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Abstract

Cognitive radios have been proposed as a means to implement efficient reuse of
the licensed spectrum. The key feature of a cognitive radio is its ability to recognize
the primary (licensed) user and adapt its communication strategy to minimize the
interference that it generates. We consider a communication scenario in which the
primary and the cognitive user wish to communicate to different receivers, subject
to mutual interference. Modeling the cognitive radio as a transmitter with side-
information about the primary transmission, we characterize the largest rate at
which the cognitive radio can reliably communicate under the constraint that (i)
no interference is created for the primary user, and (ii) the primary encoder-decoder
pair is oblivious to the presence of the cognitive radio.

1 Introduction

Observing a severe under-utilization of the licensed spectrum, the FCC has recently
recommended [7, 8] that significantly greater spectral efficiency could be realized by de-
ploying wireless devices that can coexist with the incumbent licensed (primary) users,
generating minimal interference while somehow taking advantage of the available re-
sources. Such devices could, for instance, form real-time secondary markets [14] for the
licensed spectrum holders of a cellular network or even, potentially, allow a complete
secondary system to simultaneously operate in the same frequency band as the primary.

∗A. Jovičić and P. Viswanath are with the department of Electrical and Computer Engineering at
the University of Illinois at Urbana-Champaign. Email: {jovicic,pramodv}@uiuc.edu
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The characteristic feature of these cognitive radios would be their ability to recognize their
communication environment and adapt the parameters of their communication scheme to
maximize the quality of service for the secondary users while minimizing the interference
to the primary users.

In this paper, we study the fundamental limits of performance of wireless networks
endowed with cognitive radios. In particular, in order to understand the ultimate system-
wide benefits of the cognitive nature of such devices, we assume that the cognitive radio
has non-causal knowledge of the codeword of the primary user in its vicinity1; in this,
we are motivated by the model proposed in [6]. We address the following fundamental
question:

What is the largest rate that the cognitive radio can achieve under the constraint that

(i) it generates no interference for the primary user in its vicinity, and

(ii) the primary receiver uses a single-user decoder, just as it would in the absence of
the cognitive radio?

We will refer to these two imperative constraints as the coexistence conditions that a
cognitive secondary system must satisfy.

Of central interest to us is the communication scenario illustrated in Fig. 1: The
primary user wishes to communicate to the primary base-station Bp. In its vicinity is a
secondary user equipped with a cognitive radio that wishes to transmit to the secondary
base-station Bs. We assume that the cognitive radio has obtained the message of the
primary user. The received signal-to-noise ratio of the cognitive radio’s transmission at
the secondary base-station is denoted by SNR. The transmission of the cognitive radio is
also received at Bp, and the signal-to-noise ratio of this interfering signal is denoted by
INR (interference-to-noise ratio). If the cognitive user is close to Bp, INR could potentially
be large.

Our main result is the characterization of the largest rate at which the cognitive
radio can reliably communicate with its receiver Bs under the coexistence conditions and
in the “low-interference-gain” regime in which INR ≤ SNR. This regime is of practical
interest since it models the realistic scenario in which the cognitive radio is closer to Bs

than to Bp. Moreover, we show that the capacity achieving strategy is for the cognitive
radio to perform precoding for the primary users’s codeword and transmit over the same
time-frequency slot as that used by the primary radio.

To prove our main result, we allow the primary and secondary systems to cooperate

1Note that this does not imply that the cognitive user can decode the information that the primary
user is communicating since there are secure encryption protocols running at the application layer. The
decoded codeword is a meaningless stream of bits for the cognitive user.
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Figure 1: A possible arrangement of the primary and secondary receivers, base-stations
Bp and Bs, respectively. The cognitive secondary user is represented by the circle and
the primary user is represented by the square. The side-information path is depicted by
the dotted line.

and jointly design their encoder-decoder pairs and then show that the optimal commu-
nication scheme for this cooperative situation has the property that the primary decoder
does not depend on the encoder and decoder used by the secondary system. This co-
operative communication scenario can be thought of as an interference channel [1], [16],
[4] but with degraded message sets2: Achievable schemes for this channel have been first
studied in [6]. A related problem of communicating a single private message along with
a common message to each of the receivers has been studied in [12].

Furthermore, we exhibit a regime in which joint code design is beneficial when one
considers the largest set of simultaneously achievable rates of the primary and cognitive
users. We show that, unlike in the low-interference-gain regime, knowledge of the code
used by the cognitive radio is required by the primary decoder in order to achieve all the
rates in the capacity region of this interference channel when INR ≫ SNR.

The rest of this paper is organized as follows. We first present the Gaussian cognitive
channel in Section 2. We state our main result, the capacity of the cognitive channel
in the low-interference-gain regime INR ≤ SNR, in Section 3. The proof of our main
result is given in Section 4, where we demonstrate the capacity region of the underlying
interference channel with degraded message sets which inherently allows for joint code
design. We then show that the benefit of joint code design becomes apparent in the high-
interference-gain regime INR ≫ SNR; this is done in Section 4.2.5. Finally, we study the

2The primary radio has only a subset of the messages available to the cognitive radio.
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system-level implications of the optimal cognitive communication scheme in Section 5.

2 The Channel Model and Problem Statement

2.1 The cognitive channel

Consider the following communication scenario which we will refer to as the cognitive
channel.
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Figure 2: The (Gaussian) cognitive channel after n channel uses. The dashed lines
represent interfering receptions. The dotted line represents the side-information path.
The power constraints are P̃p and P̃c and noise variances are Np and Ns.

The additive noise at the primary and secondary receivers, Z̃n
p := (Z̃p,1, Z̃p,2, . . . , Z̃p,n)

and Z̃n
s := (Z̃s,1, Z̃s,2, . . . , Z̃s,n), is assumed to be i.i.d. across symbol times i = 1, 2, . . . n

and distributed according to N (0, Np) and N (0, Ns), respectively3. The correlation be-

tween Z̃n
p and Z̃n

s is irrelevant from the standpoint of probability of error or capacity
calculations since the base-stations are not allowed to pool their signals. The primary
user has message mp ∈ {0, 1, . . . , 2nRp} intended for the primary receiver to decode, the
cognitive user has message mc ∈ {0, 1, . . . , 2nRc} intended for the secondary receiver as
well as the message mp of the primary user. The average power of the transmitted signals

is constrained by P̃p and P̃c, respectively:

‖X̃n
p ‖2 ≤ nP̃p, ‖X̃n

c ‖2 ≤ nP̃c. (1)

The received signal-to-noise ratios (SNRs) of the desired signals at the primary and

secondary base-station are p2P̃p/Np and c2P̃c/Ns, respectively. The received SNRs of

3Throughout the paper we will denote vectors in Rn by Xn := (Xi, X2, . . . , Xn)
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the interfering signals at the primary and secondary base-station (INRs) are f 2P̃c/Np

and g2P̃p/Ns, respectively. The constants (p, c, f, g) are assumed to be real, positive and
globally known. The results of this paper easily extend to the case of complex coefficients
(see Section 5.3). The channel can be described by the pair of per-time-sample equations

Ỹp = pX̃p + fX̃c + Z̃p, (2)

Ỹs = gX̃p + cX̃c + Z̃s, (3)

where Z̃p is N (0, Np) and Z̃s is N (0, Ns).

