERP 
properties.

So remaining job is to prove that a random ensemble 
does satisfiy UUP and ERP.
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How it works? (contd.)
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The good news (Lemma 4.1- 4.3): Random 
ensembles (Gaussian, binary and others) do satisfy 
UUP for any sparsity basis.
Reason: Marchenko-Pastur law 
The limiting density (as K →∞,K/N → β ) of eigen values of a K×K S.P.D.
matrix FΩFT

Ω , where entries of the K × N random matrix FΩ are i.i.d. with
variance 1/N , is given by

fβ(x) =
√

(x− a)(b− x)
2πx

on support [a, b] and is identically zero elsewhere, where a = (1 −
√

β)2 and
a = (1 +

√
β)2.
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Some interesting open questions ...
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•Will UUP and ERP hold for carefully selected non-
random (deterministic) measurement ensembles?

•Will dependencies in ensemble be catastrophic?

•How much can the oversampling factor be reduced if 
we have knowledge of the locations  of sparse entries?

•Most important: What is the relation of CS to 
information theoretic source compression? What about 
fountain encoders?

•Most important: Can we prove uniform robustness to 
errors/erasures of measurements?
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Some revolutionary 
applications
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•Extremely Sensitive but universal imaging and 
detection, e.g. in medicine, astromomy etc
(By hugely reducing number of sensors, we can make 
each sensor ultra sensitive.)

•Data extraction from Wireless Sensor Networks

•Universal and Encrypted compression

•Reliable Micro Array Analysis of gene expression

13

mailto:anando@ece.ubc.ca
mailto:anando@ece.ubc.ca


Discussion: Candes-Tao’06
anando@ece.ubc.ca

Prominent researchers ...
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•Candes, Tao, Romberg (Caltech, UCLA) 

•Donoho (Stanford)

•Baranuik (Rice)

•Also many from EE and IT field, e.g. Tarokh (Harvard)

Thank You ...!
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