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Abstract—This paper establishes the equivalence betweenUnder the assumption that each cognitive user cannot access
cognitive medium access and the competitive multi-armed bandit a|| of the available channels simultaneously, the main task of
problem. First, the scenario in which a single cognitive user o medium access protocol is to distributively choose which

wishes to opportunistically exploit the availability of empty fre- . .
quency bangg in the spec)t/rumpwith multiple bantgs is cor?s?/dered. channels each cognitive user should attempt to use in different

In this scenario, the availability probability of each channel is time slots, in order to fully (or maximally) utilize the spectral
unknown to the cognitive user. Hence efficient medium access opportunities. This decision process can be enhanced by taking
strategies must strike a balance between exploring the availability jnto account any available statistical information about the
of other free channels and exploiting the opportunities identified primary traffic. For example, with a single cognitive user
thus far. By adopting a Bayesian approach for this classical bandit . ! .
problem, the optimal medium access strategy is derived and its capable of aCCGSS'”Q _(se_nsmg) only o_ne channel at time, the
underlying recursive structure is illustrated via examples. To Problem becomes trivial if the probability that each channel
avoid the prohibitive computational complexity of the optimal is free is knowna priori. In this case, the optimal rule is
strategy, a low complexity asymptotically optimal strategy is for the cognitive user to access the channel with the highest
developed. The proposed strategy does not require any prior phapility of being free in all time slots. However, such time-

statistical knowledge about the traffic pattern on the different ina traffic inf fi is tvpicall i lable to th
channels. Next, the multi-cognitive user scenario is considered varying traiic information is typicaily not available to the

and low complexity medium access protocols, which strike the COgnitive usersa priori. The need to learn this information
optimal balance between exploration and exploitation in such on-line creates a fundamental tradeoff between exploitation

competitive environments, are developed. Finally, this formalism and exploration. Exploitation refers to the short-term gain
is extended to the case in which each cognitive user is capableggyiting from accessing the channel with the estimated highest
of sensing and using multiple channels simultaneously. i - :
probability of being free (based on the results of previous
sensing decisions) whereas exploration is the process by which
. INTRODUCTION the cognitive user learns the statistical behavior of the primary

Recently, the opportunistic spectrum access problem H&@ﬁic (by choosing possibly different phannels to probe across
been the focus of significant research activity [1], [2]. ThiMe slots). In the presence of multiple cognitive users, the
underlying idea is to allow unlicensed users (i.e., cogniti\}@ed'um access algorlthm_ must also account for the possibility
users) to access the available spectrum when the IicenQé&orE_pet't'on betw(;—:-en :jlﬁerent_fgsgrfs over thek fsamr(]a c(?an_nel.
users (i.e., primary users) are not active. The presence of higljgt |s|pqper% we develop adl_m' Ied framewor olrt e eS|gnd
priority primary users and the requirement that the cognitijg'c 2naysIs 0 cognitive medium access protocols. As_argue
users should not interfere with them define a new mediulfh e sequel, this framework allows for the construction of

access paradigm which we refer tocagnitive medium access strate_gie_s that strike an_(_)ptimal balance among explorgtion,
The overarching goal of our work is to develop a uniﬁegxplonanon and competition. The key observation motivat-

framework for the design of efficient, and low complexity!"d ©Ur approach, is the equivalence between our problem
cognitive medium access protocols and the classical multi-armed bandit problem (see [4] and

The spectral opportunities available to the cognitive userl%fgrences therem). Th|§_ equwalgnce allows f.or building a
are expected to be time-varying on different time-scales. Ryyplid foundation for cognitive medium access using tools from
example, on a small scale, multimedia data traffic of tHgqur_cement_machme leaming [5] The connection between
primary users will tend to be bursty [3]. On a large scale, orf@anitive medlum access and the multi-armed band.lt problem
would expect the activities of each user to vary throughout tﬁ@s been mdepepde_ntly and concur.rently observed in [6]. That
day. Therefore, to avoid interfering with the primary netwoervork' however, is limited to spgual cases of the general
the cognitive users must first probe to determine whether th&%proach presented here. In particular, in [6], the channels are

are primary activities in each channel before transmissigipSumed to be independent and the goal is to maximize the
discounted sum of throughput, which is the problem addressed
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We consider three scenarios in this paper. In the firsine slotj and equal$) otherwise. Hence, give#;, Z;(j) is
scenario, we assume the existence of a single cognitive uaeéBernoulli random variable with probability density function
capable of accessing only a single channel at any givgudf)
time. In this setting, we derive an optimal sensing rule that he,(2i(j5)) = 0:6(1) + (1 — 6;)6(0),
maximizes the expected throughput obtained by the cognitiv
user. Compared with a genie-aided scheme, in which t?
cognitive user knowsa priori the primary network traffic (
information, there is a throughput loss suffered by any mediuf
access strategy. We obtain a lower bound on this loss
further construct a linear complexity single index protocol th
achieves this lower bound asymptotically (when the prima
traffic behavior changes very slowly). In the second scenarfd:
we design distributed sensing rules that account for the com- t=1 t=T
petitive dimension of the problem in which the cognitive users Channel 1 H ... ;
must also take the competition from other cognitive users Chamel2 . .
into consideration when making sensing decisions. We first . .
characterize the optimal distributed sensing rule for the case in . .
which the traffic information of the primary network is avail- ChannelN [N L]
able to the cognitive users. Under this idealistic assumption, . _
we show that the throughput loss of the proposed distributed B Ocoupied by the primary users
sensing rule, compared with a throughput optimal centralized [ ]  Spectum opportunities
scheme, goes to zero exponentially as the number of cognitive
users increases. To prevent any possible misbehavior by Hwe 1. Channel model.
cognitive users, we further design a game theoretically fair

sensing rule, whose loss compared with the throughput optimal”? 0ur model, the cognitive users attempt to exploit the

centralized rule also goes to zero exponentially. Building va|lab_|I|_ty of free cha_nn_els in the primary network by sensing

these results, we then devise distributed sensing rules that!lifo 2ctivity at the pgglnnlng of gach time slo_t. Our_work seeks

not require prior knowledge about the traffic and conver 8character|ze efficient strategies for choosing which channels

to the optimal distributed rule and game theoretically fa sense (access). The challenge here stems from the fact that
e cognitive users are assumed to be unawar@ afpriori.

rule, respectively. Finally, we extend our work to the ca ) ) ) " '
in which the cognitive user is capable of accessing more th consider two cases in which the cognitive user either has or
oes not have prior information about the pdféyfi.e., f(6).

one channel simultaneously. turther illustrate th int. let i first .
The rest of the paper is organized as follows. Our netwo;rl? urther rllustrate the point, 1et us consider our first scenario
which a single cognitive user capable of sensing only one

model is detailed in Section Il. Section Il analyzes thd . . ) "

scenario in which a single cognitive user capable of sensif annel is pre;ent. At time slgt the cognltlye user selects

one channel is present. The extension to the multi-user ¢ channelS(j_) < N to_access. If the sensing re_s_ult shows

is reported in Section IV whereas the multi-channel extensiopt channel_s*(]) IS fre_e, he.Zs(;)(j) = L the cognitive user
an send3 bits over this channel; otherwise, the cognitive user

is studied in Section V. Finally, Section VI summarizes our " . . : . ) .
: will wait until the next time slot and pick a possibly different
conclusions. L
channel to access (throughout the paper, it is assumed that the
outcome of the sensing algorithm is error free). Therefore, the
Il. NETWORK MODEL total number of bits that the cognitive user is able to send over
one block (ofT" time slots) is

ered(-) is the delta function. Furthermore, for a giver=
1,-,0n), Z;(j) are independent for eachand j. We
nsider a block varying model in which the value éfis
d for a block ofT" time slots and randomly changes at the
eginning of the next block according to some joint gd#).
ur results can also be extended to the scenarios in which
(j)s follow a Markov chain model.