2.2 Transformation to standard form

We can convert every cognitive channel with gains (p, f, g, c), power constraints (P̃p, P̃c)
and noise powers (Np, Ns) to a corresponding standard form cognitive channel with gains
(1, a, b, 1), power constraints (Pp, Pc) and noise powers (1, 1), expressed by the pair of
equations

Yp = Xp + aXc + Zp, (4)

Ys = bXp + Xc + Zs, (5)

where

a :=
f
√

Ns

c
√

Np

, b :=
g
√

Np

p
√

Ns

,

Pp :=
p2P̃p

Np
, Pc :=

c2P̃c

Ns
. (6)

The capacity of this cognitive channel is the same as that of the original channel since
the two channels are related by invertible transformations4 that are given by

Xp :=
pX̃p√

Np

, Yp :=
Ỹp√
Np

, Zp :=
Z̃p√
Np

; (7)

Xc :=
cX̃c√
Ns

, Ys :=
Ỹs√
Ns

, Zs :=
Z̃s√
Ns

. (8)

In deriving our main result we will consider this standard form of the cognitive channel
without loss of generality and we will refer to it as the cognitive (1, a, b, 1) channel.

4These transformations were used in [1], [3] and [16], in the context of the classical interference
channel.
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Figure 3: The cognitive channel in standard form. The channel gains (p, f, g, c) in the

original channel are mapped to (1, a, b, 1), powers (P̃p, P̃c) are mapped to (Pp, Pc), and
noise variances (Np, Ns) are mapped to (1, 1).

2.3 Coding on the cognitive channel

Let the channel input alphabets of the primary and cognitive radios be Xp = R and
Xc = R, respectively. Similarly, let the channel output alphabets at the primary and
secondary receivers be Yp = R and Ys = R, respectively.

The primary receiver is assumed to use a standard single-user decoder to decode mp ∈
{1, 2, . . . , 2nRp} from Y n

p , just as it would in the absence of the secondary system: Any
decoder which achieves the AWGN channel capacity, such as the maximum-likelihood
decoder or the joint-typicality decoder, will suffice. Following standard nomenclature,
we say that Rp is achievable for the primary user if there exists a sequence (indexed by
n) of encoding maps, En

p : {1, 2, . . . , 2nRp} 7→ X n
p , satisfying ‖Xn

p ‖2 ≤ nPp, and for which
the average probability of decoding error (average over the messages) vanishes as n → ∞.

The cognitive radio is assumed to have knowledge of mp, hence we have the following
definition:

Definition 2.1 (Cognitive code) A cognitive (2nRc , n) code is a choice of an encoding
rule (whose output we denote by Xn

c )

En
c : {1, 2, . . . , 2nRp} × {1, 2, . . . , 2nRc} → X n

c , (9)

such that ‖Xn
c ‖2 ≤ nPc, and a choice of a decoding rule

Dn
c : Yn

s → {1, 2, . . . , 2nRc}. (10)

The following key definition formalizes the important notion of coexistence conditions
that the cognitive secondary system must satisfy.
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Definition 2.2 (Achievability: cognitive user) A rate Rc is said to be achievable for
the cognitive user on a cognitive (1, a, b, 1) channel if there exists a sequence of cognitive
(2nRc , n) codes such that the following two constraints are satisfied:

1. The average probability of error vanishes as n → ∞, i.e.,

P (n)
e,c

def
=

1

2n(Rc+Rp)

n∑

i=1,j=1

P(Dn
c (Y n

s ) 6= j|mp = i, mc = j) → 0; (11)

2. A rate of R∗
p

def
= 1

2
log(1 + Pp) is achievable for the primary user.

Definition 2.3 (Capacity) The capacity of the cognitive channel is defined to be the
largest achievable rate Rc for the cognitive user.

Our main result, presented in the following section, precisely quantifies the capacity of
the cognitive channel in the “low-interference-gain” regime.

3 The Main Result

If the received SNR of the cognitive radio transmission is lesser at the primary receiver
than at the secondary receiver, we say that the primary system is affected by a low
interference gain. This is the case that is most likely to occur in practice since the
cognitive radio is typically closer to its intended receiver (the secondary base-station) than
to the primary base-station. In terms of the parameters of our problem, this situation
corresponds to f

√
Ns ≤ c

√
Np in our original cognitive channel, or, equivalently, to a ≤ 1

in the corresponding standard-form cognitive (1, a, b, 1) channel. Our main result is an
explicit expression for the capacity of the cognitive channel in this regime.

Theorem 3.1 The capacity of the cognitive (1, a, b, 1) channel is

R∗
c =

1

2
log(1 + (1 − α∗)Pc), (12)

as long as a ≤ 1. The constant α∗ ∈ [0, 1] is defined in (17).

Note that Theorem 3.1 holds for any b ∈ R (or equivalently any p, g ∈ R in the original
cognitive channel).
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4 Proof of the Main Result

4.1 The forward part

To show the existence of a capacity-achieving cognitive (2nR∗

c , n) code, we generate a
sequence of random codes such that the average probability of error (averaged over the
ensemble of codes and messages) vanishes as n → ∞. In particular, we have the following
codes:

• En
p ensemble: Given mp ∈ {1, 2, . . . , 2nRp}, generate the codeword Xn

p ∈ R
n by

drawing its coordinates i.i.d. according to N (0, Pp).

• En
c ensemble: Since the cognitive radio knows mp as well as En

p , it can form Xn
p

and perform superposition coding as follows:

Xn
c = X̂n

c +

√
αPc

Pp

Xn
p , (13)

where α ∈ [0, 1]. The codeword X̂n
c encodes mc ∈ {1, 2, . . . , 2nRc} and is generated

by performing Costa precoding [3] (also known as dirty-paper coding) treating (b +√
αPc

Pp
)Xn

p as non-causally known interference that will affect the secondary receiver

in the presence of N (0, 1) noise. The encoding is done by random binning [3].

• Dn
c : Costa decoder (having knowledge of the binning encoder En

c ) [3].