Throughout this paper, upper-case letters (eX).,denote

random variables, lower-case letters (ex).,denote realiza- T
tions of the corresponding random variables, and calligraphic W= Z BZs;)(7)-
letters (e.g,X) denote finite alphabet sets over which cor- j=1

responding variables range. Also, upper-case boldface letterg js now clear that¥ is a random variable that depends on
(e.9.,X) denote random vectors and lower-case boldface Igfwe traffic in the primary network and, more importantly for us,
ters (e.g.x) denote realizations of the corresponding randofRe medium access protocols employed by the cognitive user.
vectors. Therefore, the overarching goal of Section Il is to construct

Figure 1 shows the channel model of interest. We considefogy complexity medium access protocols that maximize
primary network consisting oV channelsN = {1,--- | N},

each with bandwidtlB. The users in the primary network are )
operated in a synchronous time-slotted fashion. We iute E{(W}=E ZBZSU)(Q) : @)
refer to the channel index; to refer to the time-slot index i=1

andk referring to the index of the cognitive users. We assume Intuitively, the cognitive user would like to select that
that at each time slot, channgis free with probabilityd;. Let channel with the highest probability of being free in order
Z;(j) be arandom variable that equal#f channeli is free at to obtain more transmission opportunitiesflis known then

T



this problem is trivial: the cognitive user should choose thaot j, which is BZg;)(j). We denote the expected value of

channeli* = argmax@; to sense. The uncertainty i the payoff obtained by a cognitive user who uses stratégy
1€

imposes a fundamental tradeoff between exploration, in orc&t

to learn@, and exploitation, by accessing the channel with the T

highest estimated free probability based on current available Wr =B > BZs;(i) ¢ - 2)

information, as detailed in the following sections. =1

We denoteV*(f,T) = supWr, which is the largest

) , ) . throughput that the cognitive user could obtain when the
We start by developing the optimal solution to the S'nglgpectral opportunities are governed Hyd) and the exact

user—single channel scenario under the idealized assumptigi,e of each realization @ is not known by the user.
that f(8) is knowna priori by the cognitive user. As argued Each medium access decision made by the cognitive user

next, the optimal medium access algorithm suffers from B,q o effects. The first one is the short term gain, i.e., an
prohibitive computational complexity that grows exponentially, nediate transmission opportunity if the chosen channel is
with the block lengthl’. This motivates the design of low com-¢,,,1q free. The second one is the long term gain, i.e., the

plexity asymptotically optimal approaches which is consideregyateq statistical information aboyit@). This information
next. Interestl_ngly, _the proposed low complexity techniqug; help the cognitive user in making better decisions in
does not require prior knowledge abot(®). the future stages. There is an interesting tradeoff between the
short and long term gains. If we only want to maximize the
A. Bayesian Approach short term gain, we can pick the one with the highest free
Our single user—single channel cognitive medium acced@Pability to sense, based on the current information. This
problem belongs to the class of bandit problems. In thf8YOPIC strategy maX|maIIy gxplons the existing information.
setting, the decision maker must sequentially choose of@ the other hand, by picking other channels to sense, we
process to observe frol¥ > 2 stochastic processes. Thes@@in valuable stafistical information aboyit6) which can
processes usually have parameters that are unknown to $HECtVely guide future decisions. This process is typically
decision maker and, associated with each observation i$€ffred to as exploration. ,
utility function. The objective of the decision maker is to More specifically, let/’ (6) be the_upijated pdf after making
maximize the sum or discounted sum of the utilities via & — | Observations. We begin witlf'(6) = f(6). After
strategy that specifies which process to observe for evé)S€vingzs(;(j), we update the pdf using the following
possible history of selections and observations. The followifgfyesian formula.
classical example illustrates the challenge facing our decisionl) If zs;)(j) =1

I1l. SINGLE USER-SINGLE CHANNEL

maker: A gambler enters a casino haviNgslot machines, the _ 0,11 (0)

it" of which has winning probability;, : € A. The gambler FitHg) = 2D (3)
does not know the values of thgs and must sequentially f‘gs(j)fj(e)de

chooses machines to play. The goal is to maximize the overalR) If z,;)(j) =0

gain for a total ofT" plays. In this example, the stochastic (1 0. ) £1(0)

processes are the outcomes of the slot machines, the utility FITL0) = — ) J” . 4)
function is the reward that the gambler gains each time and J (1 - 95(1)) f7(0)de

the gambling strategy specifies which machine to play basg@w, lemma 2.3.1 of [4] proves that every bandit problem with

on each possible past information pattern. A comprehensiyite horizon has an optimal solution. Applying this result to

treatment covering different variants of bandit problems cajyr set-up, we obtain the following.

be found in [4]. Lemma 1:For any prior pdff, there exists an optimal
We are now ready to rigorously formulate our problem. Thgirategy™ to the channel selection problem (2), and(f, T)

cognitive user employs a medium access stratégyvhich s achievable. Moreovetf/* satisfies the following condition:
will select channelS(j) € N to sense at time sloj for

any possible causal information pattern obtained through té (f; T) = Sgl)ae’jv]Ef {BZ,o) + V" (f2.0), T = 1)}, ()

previous; — 1 observations: . . o .
where fz,,, is the conditional distribution updated using (3)

U(j) = {s(1), z5(1)(1),--- ,8(j = 1), z5;—1y( — 1)},5 > 2, and (4) as if the cognitive user choosed) and observes

Zyy. Also, V*(fz,,,,T—1) is the value of a bandit

Le. s(j) = F(f’,\P(].))' Notice that’.zs(j)(j,) is the sensing problem with prior informationf, = and 7T — 1 sequential
outcome of thejth time slot, in whichs(j) is the channel observations s 0

being accessed. |f = 1, there is no accumulated information, In principle, Lemma 1 provides the solution to problem (2).

thuqu(‘lll) ~ (btﬁnds(l).t.: T'(#). I could bz stolcha§t||(c, IHe",fOIrEffectiver, it decouples the calculation at each stage, and
certain¥(3), the cognitive user may randomly pick change hence, allows the use of dynamic programming to solve the

from a setA C A with probability pi, such thatiépi =1 problem. The idea is to solve the channel selection problem
The utility that the cognitive user obtains by making decisiowith a smaller dimension first and then use backward deduc-
S(j) at time slotj is the number of bits it can transmit at timetion to obtain the optimal solution for a problem with larger



dimension. Starting witll" = 1, the second term inside the If s(1) = 1,2,y = 1, we have
expectation in (5) is 0, sinc® — 1 = 0. Hence, the optimal

solution is to choose channelwith the largestE;{BZ;}, P(61 = 0.1,05 = 025(1) = 1)

which can be calculated as _ Pz =101 =0.1,0, = 0)P(6 = 0.1,0, = 0)
P(Zl = 1)
E{BZ} = B/Gif(a)de. _ 0.1x0.8 1
0.8x0.140.2x0.8 3
And V*(f,1) = maxE¢{BZ,}. Hence, for this case, we have
1EN
With the solution forT = 1 at hand, we can now solve 1 2
’ et a 11 = =6(0.1,0) + =5(0.8, 1).
the T = 2 case using (5). At first, for every possible fsw=1z.m=1y = 30(0-1,0) + 30(08,1)

choice of s(1) and possible observation,;), we calculate similarly, we obtain the following updated distributions
the updated distributiory._,, using (3) and (4). Next, we 18 )
caIcuIateV*(fzs(l),l) (which is equivalent to thel’ = 1 Flsymtmny=0y = =25(0.1,0) + —6(0.8, 1),
problem described above). Finally, applying (5), we have the e 19 19

following equation for the channel selection problems with  J{s()=2.z.)=1} 6(0.8,1),

T=2 f{s(l):Q,zS(l):O} = 5(01, 0)

. . 2) With the updated distribution information, we solve four
Vi(£2) = E%%(/[Bgi 0V (feim1, 1) channel-selection problems with = 1. For example, with

+(1 = 0:)V*(fz,—0,1)] £(8)d6. fls=1,2,0,=1} = %5(0‘1,0) + %5(0.8, 1), if the cognitive
user choose channel 1, the expected payoff would be

Correspondingly, the optimal solution is[*(f) = 1 9 170
argr%%(v*(f, 2), ie., in the first step, the cognitive 100 x <3 x 0.1+ 3 X 0-8) =5
K3

ser should choos& (1) = *(f,2) to sense. After
n } . (1) _érgliré%(v (£.2) If the cognitive user choose chanrnzl the expected payoff
observingz;- (1), the cognitive user ha¥ (1) = {z;-(1y}, and  \yould be

it should choosé*(2) = arg max V*(f20 0> 1) implying that o ) - 5 1 500
* — * X — X — X = —.
D*(f, (1) = argmax V*(f2,- ., 1. g X0+ 3 .
Similarly, after solving thé&” = 2 problem, one can proceed h
to solve theT' = 3 case. Using this procedure recursively, wdhus
ca_n_solve the prob_lem withl" — 1 obs_ervat|ons. Finally, our V*(fis)=1,200)=1}> 1) = max{170/3,200/3} = 200/3,
original problem withT observations is solved as follows.
and the user should choose chanhel

VHT) = m%(/ (BO, + 0,V (fors, T — 1) Similarly, we have
1€
U= )V (foreo T — 1)] £(8)d8. YV (Flet)=1s0=03: 1) = 100xmax{26/190, 1/19} = 260/19,
and the user should choose chanhel
Example 1:Suppose we have two channels and two obser-
vations per block, i.e N = {1,2} andT = 2. The channels V*(f{s(l):2725(1)21}7 1) = max{80, 100} = 100,

are known to be either both very busy or both relatively idle h hould ch h |
which is reflected in the following joint pdf and the user should choose chante

V*(f{s(1)=2,2 1) =0}, 1) = max{10,0} = 10,

and the user should choose chanhel

3) Finally, we solve the problem with distributiofi and
= 2. If the cognitive user chooses chanriein the first
step, we calculate

£(61,62) = £5(0.1,0) + £5(08,1),

where §(z,y) is the delta function at pointz,y). For sim- T
plicity of presentation, we assume that= 100.

In this example, on the average, chanhét available with
probability 4/5 x 0.1+1/5 x 0.8 = 0.24, whereas channélis  E;{BZ; + V*(fz,,1)}
available with probabilityl/5x0+1/5x1 = 0.2. Hence, if the _ _ *
cognitive user ignores th/e inforn<ation gained from sensing, P6: =0.1) {100 X014 01X VA flay=t,20 =11 1)
it should always choose channklto sense, resulting in an (1= 0.1) X V*(f{s(1) =1, 1) =0} 1)}
average throughput @x0.24 x 100 = 48 bits per block. Now,
we use the procedure described above to derive the optimal +P(6, = 0.8) {100 x 0.84 0.8 x V*(frs(1)=1,2.1y=1}, 1)
rule and corresponding throughput. .

1) First calculate all possible updated distributions after one +(1-08) xV (f{s(l):LZm:O}v 1)}
step. = 252/5.



Similarly, if the cognitive user chooses changein the first conditions ensures the optimality of the myopic strategy [9]:
step, we calculate DNa+b=c+d=1,2)a<bandc<d, 3)a >bandc > d.
O
Ef{BZ: + V' (fz,, 1)} Example 3:(One Known Channel) We hawy = 2 chan-
= P(f, =0) [100 X 040 % V*(f(s(1)=2.2.1=1}> 1) nels with independent traffic distributions. Channel 1 and
channel 2 are independent. Moreowr,is known. The traffic
+V*(f{s(1)=2,zs(1>=0}a 1)} pattern of channel is unknown, and the probability density

B . function of 6, is given by f1(61).
+P(b2 =1) [1OO+V (f{s(l):?-,Zal):l}’l) Since channel is known and is independent of channel

(1 I)V*(f{s(l):07zs(1):0}7 1)} 1, sensing channé} will not provide the cognit!v_e user with
any new information. Hence, once the cognitive user starts
= P(0; = O)V*(f{s(l):Zzsu):o}» 1) accessing channél (meaning that at a certain stage, sensing
B . 240 channel2 is optimal), there would be no reason to return to
+P(82 = D00+ V7 (Frsn=2.2.0=1y D] = 5 channell in the optimal strategy. A generalized version of this
Thus assertion was first proved in Lemma 4.1 of [10]. Restated in
our channel selection setup, we have the following lemma.
V(f,2) = max Ef{BZ+ V" (fz,,,,1)} Lemma 2:In the optimal medium access strategy, once the

s(1)eN

— max{252/5,240/5} — 252/5. cognitive user starts accessing charheat should keep pick-

ing the same channel in the remaining time slots, regardless
Hence, the optimal strategy I&°(f) = 1, T*(f,2; = 1) = 2, of the outcome of the sensing process. O
I'*(f,z1 = 0) = 1. In other words, the cognitive user should This lemma essentially converts the channel selection prob-
sense channdl in the first time slot. Interestingly, if channellem to an optimal stopping problem [11], [12], where we only

1 is found free, the user should switch to chankeh the need to focus on the strategies that decide at which time-slot
second time slot. On the other hand, if chanmels found We should stop sensing chanrielif it is ever accessed. The
busy, the cognitive user should keep sensing chahrlthe following lemma derives the optimal stopping rule.

second time slot. Finally, we observe that the optimal strategyLemma 3:For any f1(¢1) and anyT, if 0, > A(f1,T),
offers a gain ofl2/5 bits, on average, as compared with théhen we should sense channel 2. Here

i g O , .
myopic strategy. _ B Ef, {Zi‘i L Zi( J)}
The optimal solution presented above can be simplified A(f1,T) = max , (6)
when f(0) has a certain structure, as illustrated by the T(f1)=1 Er{M}
following examples. wherel" are the set of strategies that start with charinehd