The key result of Costa [4] is that, using the dirty-paper coding technique, the max-
imum achievable rate is the same as if the interference was also known at the receiver,
i.e., as if it were absent altogether. The characteristic feature of this scheme is that
the resulting codeword X̂n

c is statistically independent of Xn
p and is i.i.d. Gaussian. To

satisfy the average power constraint of Pc on the components of Xn
c , each coordinate of

X̂n
c must, in fact, be N (0, (1−α)Pc). Hence, the primary receiver can treat X̂n

c as inde-
pendent Gaussian noise. Using standard methodology, it can be shown that the average
probability of error for decoding mp (averaged over the code ensembles and messages)
vanishes, as n → ∞, for all rates Rp below

1

2
log

(
1 +

(
√

Pp + a
√

αPc)
2

1 + a2(1 − α)Pc

)
. (14)

Similarly, the average probability of error in decoding mc vanishes for all rates Rc below

1

2
log(1 + (1 − α)Pc). (15)
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However, in order to ensure that a given rate is achievable for the cognitive user in the
sense of Definition 2.2, we must have that

1

2
log

(
1 +

(
√

Pp + a
√

αPc)
2

1 + a2(1 − α)Pc

)
=

1

2
log(1 + Pp) =: R∗

p. (16)

Observe that, if a = 0, any choice of α ∈ [0, 1] will satisfy (16): in this case we should
set α∗ = 0 to maximize the rate achievable for the cognitive user. For 0 < a ≤ 1, by the
Intermediate Value Theorem, this quadratic equation in α always has a unique root in
[0, 1]:

α∗ =



√

Pp

(√
1 + a2Pc(1 + Pp) − 1

)

a
√

Pc(1 + Pp)




1

2

. (17)

Finally, since the code-ensemble-averaged (and message-averaged) probabilities of er-
ror vanish, there must exist a particular sequence of cognitive codes and primary en-
coders for which the (message-averaged) probabilities of error vanish as well. Hence,
R∗

c = 1
2
log(1 + (1 − α∗)Pc) is achievable for the cognitive user in the sense of Defini-

tion 2.2.

4.2 The converse part

4.2.1 Proof outline

In order to prove the converse to our main result we will first relax the constraints of
our problem and allow for joint primary and cognitive code design. This relaxation
leads naturally to an interference channel with degraded message sets5, which we will
abbreviate as IC-DMS for convenience.

Our approach is to first characterize the capacity region of the IC-DMS, i.e., the
largest set of rate tuples (Rp, Rc) at which joint reliable communication can take place.
We then make the key observation that the joint coding scheme that achieves all the
rate tuples in the capacity region of the IC-DMS has the property that the decoder at
the primary receiver is a standard single-user decoder. Furthermore, we show that there
exists a point (Rp, Rc) = (R∗

p, R
∗
c) on the boundary of the capacity region of the IC-DMS,

where R∗
p = 1

2
log(1+Pp) and R∗

c = 1
2
log(1+ (1−α∗)Pc) with α∗ given by (17). We then

conclude that Rc = R∗
c is the capacity of the corresponding cognitive channel.

5The primary user knows mp while the cognitive user knows {mp, mc}, hence the primary user has a
subset of the messages available to the cognitive user.
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4.2.2 Joint code design: The IC-DMS

The input-output equations of the IC-DMS, as for the cognitive channel, are given by
(2), (3) with the standard form given by (4), (5). We will denote the IC-DMS in standard
form by “(1, a, b, 1)-IC-DMS”.

Definition 4.1 (IC-DMS code) A (2nRp, 2nRc, n) code for the (1, a, b, 1)-IC-DMS is a
choice of an encoding rule and a decoding rule: The encoding rule is a pair of maps
(whose outputs we denote by Xn

p and Xn
c , respectively)

en
p : {1, 2, . . . , 2nRp} → X n

p , (18)

en
c : {1, 2, . . . , 2nRp} × {1, 2, . . . , 2nRc} → X n

c , (19)

such that ‖Xn
p ‖2 ≤ nPp and ‖Xn

c ‖2 ≤ nPc. The decoding rule is a pair of maps

dn
p : Yn

p → {1, 2, . . . , 2nRp}, (20)

dn
c : Yn

s → {1, 2, . . . , 2nRc}. (21)

Given that the messages selected are (mp = i, mc = j), an error occurs if dn
p(Y

n
p ) 6= i or

dn
c (Y n

s ) 6= j.

Definition 4.2 (Achievability: IC-DMS) A rate vector (Rp, Rc) is said to be achiev-
able if there exists a sequence of (2nRp, 2nRc, n) codes such that the average probability of
error at each of the receivers vanishes as n → ∞, i.e.,

P̃ (n)
e,p

def
=

1

2n(Rc+Rp)

n∑

i=1,j=1

P(dn
p(Y

n
p ) 6= i|mp = i, mc = j) → 0, (22)

P (n)
e,s

def
=

1

2n(Rc+Rp)

n∑

i=1,j=1

P(dn
c (Y

n
s ) 6= j|mp = i, mc = j) → 0. (23)

Definition 4.3 (Capacity region) The capacity region of the IC-DMS is the closure
of the set of achievable rate vectors (Rp, Rc).

4.2.3 The capacity region of the IC-DMS under a low interference gain

The following theorem characterizes the capacity region of the (1, a, b, 1)-IC-DMS with
a ≤ 1 and arbitrary b ∈ R.
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Theorem 4.1 The capacity region of the (1, a, b, 1)-IC-DMS with a ≤ 1 and b ∈ R is
given by the union, over all α ∈ [0, 1], of the rate regions

0 ≤ Rp ≤ 1

2
log

(
1 +

(
√

Pp + a
√

αPc)
2

1 + a2(1 − α)Pc

)
, (24)

0 ≤ Rc ≤ 1

2
log (1 + (1 − α)Pc) . (25)

Proof of achievability: The random coding scheme described in the forward part of the
proof of Theorem 3.1 (Section 4.1) achieves the rates (24) and (25) stated in the theorem.
We emphasize that, in this scheme, the primary receiver employs a single-user decoder.

Proof of converse: See Appendix A.

4.2.4 The capacity of the cognitive channel under a low interference gain

The proof of Theorem 4.1 reveals that the jointly designed code that achieves all the
points on the boundary of the capacity region of the IC-DMS is such that the primary
receiver uses a standard single-user decoder, just as it would in the absence of the cognitive
radio. In other words, the primary decoder dn

p does not depend on en
c and dn

c . Thus, in
order to find the largest rate that is achievable by the cognitive user in the sense of
Definition 2.2 we can without loss of generality restrict our search to the boundary of the
capacity region of the underlying IC-DMS. Hence, to find this capacity of the cognitive
channel, we must solve for the positive root of the quadratic equation (16) in α. The
solution is given by α∗ in (17), hence the capacity is

R∗
c =

1

2
log(1 + (1 − α∗)Pc). (26)

Thus we have established the proof of Theorem 3.1. �

The proof of the converse of Theorem 4.1 allows us to characterize the sum-capacity
of the (1, a, b, 1)-IC-DMS for any a ≥ 1 and the entire capacity region if a is sufficiently
large. These two ancillary results are shown in the following section.