Example 2:(Symmetric Channels) We haw¥ = 2 chan- never switch back to channglafter selecting channé, and
nels. Without loss of generality, l& < 6, < 6, < 1. Atany M is a random number that represents the last time slot in
block, either 1) channel has probabilityd,, of being free and which channell is sensed, when the cognitive user follows a
channel2 has probabilityd, of being free or 2) channdl has strategy inl.
probability 8, of being free and channél has probabilityd, Proof: This result follows as a direct application of
of being free. The cognitive user does not know exactly whictheorem 5.3.1 and Corollary 5.3.2 of [4]. [ ]
case happens. The prior pdf information is thus given by One can now combine Lemma 2 and Lemma 3 to obtain the

following optimal strategy.
J(61,62) = £0(0a, 80) + (1 = £)0(0s. 6a), 1) At any time slotj, if channel2 was sensed at time slot
where ¢ is a parameter. The optimal strategy under this  j — 1, keep sensing channel 2.

scenario is the following. 2) If channell was sensed at time slgt— 1, update the
1) At the first time slot, choose channg) if & > 1/2. distribution /7 using (3) and (4) and compute(fy, 7'~

If ¢ = 1/2, randomly choose channélor channel2. j+1) using (6). IFA(f{,T —j +1) < 02, switch to
Otherwise choose channgl channel2; otherwise, keep sensing channel O

2) At time slotsj > 2, update the distribution based on Example 4:(Independent Channels)

. . N
U(j) = {s1,2s, - ,8j-1,2,_,} using (3) and (4). It \we haveN independent channels with(8) = ] f;(6).
is easy to see that’ has the following form ) ) ! .
This case has a simple form of solution in the asymptotic

f7(01,02) = £;6(0a,00) + (1 — &;)5(0p,0.)- scenariodl’ — oo assuming the following discounted form for

. the utility function
Then, choose channélif &; > 1/2, randomly choose y

channell or 2 if {; = 1/2 and choose channel o
otherwise. W=E;{ Y o?BZg;)(i) ¢ »
The optimality of this myopic strategy was proved in [8]. =1
The previous myopic strategy is also optimal for some othethere) < « < 1 is a discount factor. As discussed in the
special scenarios. For example, if the prior distribution istroduction, this scenario has been considered in [6], and the
f(@) = &o(a,b) + (1 — &)d(c,d), then any of the following optimal strategy for this scenario is the following.



1) If channell was selected at time slgt— 1, then we get ~ Compared with the idealistic case where the exact valiée of
the updated distributiorf; using equations (3) and (4),is known, in which the optimal strategy for the cognitive user is
based on the sensing resulfj —1). For other channels, to always choose the channel with the largest free probability,
we letf/ = f/7',Vi #1,i € N. That is we only update the loss entailed by is given by
the distribution of the channel which was just accessed T T N
(due to the independence assumption). L(6;T) = B~ — > BY» O0,Pr{l'(¥(j)) =1},

2) For each channel, we calculate an index using the (6:T) ; ; ; {r@) =i

following equation where ;- = max{6y,---,0x}. We say that a strategy

‘ E,; {Zj—”ilaj%(j)} is consistent, if for anyd € [0,1]V, there exists3 < 1
Ai(f]) = max — Y B— , such thatL(0;T") scales as O(T"”). For example, consider
L= ]Eff{zy:l a’} a royal scheme in which the cognitive user selects channel

where I is the set of strategies for the equivalent at the beginning of a block and sticks to it. 4f is the
One-Known-Channel selection problem (with channellargest one among, L(6;T') = 0. On the other hand, if;
having the unknown parameter) ard is a random IS hot the largest oneL(6;T) ~ O(T). Hence, this royal
number corresponding to the last time slot in whicgcheme is not consistent. The following lemma characterizes
channel; will be selected in the equivalent One-Knownihe fundamental limits of any consistent scheme.

Channel case); is typically referred to as the Gittins Lemma 4:For any6 and any consistent strategfy we have
Index [13] . . L a,r Qi* — Gi

3) Choose the channel with the largest Gittins index to hmTlﬂﬁo l(nT) 2B Z D(0:]|67) @)

sense at time slof. iEN\{i"} '

The optimality of this strategy is a direct application ofvhere D(6;]|6;) is the Kullback-Leibler divergence between
the elegant result of Gittins and Jones [13]. Computationle two Bernoulli random variables with parametéysand 6,
methods for evaluating the Gittins Indek could be found respectively:
in [14] and references therein.

1-6
B. Non-parametric Asymptotic Analysis and Asymptotically Proof: The proof is an application of a theorem proved
Optimal Strategies in [15]. More specifically, for a general bandit problem, let

The optimal solution developed in Section IlI-A sufferst be the random payoff obtained by choosing baridhot
from a prohibitive computational complexity. In particular, théecessarily Bernoulli), we also léy, () be the pdf ofz for
dimensionality of our search dimension grows exponentialfy giveno.
with the block lengthT. Moreover, one can envision many L€t x; denote the average payoff of bandit.e.
practical scenarios in which it would be difficult for the
cognitive user to obtain the prior informatigf{). This moti- i = /xh‘)i ()dz,
vatgs our purgun of IO_W complexlty non—pa.rametrlc prOtOCO,lz§nd note that the Kullback-Leibler divergence between bandit
which maintain certain optimality properties. Towards thl; and! is given by
end, we study in the following the asymptotic performance
of several low complexity approaches In this section, we p(g,||6;) :/{lnhei(aﬁ) — In hy, (m)}hei(x)da:,
analyze non-parametric schemes that do not explicitly use
£(8), thus the ruled” considered in this section depend only Let i* = arg max i, i.e., the index of the channel with

. . . 1€
on ¥(j) explicitly. We aim to develop schemes that have lowhe |argest average payoff. Under mild regularity conditions

complexity but still maintain certain optimality. Towards thigp he,(z), it has been proved in Theorem 1 of [15] that for

end, we study the asymptotic performance of schemes as # consistent strategy

block lengthT increases. This section will be concluded with L(6:T) 4 4

our asymptotically optimal non-parametric protocols which lim inf ———2 > Z % (8)

requires only linear computational complexity. T—oo InT JEN\{i} D(6:167)
For a certain strategy, the expected number of bits the]n our cognitive radio channel selection problem, givn:

cognitive user is able to transmit through a block with certallg a random variable with
parameter® is

he,(z) = 60;6(B) + (1 — 6,)6(0);

) 1—0,

T T N
ES Y BZs(4) p =Y _ B O:PH{T(¥(j)) =i}. hencey; = B#;, and
7j=1 Jj=1 =1 ; 1— 01
Recall thatl'(¥(j)) = i means that, following stratedy, the D(:]|0:) = 6; In <9z> +(1=0)n (1 — 49[) '

cognitive user should choose channedt time slotj, based . . .

on the available informations (). Here PHT(¥(j)) =i} is ‘I ”;'5 pagearv]\\[’\’e;;e K%'th's ?JS\;’;“PtOt'C(?\?;a“ZC))n§1(1])\\[f)) = OE”(%Q
. i . : meansvc > 0, dNg, > No, g1 < cg2 ,2) g1 = w(g2

the probability that the cognitive user will choose channel 1 cansve > 0, 3Ny, VN > No, ga(N) < cg1(N), 3) g1(n) = O(g2(N))

time slot j, following the strategyl". means3cy, c2 > 0, No, VN > No,c1g2(N) < g1(N) < caga(N).



Substituting these parameters into (8), the proof is compleWe denote this optimistic rule by,,,. With any realistic
W switching rulel'sy,, we have

Lemma 4 shows that the loss of any consistent strategy ) .
scales at least as(In7T). An intuitive explanation of this L(6;Tsw) > L(6; gy ).
loss is that we need to spend at leéXin7T") time slots on ~ Now with the optimistic ruld%,,,, the system can be mod-
sampling each of the channels with smallgr in order to elled as the following Markov process as shown in Figure 2,
get a reasonably accurate estimatefpfand hence, use it to in which we have two states: 1) sensing chanifeand 2)
determine the channel having the largésto sense. We say sensing channel*. The transition probability matrix is
that a strategy" is order optimal ifL(6;T) ~ O(InT). 0. 1— 0.

Now, the first question that arises is whether there exists P= [ 12_7 Oprr,  Open Z ]
order optimal strategies. As shown later in this section, we can v
design suboptimal strategies that have loss of ofdgn 7). The probabilityP;-- that the cognitive user will sense channel
Thus the answer to this question is affirmative. Before proceed-
ing to the proposed low complexity order-optimal strategy, we 1 — s
first analyze the loss order of some heuristic strategies which

may appear appealing in certain applications.
The first simple rule is the random strate§y where, at Hi‘ 0) t;es
each time slot, the cognitive user randomly chooses a channel
from the availableN channels. The fraction of time slots
the cognitive user spends on each channel is thergfahg 1 — B;s
leading to the loss

Fig. 2. A Markov process representation of the optimistic strafegy, .

N
Bi;(ai* — ) i** can be obtained by the solving the following stationary
The second one is the myopic rdlg in which the cognitive Ppoe = (1 = 032 )(1 = Piws) + O Pies,

user keeps updating’(6), and chooses the channel with th‘?rom which we obtain

largest value of
9 1— 6

1*01*+1*91**

) Hence in the nontrivial cases, we have
at each stage. Since there are no converge guarantees for the
myopic rule, that i¥) may never converge t due to the lack L(6;Tsy ) = BPys« (0 — 0;)T,

of su_fficiently many samples for each channel [16], the Io?ﬁlplying that, for any switching ruleL,(6; Tsy ) ~ O(T). m
of this myopic strategy i£)(T). There are several strategies that have loss of apderT').

The t_hird_ protocol we consider istaying with the Wirlur)er We adopt the following linear complexity strategy which was
and switching from the loser rul€sy, where the cognitive ﬁroposed and analyzed in [17].

user randomly chooses a channel in the first time slot. In theg,je 1: (Order optimal single index strategy)

succeeding time-slots 1) if the accessed channel was found tq,q cognitive user maintains two vectasandY, where

be free, it will choose the same channel to sense; 2) otherwigg.p, X; records the number of time slots for which the

it will choose one of the remaining channels based on acert%bmtive user has sensed channgb be free, and each,

switching rule. o ~ records the number of time slots for which the cognitive user
Lemma 5:No matter what the switching rule is,pas chosen channéto sense. The strategy works as follows.

L(0; I'sw) ~ O(T). 1) Initialization: at the beginning of each block, sense each

@:/@ﬂwme P =

Proof: Leti* = arg rixée}\;;é)i and i** = argief\r}eﬁ*}ﬁi, channel once.
i.e.,i* is the best channel, and" is the second best channel. 2) After the initialization period, the cognitive user obtains
To avoid trivial conditions, without loss of generality we an estimationd at the beginning of time slof, given
assume that;- # 6,~~ and ;- # 1. We can upper bound by
the performance of the staying with the winner and switching . X;(5)
from the loser rule by assuming that the cognitive user has the 0:(j) = Y-l(j) )

following extra knowledge.

1) In the first time slot, the cognitive user is able to choose
i* correctly. _ . 21n j

2) Oncei* fails, the cognitive user somehow knows which Ai(j) = 0:(5) + Y.0)
channel is the second best, and switches to ’

3) Once:** fails, the cognitive user is always able to switch to the i** channel. The cognitive user chooses the
back toi*. channel with the largest value of;(j) to sense at time

and assigns an index




slot j. After each sensing, the cognitive user upd&es opportunities in the other channels in the primary network are
andY. wasted.

The intuition behind this strategy is that as longragrows
as fast asO(InT), A; converges to the true value 6f in  A. Knowné Case
{Jhrot?ablhty,egnd th? C(ljlgnf;'t\]/e :Jsergvgllch;ose the cpann(tefllwnh To enable a succinct presentation, we first consider the case
ne largest; eventually. 'he loss (nT) COMES Trom € 4, \yhich the values o are known to all the cognitive users.
time spent on sampling the inferior channels in order to lea

The users distributively choose channels to sense and compete
the value off. This price, however, is inevitable as establishe%r access if the chan)r/1els are free P

n the lower bound of Lemma 42 - . 1) The Optimal Symmetric StrategWithout loss of gener-
Finally, we observe that the difference between the myop ity, we consider a mixed strategy where usewill choose

rule and the order optimal single index rule is the addition% anneli with probability py. ;. Furthermore, we lepy —

term \/21n j/Y;(j) added to the current estimatg Roughly lpp1. -+ .pr.x] and consider the symmetric solution in which
speaking, this additional term guarantees enough samplp@; p = L px. The symmetry assumption implies
time fcl)r Yeagh glrllagnel, s:lnceh!f k\‘/ve_”sgmple ch?ﬁnabob that all the users in the network distributively follow the same
spbfell.rtset%, tiz(\j ). thh Ie sm? N (\]IN |cW\r/]wH|n'creasle anjr? " rule to access the spectral opportunities present in the primary
3 II)I/I ba ﬂi 'Sd © 'argetst Index. th e.i(g)):‘ca esdah ' network, in order to maximize the same average throughput
i Wit be the dominant term n the Index;, and NeNce 5., ser can obtain. The following result derives the optimal
the channel with the largest; will be chosen much more solution in this situation

frequently. Lemma 6:For a cognitive network withK' > 1 cognitive

users andN channels with probability? of being free, the
IV. MULTI USER-SINGLE CHANNEL optimal p* is given by

AV E-DYT
A
Kei) } , for 6, >0,

for 0, =0,

competition to the problem. In order for a cognitive user to get .,

hold of a channel now, it must be free from the primary traffic*® —

and the other competing cognitive users. More rigorously, we ’
assume the presence of a #ét= {1,--- , K} of cognitive ) ) N

users and consider the distributed medium access decislddfreéA” is a constant is chosen so thiit:lp? = 1. Here
processes at the multiple users with no prior coordination. Welt = max{0,z}. .

denote;(j) C K as the random set of users who choose = proof: With a strategyp, the probability that usek;
to sense channel at time slotj. We assume that the usershooses channel and, at the same time, there drether
follow a generalized version of the Carrier Sense Multiplgsers choosing channéko sense is
Access/Collision Avoidance (CSMA-CA) protocol to access
the channel after sensing the main channel to be free, i.e., if Di <K B 1)p§.(1 _pi)Kflfl.
channeli is free, each user in the séf;(j) will generate !
a random numbet(j) according to a certain probability Under this scenario, the average throughput of each user is
density functiory, and wait the time specified by the generateg¢, /(I + 1), Hence, the average throughgdit, of userk is
random number. At the end of the waiting period, ussenses N Kol
the channel again, and if it is found free, the packet from kser _ Bo; (K - 1) ph(1 —p;)K 1