4.2.5 The high-interference-gain regime

The sum-capacity for a ≥ 1

11



Corollary 4.1 The maximum of Rp + Rc over all (Rp, Rc) in the capacity region of the
(1, a, b, 1)-IC-DMS with a ≥ 1 and b ∈ R is achieved with α = 1 in (24) and (25), i.e.,

C
sum

(a) =
1

2
log

(
1 +

(√
Pp + a

√
Pc

)2
)

. (27)

Proof: See Appendix B

Contrary to the development so far, in the following section we will observe that, in
the very-high-interference-gain regime, the optimal (jointly designed) IC-DMS code is
such that the primary decoder dn

p depends on the cognitive encoder en
c .

The benefit of joint code design

When the interference gain at the primary receiver due to the cognitive radio transmis-
sions (parameter a) is sufficiently large, the optimal decoder at the primary receiver of
the IC-DMS is one that decodes the message of the cognitive user before decoding the
message of the primary user.

First, we demonstrate an achievable scheme in the following lemma.

Lemma 4.2 Consider the cognitive (1, a, b, 1)-interference channel. For every α ∈ [0, 1],
the rate pair (Rp, Rc) satisfying

Rp = R̂p(α)
def
=

1

2
log

(
1 +

(√
Pp + a

√
αPc

)2
)

, (28)

Rc = R̂c(α)
def
=

1

2
log

(
1 +

(1 − α)Pc

1 + (b
√

Pp +
√

αPc)2

)
, (29)

is achievable as long as

a ≥
√

αPpPc

K(α)
+

√
K(α) + Pp

(
1 + (b

√
Pp +

√
αPc)2

)
, (30)

where K(α)
def
= 1 + b2Pp + 2b

√
αPpPc.

Proof: The primary transmitter forms Xn
p by drawing its coordinates i.i.d. according to

N (0, Pp). Since the cognitive radio knows mp and en
p it forms Xn

p then generates Xn
c by

superposition coding:

Xn
c = X̂n

c +

√
αPc

Pp
Xn

p ,

12



where X̂n
c is formed by drawing its coordinates i.i.d. according to N (0,

√
(1 − α)Pc)

for some α ∈ [0, 1]. The decoder dn
p at the primary receiver first decodes mc treating

(1 + a
√

αPc/Pp)X
n
p as independent Gaussian noise. It then reconstructs aX̂n

c (which it
can do because it knows en

c ) and subtracts off its contribution from Y n
p before decoding

mp. The decoding rule dn
c at the secondary receiver is simply to decode mc treating

(b+
√

αPc/Pp)X
n
p as independent Gaussian noise. The rates achievable with this scheme

are then exactly given by (28) and (29), provided that the rate at which the primary
receiver can decode the cognitive user’s message is not the limiting factor, i.e.,

(1 − α)Pc

1 + (b
√

Pp +
√

αPc)2
≤ a2(1 − α)Pc

1 +
(√

Pp + a
√

αPc

)2 .

Solving this quadratic inequality for a, we find that the condition is satisfied only when
a satisfies inequality (30) stated in the theorem. �

Theorem 4.3 A point (Rp, Rc) is on the boundary of the capacity region of the cognitive
(1, a, b, 1)-interference channel if there exists α ∈ [0, 1] such that

1. (Rp, Rc) = (R̂p(α), R̂c(α)) where R̂p(α) and R̂c(α) are defined in (28) and (29),
respectively,

2. a and b satisfy the condition given in (30), and

3. b ≤ bmax(µα, a) where µα
def
= − d−R̂c(x)

dR̂p(x)

∣∣∣
x=α

and bmax(µ, a) is defined in Appendix C.

Proof of achievability: Given in Lemma 4.2.

Proof of converse: Given in Appendix C.

Observe that Theorem 4.3 characterizes the entire capacity region of the (1, a, b, 1)-IC-

DMS with a ≥
√

PpPc/K(1) +
√

K(1) + Pp

(
1 + (b

√
Pp +

√
Pc)2

)
and b ≤ bmax(µα, a).

5 System-level Considerations

In this section we use our results on the capacity-achieving cognitive communication
scheme to derive insight into a practical implementation of cognitive radios.

13



5.1 Properties of the optimal scheme

5.1.1 Avoiding the “hidden-terminal” problem

The network of Fig. 1 models the situation in which the geographic location of Bs is not
assigned in accordance with any centralized cell-planning policy and it can be arbitrarily
close to Bp. Consequently, the secondary users that are in close proximity to Bp could
potentially cause significant interference for the primary system if the secondary system
is to operate over the same frequency band.

One possible adaptive communication scheme that the cognitive radio could employ
in order to avoid interfering with the primary user in its vicinity would be to restrict its
transmissions to only the time-frequency slots which are not occupied by the signals of the
detected primary radio. Indeed, this idea of “opportunistic” orthogonal communication
was what led to the birth of the notion of cognitive radio. However, one drawback of
such a protocol is that the cognitive radio would very likely cause interference to other,
more distant, primary users whose presence – i.e., time-frequency locations – it could
not detect. The degradation in overall performance of the primary system due to this
“hidden-terminal” problem could potentially be significant6, especially in the context of
OFDMA [9], [10] where the primary users are allocated orthogonal time-frequency slots
and the SINR required for decoding is typically large.

Contrary to this, we find that the optimal strategy is for the cognitive radio to si-
multaneously transmit in the same frequency slot as that used by the primary user in
its vicinity. An immediate benefit of this scheme is that, if the transmissions of different
primary users are mutually orthogonal, the cognitive radio can only (potentially) affect
the performance achievable by the primary radio whose codeword it has decoded. Fur-
thermore, we know that a proper tuning of the parameter α can, in fact, ensure that the
primary user’s rate is unaffected.

5.1.2 Robustness to noise statistics

All our results have been derived under the assumption that the noise affecting the
receivers, Zn

p and Zn
s , is i.i.d. Gaussian. In [2] it was shown that using a Costa encoder-

decoder pair that is designed for additive i.i.d Gaussian noise on a channel with arbitrary
(additive) noise statistics will cause no loss in the achievable rates.7 Combined with the
similar classical result for the standard AWGN channel [11], we see that the maximal
rate expressed in Theorem 3.1 is achievable for all noise distributions.

6Classical RTS/CTS solutions to this problem are not viable since they require that the primary
system ask for access to the very spectrum that it owns.

7Note that this is an achievability result: The capacity of the channel with this arbitrary noise could
be larger but a different code would be required to achieve it.
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5.2 Obtaining the side-information

In practice, the cognitive radio must obtain the primary radio’s codeword in a causal
fashion – its acquisition thus introducing delays in the cognitive radio transmissions8. In
a typical situation, due to its relative proximity to the primary user, the cognitive radio
can receive the primary transmissions with a greater received SNR than that experienced
by the primary receiver. Hence, it seems plausible that the cognitive radio could decode9

the message of the primary user in fewer channel uses than are required by the primary
receiver. Recent work in distributed space-time code design [13] indicates that this over-
head decoding delay is negligible if the cognitive radio has as little as a 10 dB advantage
in the received SNR over the primary receiver.

5.3 Extension to complex baseband

The results of this paper can easily be extended to the case in which the channel gains
are complex quantities, i.e., p, f, g, c ∈ C in the case of the original cognitive (p, f, g, c)
channel with power constraints (Pp, Pc) and noise variances (Np, Ns), as defined in Sec-
tion 2.1. However, the optimal cognitive encoder rule (13) must change slightly: The
superposition scheme takes the form

Xn
c = X̂n

c +
f ∗

|f |e
jθp

√
α

Pc

Pp

Xn
p , (31)

where p = |p|ejθp. The codeword X̂n
c is again generated by Costa precoding, but the

assumed interference at the secondary receiver is now
(

g

c
+

f ∗

|f |e
jθp

√
α

Pc

Pp

)
Xn

p , (32)

and the assumed noise is CN (0, Ns/|c|2). The factor ejθp in (31) essentially implements
transmit beamforming to the primary receiver, hence ensuring that all the rates given by

0 ≤ Rp ≤ log

(
1 +

(
|p|
√

Pp + |f |√αPc

)2

Np + |f |2(1 − α)Pc

)
, (33)

0 ≤ Rc ≤ log

(
1 +

|c|2(1 − α)Pc

Ns

)
, (34)

are achieved in the underlying IC-DMS. As before, we can then choose α = α∗ (deter-
mined by (17)), so that R∗

c = log(1 + |c|2(1 − α∗)Pc/Ns) is achievable in the spirit of
Definition 2.2 but with R∗

p = log(1 + |p|2Pp/Np).
8Under a half-duplex constraint the cognitive radio must first “listen” in order to decode the primary

message before it can use this side-information for its own transmission.
9The cognitive radio is assumed to know the encoder of the primary user.
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5.4 Communicating without channel-state feedback from the
primary base-station

In order to perform the complex base-band superposition coding scheme (31) and, implic-
itly, the Costa precoding for known interference (32), the cognitive radio must know each
of the four parameters g, c, f and p, both in magnitude and phase. To obtain estimates
for p and f , the cognitive radio would require feedback from the primary base-station.
In section Section 5.5, we discuss ways in which the estimation and feedback of these
parameters could be implemented. In this section, however, we present an alternative
(suboptimal) scheme which requires no feedback from the primary base-station.

Suppose that, after having decoded Xn
p , the cognitive radio transmits the following

n-symbol codeword:

Xn
c = X̂n

c +

√
α

Pc

Pp
Xn

p , (35)

where the codeword X̂n
c is generated by Costa precoding for the interference

(
g

c
+

√
α

Pc

Pp

)
Xn

p , (36)

assuming the presence of CN (0, Ns/|c|2) noise at the secondary base-station.

• Obtaining c: The parameter c could be estimated at the secondary base-station
by using the cognitive radio’s pilot signal or in a decision-directed fashion. The
estimate could then be fed back to the cognitive radio.

• Obtaining g: If the secondary base-station synchronizes to the primary radio’s pilot
signal, it could estimate g during the time the cognitive radio is in its silent “listen-
ing” phase and then feed this estimate back to the cognitive radio. Alternatively,
if the cognitive radio reveals to the secondary base-station the code used by the
primary radio, the secondary base-station could use the silent “listening” phase
to decode a few symbols transmitted by the primary radio thereby estimating the
parameter g.

We can express the received discrete-time base-band signal at the primary base-station
at time sample m as

Yp[m] = pXp[m] + f

√
α

Pc

Pp

Xp[m − lc] + Ztotal[m], (37)

where Ztotal[m] = fX̂c[m− lc] + Zp[m] is the aggregate noise. The integer lc accounts for
the delay incurred while the cognitive radio “listens” and decodes the primary codeword
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before it transmits its own signal. This equation essentially describes a time-invariant
two-tap ISI channel for the primary transmission, hence we can apply a Rake receiver (in
the case the primary system uses direct-sequence spread-spectrum) or transmit-receive
architectures such as OFDM10 to extract both a diversity gain of two and a power gain
of |p|2P̃p + |f |2αPc at the primary base-station (see, for instance, Chapter 3 of [18], and
references therein). Given α ∈ [0, 1], the rates achievable by the primary and cognitive
users using such a scheme are given by

0 ≤ Rp ≤ log

(
1 +

|p|2Pp + |f |2αPc

Np + |f |2(1 − α)Pc

)
, (38)

0 ≤ Rc ≤ log

(
1 +

|c|2(1 − α)Pc

Ns

)
. (39)

In order to avoid causing interference to the primary user, the following equation must
be satisfied:

|p|2Pp + |f |2αPc

Np + |f |2(1 − α)Pc
=

|p|2Pp

Np
, (40)

If the cognitive radio tunes its parameter α such that

α =
|p|2Pp/Np

1 + |p|2Pp/Np
, (41)

this condition will be satisfied, hence Rp = R∗
p. Expression (41) confirms the intuitive

notion that, if the primary system is operating at high SNR, the cognitive radio should
not interfere with it, i.e., α should be close to one.

From (41), we see that, in order to design the optimal α, the cognitive radio only
needs to know the received SNR of the primary transmission at the primary base-station:
|p|2Pp/Np. If the primary system uses a good (capacity-achieving) AWGN channel code
and the cognitive radio knows this, the cognitive radio can easily compute an estimate of
this received SNR since it knows the rate at which the primary user is communicating,
Rp: This estimate is simply given by eRp − 1. Thus, an immediate benefit of this scheme
is that the primary base-station need not feed-back the parameters f and p at all: The
cognitive radio can perform completely autonomously.