. X I . . Wpy=T Z i —_— -
will be transmitted. The probability that useiin the setC;(5) P [+1 l l+1
gains access to the channel is the same as the probability that
tx(4) is the smallest random number generated by the user&@
the setkC; (7). Thus, the throughput usérachieves in a block 2)”

The presence of multiple cognitive users adds an element of {
1

=0

ed on our symmetry assumption, we drop the subskript
write the average throughput of each useflaseading

is
N K-1
T K — 1\ pi(1 — p;) K1
. . ) W = BTZp.g, Z ( >%
Wi = BZgin()I<k= tr . v
i ; s () { arg, _min k(])} A [+1
N K-1 BEEEY L1 _ n \K—1-1
Therefore, usek should devise sensing rulg, that maxi- = BTZ 0, Z ' (K —1)! 'pl(l )
mizes P — NK-1-10)! I+1
N K-1
T 0; K
' ) ) _ BTZ ) ( >p{+1(1_p_)Kll
E{W,}=E BZgsin()I k= t . i v
{Wi} z_; sG) (7) { arg, min k(J)} K & \I+1
= N K
Clearly, with multiple cognitive users, it is not optimaI. = BTZ?; Z (?) él(l _pi)K_l’ (1)K
anymore for all the users to always choose the channel with =1 o
the largestd; to sense. In particular, if all the users choose N
the channel with the large#t, the probability that a given _ BTZ 0i {1 g —pj)K}

user gains control of the channel decreases, while potential ~ K



Now, we should solve the following optimization problem channel). Therefore, the loss of the distributed protocol as
compared with the centralized scheduling is

N
0:
max W:BTZ—l{l—(l—pi)K}, N
o K L=BT>» 6;(1-p)~,
=1
S.t. Zpi =1, which is same as (9) up to a constant factor. There is an intu-

itive explanation of this loss. If there is a spectral opportunity
in channeli but there are no users choosing charirtelsense,

a loss occurs. The probability that there is no user choosing
channeli to sense ig1 — p})%, and hence the probability of
loss occurring at channélis 6;(1 — p;)¥. To obtain further
min Y= Z 0;(1—pi)~, insights on the performance of the cognitive network, we study
i the following special cases.

p=>0.

This optimization problem is equivalent to the following:

st ZN: 1 ) 1) N > 1,K = 1. As stated in the abovey!. = 1, and
- ‘_lpl o p; = 0,1 € N\{i*}. Hence, the user should choose the
;> 0. channel with the largest free probability to sense. And
Since L =BT Z 0;.
X ieN\{i*}
327'7":91-[((}{71)(17@)1(*220, 2) N = 2,K = 2. SubstitutingN = 2 and K = 2
Y23

into (10), we obtain
for 0 < p; < 1, y is a convex function ofp in the region
o= = . 1=01/(01+65) and p3=065/(01+6).
of interest, i.e.p € [0,1]N. Also, the constraints are the P =01/ (61 +62) Pz = 02/(01+62)
intersection of a convex set and a linear constraint. Therefore, Furthermore,
our problem reduces to a convex optimization problem whose

2
Karush-Kuhn-Tucker (KKT) conditions [18] for optimality are W = B10, {1 — % }
2 (61 + 02)2
p* > 0, BT, 6?
N T2 [ - (91+92)2]
Zpi‘ = 1, BT6,0,
L= 2(0, + 0y)
b (K00 = o, o L |
. K1 3) N is fixed, and K — oo. We have the following
ATz Kei(1-pi)" asymptotic characterization.
where \* is the Lagrange multiplier. Lemma 7:Let Q < N be the number of channels for which
It is easy to check that ifK > 1, 0 > 0. We_havep;‘ — 1/Q, and L — 0 exponentially ask’
) increases, i.e., —
* - L~0O(e
Pt = {1 — (&) } for 6; >0, (10) ( ’

herec; = In

0 for 6,=0 w

Proof: Wﬁwut loss of generality, we assume that~ 0,
satisfies the KKT conditions, in which* is the constant that for 1 <1 < Q. At the moment, we assume that (we will show

satisfiesy p; = 1. m that this is true, ifK is large enough) if); # 0
If K =1, thenp}. =1, wherei* = argmax@, pf =0, v\ D e\ KD
andl € M\{i*}, satisfies the KKT condltlons pr=11-— (KH) =1- <K94> .
So, the total throughput of th& cognitive users is t ‘

N N Q
0; . Together with>~ pf = > pf =1, we have
KW = BKTZE{1—(1—pi)K} =1 =1
=1
N ()\*)1/([(—1) _ Kl/(K_l)(Q - ]')
= BTY 6:;{1—(1-p)~}. §9;1/(K71)
=1 =1 !
On the other hand, the average total spectral opportunitiesagid
N
the primary network isBT > 6;. This upper bound can be (Q — 1)p; /HE=D
) =1 ) r=1- L , for 1<i<Q.
achieved by a centralized channel allocation strategy when % gL/ (K-1)

K > N (simply by assigning one cognitive user to each =
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To satisfy the conditiorp > 0, we need to show . o X6

C1/(K-1) At this equilibrium, each user has probabilityz— of trans-
(@ —1)f; <1 mitting at each time slot.

< g1/ (K=1) - Proof: We prove this by backward induction. At the last
Z; i time slotT', if 7;s satisfy equation (11), the probability of user

for all i with 6, > 0. k gaining a channel is

With i* = argmax6; and!* = arg min 6;, we have for N
. ieN 1SI1£Q o2
all ¢ =
(Q— 1)o7 Y ED (@ —1)p; M/ ED Pk=TK T K
i < - .

= Z1/(K-1) Now, if user k deviates from this strategy, and chooses
Q —1/(K—1) Q.. / ) 7,

>0 ¢ channeli , the number of users sensing chanhes 7,y K +1,

=1 and the probability of usek gaining the channel is

For anyd < Q/(Q — 1), if K is large enough, we have

’ Hi, Gi/
(91.*);?1<19 pk_Ti’K+1<Ti/K_pk'
0, - Hence the strategy that hagK users sensing channeélat
since . time slotT" is a Nash equilibrium. Now, we know the optimal
. O« \ 51T 1 strategy for the last time-slot, so we can ignore this time slot.
[ ey 0, - Then time slotT" — 1 becomes the last slot, in which this

Hence, for alll < i < (), we have strategy is optimal. Similarly, we show that this strategy is

1K) optimal for all other time slots. |
(Q —1)6, < Q- 119 <1 The Nash equilibrium is also optimal from a system per-
Q _ - Q - spective, in the sense that this strategy maximizes the to-
39 1/(K—1) —_
= tal throughput of the whole network by fully utilizing the

available spectral opportunities whé is large (i.e., on the

Now, straightforward limit calculation shows that ) o
9 average, each user will be able to trans@ﬁ% bits per

Pt —1/Q, block, and the total throughput of the network B4 6;).

as K increases. And With thi§ equilibrium result,_ the cognitive users can use
0 the following stochastic sensing strategy to approximately

BT Y 60;(1 —p5)¥ o work on the equilibrium point for a large but finit&. Let

lim L lim i=1 - BTZQZ, sk(j) be the channel chosen by uskrat time slotj. At

K—oo exp™ @K K—oo exp~ 1K =1 each time slot, each user independently selects charwigth

o - 0; . N
with ¢; = In & - probability 7; = ~=-, i.e., P{sk(j) = i} = 7;. Then at

The reason ?or1 the exponential decrease in the loss is thedch time slot, tﬁéNnumber of users sensing channell be

as the number of cognitive users increases, the probabili ) ) , . . .

that there is no user sensing any particular channel decrqug{sk(j) = i}, where thel{s,(j) = i}s are i.i.d Bemoull

exponentially. random variables. Hence, the total number of users sensing
2) The Game Theoretic ModelThe optimality of the channeli is a binomial random number, and the fraction of

distributed protocol proposed in the previous section hingesers sensing channglconverges tor; in probability ask

on the assumption that all the users will follow the symmetriacreases, i.e.

rule. However, it is straightforward to see that if a single

cognitive user deviates from the rule specified in Lemma 6, it I{s(j) = i}

will be able to transmit more bits. If this selfish perspective =

propagates through the network, it may lead to a significant . K ) ) _

reduction in the overall throughput. This observation motivatd ProPability. Hence, ag increases, the operating point wil

our next step in which the channel selection problem fonverge to the Nash eqii_ilibrium in proi)ability. .
IJ;or any K, the probability that there is no user choosing

modeled as a non-cooperative game, where the cognitive us it i1 K H h ; |
are the players, thé&'ys are the strategies and the averag‘g1annez 0 sense g1~ Ti.> - hience the performance 10ss
ﬁompared with the centralized scheme is

throughput of each user is the payoff. The following resu

M=

derives a sufficient condition for the Nash equilibrium [19] in % 50, —0; K
the asymptotic scenarii’ — oco. L= BTZG’?(l T = BTZGi ( S 0; ) :
Lemma 8:(T'y,--- ,T'x) is a Nash-equilibrium, ifK is .
. . It is easy to check that
large and at each time slot, there ay& users sensing channel
i, wherer; satisfies lim L _ = BTY,
L a1 e
T; — . X 0, .
f’: 0, where§;+ = min{0; : 6; > 0}, andcs = In 2%779 It is

! now clear that the loss of the game theorétic scheme goes

(2
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to zero exponentially, though the decay rate is smaller thaave

that of the scheme specified in Lemma 6. On the other hand, T

compared with the scheme in Lemma 6, the game theoretic E{Yii(T)} = E ZI{Sk(j) =i}

scheme has the advantage that the individual cognitive users ' =

do not need to know the total number of cognitive us&rin T

the network and, more importantly, they have no incentive to _ EAT1S. (i) =i

deviate unilaterally. ; USG) =)

E Xi,i(7)/ Yi,i(4)

. > Xii(5)/Ye,i(h)
1EN

|
[M]=

B. Unknown@ Case =

.
Il

If @ is unknown, the cognitive users need to estinti@n
addition to resolving their competition). Combining the results (@)
from Sections III-B and IV-A, we design the following low =
complexity strategy which is asymptotically optimal.

Rule 2: 1) Initialization: Each usek maintains the follow- Q
ing two vectors:Xy, which records the number of time slots
in which userk has sensed each channel to be free; ¥nd
which records the number of time slots in which ugehas = T
sensed each channel. At the beginning of each block, kuser
senses each channel once and transmits through this chaMfre () follows from the fact thaX. ;(j)/Y%.:(j) < 1, and
if the channel is free and it wins the competition. Also, sdp) follows from (13).

X = 1, regardless of the sensing result of this stage. The probability thatv ;(T") < (1 — 6)E{Y}.(T)} can also

2) At the beginning of time slof, userk estimates); as be bounded using the Cherno'ff bounds SIW.QQ(T) is also the

sum of independent Bernoulli random variables. In particular,

Vv
[M]=
=

1

ECH
I

01(1 — exp(—@z/S))
2N

M=

<.
I
-

>

Jif(l —exp(—0;/8)) = ¢/ T,

=

0:(5) = Xr.i(§)/ Yii(4), we have
—S2E{Y 4(T
and chooses each chanriet AV with probability PHYii(T) < (1 — O)E{Y:(T)}} < exp <{2k()}> .
0:(4) On letting
. 12
> 0:0) " 5= [REDLAD}
= E(Vi(T)]
After each sensingX; andY are updated. O we have

Lemma 9:If K is large, the scheme in Rule 2 converges
to the Nash equilibrium specified in Lemma 8 in probability,

asT incre.ases. , N _ Using the union bound, and the weak law of large numbers,
Proof: X, is the sum ofY ; i.i.d Bernoulli random X1.4(4)/Yes(j) converges td; in probability asT” increases

variables with paramete;. We use the following form of the (with probability larger tharl — 1/T). The scheme becomes
Chernoff bound. LefX" be the sum of. independent Bernoulli e same as the knowé case. in which we know that the

random variables with parametéy then

Pr{Yi;(T) < E{Y;;(T)} — InE{Y;,;(T)}} < %

operating point is approximately at the Nash equilibrium, if
_n€52> K is sufficiently large. |

The intuition behind this scheme is that, each user will

Pr{X <(1-6)nf} <exp (
sample each channel at leaS(T") times, and hence as

for anyd < 1. T increases, the estimai® converges tof in probability
At time slotj, if we replaceX with X, ;(5), n with Y3 ;(j), implying that the unknowr® case will eventually reduce to
6 with ¢; and lets = 1/2, then we have the case in whicl® is known to all the users. Hence, K
. is sufficiently large, the operating point converges to the Nash
(i Iov (s v (g, equilibrium in probability.
Pr{X]”(J) = 29'LY’“’7’(J)} < exp (=Yii(5)0:/8). If one can assume that the users will follow the pre-specified
Hence rule, then_we can des_ign th_e fqllowing strategy that converges
to the optimal operating point in probability for ardy, asT
Xki(§) _ 0 . increases.
Pr{ Yi.i(4) = 2} > 1 —exp(—Yk,i(4)0i/8) Rule 3: 1) Initialization: Each usek maintains the follow-
> 1—exp(—6;/8), (13) ing two vectors:Xy, which records the number of time slots
in which userk has sensed each channel to be figg, which
since after the initialization period}, ;(j) > 1. records the number of time slots in which ud¢ehas sensed

Note thatY}, ;(7') is the total number of time slots that useeach channel. At the beginning of each block, usesenses
k has sensed channglin each block withT time slots. We each channel once, and transmits through this channel if the
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channel is free and it wins the competition. Also, 8gt; = 1, We have the following order-optimal simple single-index strat-

regardless of what the sensing result at this stage. egy.

_ 2) At the beginning of time slof <1In7, userk estimates  Rule 4: The cognitive user maintains two vectaks and

0; as . Y, where eachX; is the number of time slots in which the
0:(j) = Xk,:(5)/ Yi,i(4), cognitive user has sensed channab be free, and each;

is the number of time slots in which the cognitive user has
A N 0 . _ chosen channel to sense. The strategy works as follows.
0i(7)/ 22 6:(j). Forj > InT, the ™ channel is sensed with 1) |nitialization: at the beginning of each block, each chan-

and chooses each channél € N with probability

probaf)ﬁilty nel is sensed once. This initialization stage tak®¥g\/ ]
(K- F time slots, in which z] denotes the least positive integer
P = {1 _ (A ) } . (14) that is larger thanc.
0; 2) After the initialization period, the cognitive user obtains
After each sensingX, and Y are updated. 0 an estimatior® at the beginning of time slat given by
Lemma 10:The proposed scheme converges in probability . X:(4)
to the optimal operating point specified in Lemma 6,7as i) = Yi(5)’
increases.