Though expression (41) does not depend on |f |, we can see that (40) can approxi-
mately be satisfied even with α = 0 when |f |2 is very small. Since the cognitive radio
has no information about |f | and, in practice, may not even be able to obtain |p|2Pp/Np

(if the primary system is not using a good AWGN code), a natural way for the cognitive
radio to enter the spectrum of the primary would be by slowly ramping up its power

10The primary base-station would most likely already employ one of these schemes as a means of
dealing with the multi-path point-to-point channel between the primary radio and itself. In the context
of OFDM, however, the cyclic prefix would have to be long enough to account for the extra delay-spread
introduced by the cognitive radio’s transmission.
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Pc from 0 and decreasing α from 1 while simultaneously listening for the Automatic
Repeat Request (ARQ) control signal from the primary base-station. Once this signal
is detected, the cognitive radio would either slightly decrease Pc or increase α until the
primary base-station stops transmitting ARQs11.

5.5 Obtaining the channel-state information

In order to implement the optimal communication scheme of Costa coding and beam-
forming (31), the cognitive radio must obtain estimates of p and f from the primary
base-station. We present the following simple algorithm for estimation and feedback of
these parameters:

1. At first, the cognitive user is silent and the primary base-station broadcasts the
current estimate of p, call it p̂, along with the primary user’s ID on the control
channel to which the cognitive radio is tuned. The primary base-station is assumed
to be able to track p by either using a pilot signal or in a decision-directed fashion.
Thus, the cognitive radio can obtain p̂.

2. Upon entering the system and decoding the message of the primary user in its
vicinity, the cognitive radio simply performs amplify-and-forward relaying of the
primary codeword:

Xn
c =

√
Pc

Pp
Xn

p . (42)

3. The primary base-station receives

(
p + f

√
Pc

Pp

)
Xn

p + Zn
p , (43)

hence it can compute an estimate, ĥ, of the overall channel gain
(
p + f

√
Pc

Pp

)
as it

decodes mp.

4. The quantized version of ĥ is then broadcast on the control channel along with the
given primary user’s ID.

5. The cognitive radio picks up this information from the control channel and then
computes ĥ − p̂.

6. The quantity ĥ−p̂ is an estimate for f
√

Pc/Pp which is then multiplied by
√

Pp/Pc,
to obtain an estimate for f .

11This scheme is analogous to the power control mechanism used in CDMA systems.
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Note that it is possible that
∣∣∣p + f

√
Pc/Pp

∣∣∣ < |p| in step 3 above. In this case the primary

system would momentarily not be able to support the requested rate of log(1+|p|2Pp/Np)
and an Automatic Repeat Request (ARQ) would be generated by the primary base-
station. However, by this time, the cognitive radio would have already obtained the
estimate of f and the next (repeated) transmission would be guaranteed to be successful.

A Proof of the converse part of Theorem 4.1

First we observe that the rate-region specified in Theorem 4.1 is a convex set in Proposi-
tion D.1. We will use the following standard result from convex analysis (see, for instance,
[15]) in the proof of the converse.

Proposition A.1 A point R∗ = (R∗
p, R

∗
c) is on the boundary of the a capacity region if

and only if there exists a µ ≥ 0 such that the linear functional µRp + Rc achieves its
maximum, over all (Rp, Rc) in the region, at R∗.

A.1 The µ ≤ 1 case

For convenience, we will consider a channel whose output at the primary receiver is
normalized by a, i.e., a channel whose input-output single-letter equations are given by

Ŷ n
p

def
=

1

a
Xn

p + Xn
c +

1

a
Zn

p , (44)

Y n
s = bXn

p + Xn
c + Zn

s . (45)

Note that the capacity region of this channel is the same as that of the original channel
(4), (5) since normalization is an invertible transformation.

Suppose that a rate pair (Rp, Rc) is achievable, in the sense of Definition 4.2, for
the (1, a, b, 1)-IC-DMS. Assuming that the messages (mp, mc) are chosen uniformly and
independently, we have, by Fano’s inequality, H(mp|Y n

p ) ≤ nǫp,n and H(mc|Y n
s ) ≤ nǫs,n,

where ǫp,n → 0 and ǫs,n → 0 as P̃
(n)
e,p → 0, P

(n)
e,s → 0, respectively. We start with the

following bound on nRp:

nRp
(a)
= H(mp),

= I(mp; Ŷ
n
p ) + H(mp|Ŷ n

p ),

(b)

≤ I(mp; Ŷ
n
p ) + nǫp,n,

= h(Ŷ n
p ) − h(Ŷ n

p |mp) + nǫp,n, (46)
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where (a) follows since mp and mc are uniformly distributed on {1, 2, . . . , 2nRp} and
{1, 2, . . . , 2nRp} respectively, (b) follows from Fano’s inequality. Also, we have that,

nRc = H(mc),

= H(mc) + H(mc|Y n
s , mp) − H(mc|Y n

s , mp),

= I(mc; Y
n
s |mp) + H(mc|Y n

s , mp),
(a)

≤ I(mc; Y
n
s |mp) + nǫs,n,

= h(Y n
s |mp) − h(Y n

s |mp, mc) + nǫs,n,
(b)

≤ h(Y n
s |mp) − h(Y n

s |mp, mc, X
n
p , Xn

c ) + nǫs,n,

(c)
= h(Y n

s |mp) − h(Zn
s ) + nǫs,n, (47)

where (a) follows from Fano’s inequality and the fact that conditioning does not increase
entropy, (b) follows from the fact that conditioning does not increase entropy, and (c)
follows from the the fact that Zn

s is independent of (mp, mc) and hence also of (Xn
p , Xn

c ).

Let Z̃n be a zero mean Gaussian random vector, independent of (Xn
p , Xn

c , Zn
p , Zn

s ) and
with covariance matrix ( 1

a2 − 1)In. Then, we can write

h(Ŷ n
p |mp)

(a)
= h(Ŷ n

p |mp, X
n
p ),

(b)
= h

(
Ŷ n

p − 1

a
Xn

p |mp, X
n
p

)
,

= h

(
Xn

c +
1

a
Zn

p |mp, X
n
p

)
,

(c)
= h(Xn

c + Zn
s + Z̃n|mp, X

n
p ),

(d)
= h(Xn

c + Zn
s + Z̃n|mp),

(e)
= h(Ỹ n + Z̃n|mp), (48)

where (a) and (d) hold since Xn
p is the output of a deterministic function of mp, (b)

holds because translation does not affect entropy, (c) follows from the fact that Gaussian

distributions are infinitely divisible and from the definition of Z̃n and (e) follows from

the definition Ỹ n def
= Xn

c + Zn
s . By similar reasoning, we can write

h(Y n
s |mp) = h(Ỹ n|mp). (49)
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Combining the bounds in (46) and (47), we get

n(µRp + Rc) ≤ µ(h(Ŷ n
p ) − h(Ŷ n

p |mp)) + h(Y n
s |mp) − h(Zn

s ) + µnǫp,n + nǫs,n,

(a)
= µh(Ŷ n

p ) + h(Y n
s |mp) − µh(Ŷ n

p |mp) −
n

2
log(2πe) + µnǫp,n + nǫs,n,

(b)
= µh(Ŷ n

p ) + h(Ỹ n|mp) − µh(Ỹ n + Z̃n|mp) −
n

2
log(2πe) + µnǫp,n + nǫs,n,

(c)

≤ µh(Ŷ n
p ) + h(Ỹ n|mp) −

µn

2
log
(
e

2

n
h(Ỹ n|mp) + e

2

n
h(Z̃n)

)

−n

2
log(2πe) + µnǫp,n + nǫs,n, (50)

where (a) follows from the fact that Zn
s ∼ N (0, In), (b) follows from equalities (48)

and (49), (c) follows from the conditional version of the Entropy Power Inequality (see
Proposition D.2).

Let Xj−1
1 denote the first j − 1 components of the vector Xn with the understanding

that X0
1 is defined to be some constant and let Xj denote the j-th component. We can

upper-bound h(Ỹ n|mp) as follows:

h(Ỹ n|mp) = h(Ỹ n|mp, X
n
p ),

(a)
=

n∑

j=1

h(Ỹj|mp, Ỹ
j−1
1 , Xp,j, X

j−1
p,1 ),

(b)

≤
n∑

j=1

h(Ỹj|Xp,j),

(c)

≤
n∑

j=1

1

2
log

(
2πe

(
E[Ỹ 2

j ] − E[ỸjXp,j]
2

E[X2
p,j ]

))
,

(d)
=

n∑

j=1

1

2
log (2πe ((1 − αj)Pc,j + 1)) , (51)

(e)

≤ n

2
log (2πe ((1 − α)Pc + 1)) , (52)

where (a) follows from the chain rule and (b) follows from the fact that conditioning
does not increase entropy, and (c) follows from Lemma D.1. Equality (d) follows from
the following argument: Since jointly Gaussian Xp,j, Yp,j achieve equality in (c) (by
Lemma D.1), we can without loss of generality, let

Xc,j = X̂c,j +

√
αj

Pc,j

Pp,j

Xp,j, (53)

where X̂c,j ∼ N (0, (1 − αj)Pc,j) is independent of Xp,j and

Pc,j
def
=

1

2nRc

2nRc∑

j=1

X2
c,j, Pp,j

def
=

1

2nRp

2nRp∑

j=1

X2
p,j. (54)
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The parameter αj ∈ [0, 1] is chosen so that the resulting covariance KXp,j ,Xc,j ,Ys,j ,Yp,j
is

the same as that induced by the code. Inequality labeled with (e) follows from Jensen’s
inequality, by choosing α ∈ [0, 1] such that

αPc =
1

n

n∑

j=1

αjPc,j, (55)

and from the fact that the power constraint ‖Xn
c ‖2 ≤ nPc implies that 1

n

∑n
j=1 Pc,j = Pc.

Similarly, we can upper bound h(Ŷp) as follows:

h(Ŷ n
p )

(a)
=

n∑

j=1

h(Ŷp,j|Ŷ j−1
p,1 ),

(b)

≤
n∑

j=1

h(Ŷp,j),

(c)

≤
n∑

j=1

1

2
log(2πeE[Ŷ 2

p,j]),

(d)
=

n∑

j=1

1

2
log

(
2πe

a2

(
Pp,j + 2

√
αjPp,jPc,j + Pc,j + 1

))
,

(e)

≤ n

2
log

(
2πe

a2

(
(
√

Pp +
√

αPc)
2 + (1 − α)Pc + 1

))
, (56)

where (a) follows from the chain rule and (b) follows from the fact that conditioning does
not increase entropy, (c) holds since the Gaussian distribution maximizes the differential
entropy for a fixed variance, (d) follows from the same argument as in (51) and (e) comes
from Jensen’s inequality applied to the log(·) and the

√· functions.

Let f(x)
def
= x − µn

2
log
(
e

2

n
x + e

2

n
h(Z̃n)

)
over x ∈ R. Then, we can express the bound

on our linear functional in (50) as

n(µRp + Rc) ≤ µh(Ŷ n
p ) + f(h(Ỹ n|mp)) −

n

2
log(2πe) + µnǫp,n + nǫs,n. (57)

Observe that as long as µ ≤ 1, f(x) is increasing. Hence we can obtain a further upper
bound by substituting inequalities (52) and (56) into (57):

22



n(µRp + Rc) ≤ µ
n

2
log

(
2πe

a2

(
(
√

Pp +
√

αPc)
2 + (1 − α)Pc + 1

))
(58)

+f
(n

2
log (2πe ((1 − α)Pc + 1))

)
− n

2
log(2πe) + µnǫp,n + nǫs,n,(59)

(a)
= µ

n

2
log

(
2πe

a2

(
(
√

Pp +
√

αPc)
2 + (1 − α)Pc + 1

))
(60)

+
n

2
log (2πe ((1 − α)Pc + 1)) − µ

n

2
log

(
2πe

(
(1 − α)Pc +

1

a2

))
(61)

−n

2
log(2πe) + µnǫp,n + nǫs,n, (62)

where (a) follows from the fact that

f(x) = x − µn

2
log
(
e

2

n
x + e

2

n
h(Z̃n)

)
, (63)

= x − µn

2
log

(
e

2

n
x + 2πe

(
1

a2
− 1

))
, (64)

which holds since Z̃n is zero mean Gaussian with covariance
(

1
a2 − 1

)
I.

Grouping together the µ-terms, dividing by n and letting n → ∞, we get that

µRp + Rc ≤ µ

2
log

(
1 +

(
√

Pp + a
√

αPc)
2

1 + a2(1 − α)Pc

)
+

1

2
log (1 + (1 − α)Pc) . (65)

Let αµ denote the maximizing α ∈ [0, 1] for a given µ ≤ 1 in the above expression. Then,
we can write

µRp + Rc ≤ µ

2
log

(
1 +

(
√

Pp + a
√

αµPc)
2

1 + a2(1 − αµ)Pc

)
+

1

2
log (1 + (1 − αµ)Pc) . (66)

Hence we have established the converse of the theorem for µ ≤ 1.

A.2 The µ > 1 case

A.2.1 Proof outline

Suppose that “genie A” gives the message mp to the cognitive receiver. We will refer to
this channel as the IC-DMS(A). The capacity region of the IC-DMS(A) must contain the
capacity region of the original IC-DMS.