Proof: Following the same steps as the proof of and assigns an index
Lemma 9, one can show that aftér(InT") times slots,0

converges tof in probability asT increases. Hence the Ai(H) :éi(j)Jr 21“;7
operating point specified by (14) converges in probability to Yi(5)
the optimal point specified in Lemma 6 @sincreases. W to thei* channel. The cognitive user orders thds¢j)s
V. MULTI-CHANNEL COGNITIVE USERS and selects thé/ channels with the largest;(j)s to
. . . sense. After each sensing, the cognitive user updstes
In certain scenarios, cognitive users may be able to sense and Y.

more than one channel simultaneously. To simplify the pre- Lemma 11:Rule 4 is asymptotically optimal anti(@, T') ~
sentation, we assume the presence of only a single cognitjyﬁn T) ' 7

user capable of sensing, and subsequently utilizifg< N Proof: We boundY;(T') for i > M-+1, i.e., the channels

channels simultaneously. LeW () be the set of channelsthat are not among the channels having Melargest values

the cognitive user selects to sense at time slowhere of 6. Note thatY;(T) is the total number of time slots in which

|M(J.)| = M. The average numbgr of bits that the coganﬁqe cognitive user has sensed chaririala block withT" time
user is able to send over a block is therefore slots. We have

T
. T
E{W}=E{> > BZsy) - Yir) = 1+ > I{ie M()}
J=18(5)eM(33) F=[N/M1+1

At the beginning of time slof, the cognitive user can update T
the distribution f7(9) according to (3) and (4). Similar to < m+ Z I{z‘ e M(j)
Lemma 1, the optimal solution can be characterized by the
following optimality condition

Yi(j) = m}.
J=[N/M1]+m

for any m > 1, where I{z|y} is the conditional indicator
V[, T) = max E; Z BZ, function, which equals 1 if{ conditioning_m x is satisfied,
MDEN, IMD)|=M s em) and otherwise equals 0. Sind&(j) > m, it follows thati €
M(35) only if A;(j) is among theM largest indices. Hence,
e (f{Zs(1>:s(1)€M(1)}7T _ 1) } (15) @ necessary condition fare M(j) is
) ) ) Ai(j) > min{A;(j): 1 <1 < M}.

Here, f(z,,,:s(yem(1)} IS the updated density after observing

the sensing output of the channeld) € M(1). We can then Otherwise, if

follow the same procedure described for the single-channel A A 1 <1< M

sensing scenario to obtain the optimal strat&€gyaccording i(7) <min{Ay(j) : 1 <1< M},

to (15). In the following, however, we focus on low complexityhen the indices of thes&/ channels are already larger than

non-parametric strategies that are asymptotically optimal. that of channel, and channel will not be selected. Thus
If 8 is known, the cognitive user will choose thé channels
Yi(j) > m}

with the largestd’s to sense. Without loss of generality, we {i € M(j)
assumed; > 6, > --- > Oy. Hence, for any strategy/, the

loss is < I{Ai(j) >min{A;(j) : 1 <1< M}|Y;(j) > m}
T M T N M

L(O;T)=> > BY;—> B 6;P{T(¥())) =i}, < MI {Aiu) > N (5)|Yi(G) 2 m} :
j=11:i=1 j=1 =1 =1



Hence Similarly, we have

Yi(T)<m + 2: 2:{ >Az)(ﬁ2m} 21n j
J=[N/M]+m I=1 Pr<Ai(j) > 6; +2 Y(])}Q()zm
M T !
< i(j) > Y (5) > . « j
Soimt X H{MG) 2 MG)YG) = m) S R 1T | Sy
=1 J=[N/M1]+m Yi(5)
J
In order for A;(j) > A;(j), one of the following three _ PHY, (1) —
conditions must be satisfied q;:n ¥i(9) = a}
; ; [2Inj [2Inj Prid, > 6, + |22 ly.(j) Yi(j) =
A () <6, Ni(G) > 6; +2 <0;+2 _ i > 0; =Y Yi(4) =4
l(])_ela l(])_€z+ Y;(])’ orel_ez‘i' }/;(‘7) Y;,(.])
0] i i it - . ) 2Inj () —
ne can easily check that, if none of these three conditions < Z Pri6; > 0; + Y() Yi(j) =¢q
is satisfied, we will have\;(j) < A;(j). In the following, we q=1 i
bound the probability of each event. < 2jexp i
2573
Pri{a() < 8i|Yilj) = m}
— Pl s 2Iny <6|Vi(j) = m At the same time, if we set
Yi(5)
X 2Inj|. . 8InT l
< Pri|6;,—0;] > | —=Y:(5) > m=|——|,
: {’ =0 2355 40) m} lo=r:
= ZPr{Yl(j)ZQ} we have for anyl <1< M, if Y;(j) >m
2Iny
{‘91 91’>U (j)Y(J) m, Yi(j) = } } 2Inj _ 21n j
Oi + 24/ o5 <0;+2
21 Yi(j) m
n]
< Pre |6, — 6] > Yi(4) =q In j
< 2] exp ™™ (16)

_ 9.3
= 277, Hence with thism,

where (16) follows from to the following Chernoff-Hoeffding

bounds, which says that fari.i.d Bernoulli random variables 21n j
X;,7=1,---,n with meand, Pr6, < 6; + 2 Y0 Yi(j) 2 m =0,
Pr{ 1Y 9_‘ > e} <2exp~2" forall e > 0. (17)
n for eachl <11 < M.
. . N . Thus,
To see this, we note that in our casg,j) is the sum ofY;(j)
i.i.d Bernoulli random variables with parametgr On setting
Pr{A:(j) = M()|Y(j) = m}
=Y,(j), ande = 21
n=Yi(j), ande = 35 < Pr{nG) <0|YiG) = m)
. 2Inj
also using the fact that +Prq Ai(j) > 6, +2 i) Yi(j) >m
i 2 2d)
0, = , 2Inj
! YiG) +Pr{9;<9 +2 Yi(j) Yi(j) = m

we have (16). < 4573,
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E{Y;(T)}
g f: [
< m+
=1 (2]
T
S gz a0)vG) zm} 8
[N/M]+m

(4]
(5]

[M]=

j=[N/M1+m

‘ ' ) 8InT
E I{Ai(J)ZAl(J) Yig) = {(H—QM)ZH}} ;
InT d .
< M|\l o——5 |+ ¥
since ?
T oo
) B [10]
Y. 4Tt s) 4
J=[N/M]+m i=1

(11]

and Z j 73 exists. [12]

Hence from (18), we have that, for any channel that is ngg;
among the besd/ channels, the average number of time slots
for which this channel is selected is bounded ®ylnT).
Thus, the loss is of ordeD(InT').

On the other hand, it has been proved in [20] that for anY
consistent strategy,

(14]

L(6:T [16]
lim inf L > ¢,
T—oo InT
with some constant;. This completes the proof. m 17
VI. CONCLUSIONS (18]

9
This work has developed a unified framework for the deS|g[m}

14
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