Proposition A.2 The capacity region of the (1, a, 0, 1)-IC-DMS(A) is identical to the
capacity region of (1, a, b, 1)-IC-DMS(A) for every b ∈ R and every a ∈ R.
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Proof: Since mp is known at the secondary receiver along with the primary encoding rule
en

p , the secondary receiver of the (1, a, 0, 1)-IC-DMS(A) can form bXn
p and add it to its

received signal Y n
s . The result is statistically identical to the the output at the secondary

receiver of the (1, a, b, 1)-IC-DMS(A). Thus the capacity region is independent of b. �

This proposition allows us to set b = 0 without loss of generality in any IC-DMS(A).

Now suppose that “genie B” gives mc to the primary transmitter of the (1, a, 0, 1)-
IC-DMS(A). We will refer to this channel as the (1, a, 0, 1)-IC-DMS(A,B) and we note
that its capacity region must contain the capacity region of the original (1, a, b, 1)-IC-
DMS as well as that of the IC-DMS(A). Observe that this channel is equivalent to a
broadcast channel with two antennas at the transmitter and one antenna at each of
the receivers (2 × 1 MIMO BC channel) with per-antenna power constraints but with
additional knowledge of mp at the secondary receiver.

{mp}
1

1

a

{mc, mp} {mp}

⊆ ⊆

{mc, mp}
1

1

a

{mc, mp} {mp}

{mp}
1

1

a

b

{mc, mp}

Genie A Genie A

Genie B

(1, a, b, 1) − IC-DMS (1, a, 0, 1) − IC-DMS(A) (1, a, 0, 1) − IC-DMS(A,B)

Figure 4: The (1, a, b, 1)-IC-DMS, the (1, a, 0, 1)-IC-DMS(A) and the (1, a, 0, 1)-IC-
DMS(A,B) channels and the relationships between their capacity regions.

Thus, if we can show that the rates achieved by our proposed scheme for the (1, a, b, 1)-
IC-DMS (given by (24) and (25)) are optimal for the (1, a, 0, 1)-IC-DMS(A,B), then we
are done. To this end, we will first define a sequence of channels – each of which has a
capacity region that includes the capacity region of the (1, a, 0, 1)-IC-DMS(A,B) – such
that the rates (24) and (25) are optimal in the limit.

A.2.2 The aligned (1, a, 0, 1)-IC-DMS(A,B): The achievability

Consider the following modification of the (1, a, 0, 1)-IC-DMS(A,B): Add one antenna at
each of the receivers so that the input-output relationship becomes

Yp =

[
1 a
1 0

]
X + Zp, (67)

Ys =

[
ǫ 1
0 1

]
X + Zs, (68)
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where ǫ > 0 and a 6= 0. The vectors Zp and Zs are distributed according to N (0,Σz)
(their cross-correlation is irrelevant), where

Σz =

[
1 0
0 M

]
, (69)

for some M > 0. As in the original (1, a, 0, 1)-IC-DMS(A,B), the message mp is known at
the secondary receiver. Clearly, the capacity region of this channel contains the capacity
region of the (1, a, 0, 1)-IC-DMS(A,B). We shall refer to this genie-aided MIMO BC
channel as the aligned (1, a, 0, 1)-IC-DMS(A,B) in what follows.

Let Hp and Hs denote the matrices pre-multiplying the transmit vector X in (67)
and (68), respectively. Each coordinate of the vector X ∈ R2 represents the symbol on
each of the antennas and the constraint on X can in general take the form E[XXT ] � Q
for some positive semi-definite covariance constraint Q � 0. Let the transmitted vector
(at any time-sample) be of the form

X = Xp1up1 + Xp2up2 + Xc1uc1 + Xc2uc2, (70)

where up1,up2 ∈ R2 and uc1,uc2 ∈ R2 are the so-called signature vectors and symbols
Xp1, Xp2 and Xc1, Xc2 are i.i.d. N (0, 1).

In order to emulate the per-user individual power constraints of the IC-DMS, we
impose the per-antenna constraints (E[XXT ])11 ≤ Pp and (E[XXT ])22 ≤ Pc on the
achievable strategies in MIMO BC channel. We let

Σp
def
= up1u

T
p1 + up2u

T
p2, (71)

Σc
def
= uc1u

T
c1 + uc2u

T
c2, (72)

so that, by the independence of Xp1, Xp2, Xc1 and Xc2, the constraint can be expressed
as (Σp + Σc)11 ≤ Pp and (Σp + Σc)22 ≤ Pc.

Substituting the expression for X given in (70), the channel equations become

Yp = Hp(Xp1up1 + Xp2up2) + Hp(Xc1uc1 + Xc2uc2) + Zp, (73)

Ys = Hs(Xp1up1 + Xp2up2) + Hs(Xc1uc1 + Xc2uc2) + Zs. (74)

Consider the following encoding scheme: first choose Xp1 and Xp2 to be independent
and distributed according to N (0, 1), and then perform Costa precoding to encode the in-
formation in (Xc1, Xc2) treating the interference Hs(Xp1up1+Xp2up2) as side-information
known at the transmitter12. The rates achievable with such a scheme are:

Rp = Rp(Σ
∗
p,Σ

∗
c)

def
=

1

2
log
∣∣I + (I + Σ−1

z HpΣ
∗
cH

T
p )−1Σ−1

z HpΣ
∗
pH

T
p

∣∣ , (75)

Rc = Rc(Σ
∗
p,Σ

∗
c)

def
=

1

2
log
∣∣I + Σ−1

z HsΣ
∗
cH

T
s

∣∣ , (76)

12Costa’s scheme is a block-coding scheme and, strictly speaking, encoding is performed on the vector
(Xn

c1, X
n
c2) given Xn

p1
and Xn

p2
.
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where Σ∗
p and Σ∗

c are the solutions of

arg max
(Σp,Σc)∈S(Pp,Pc)

µRp(Σp,Σc) + Rc(Σp,Σc), (77)

where µ > 1 and S(Pp, Pc)
def
= {Σp � 0,Σc � 0 : (Σp + Σc)11 ≤ Pp, (Σp + Σc)22 ≤ Pc}.

Since the per-antenna power constraints must be met with equality,13 we can, without
loss of generality, write

Σp =

[
βPp kp

kp αPc

]
, where kp ∈

[
−
√

αβPpPc,
√

αβPpPc

]
, (78)

Σc =

[
(1 − β)Pp kc

kc (1 − α)Pc

]
, where kc ∈

[
−
√

ᾱβ̄PpPc,
√

ᾱβ̄PpPc

]
, (79)

and β ∈ [0, 1], α ∈ [0, 1] and ᾱ
def
= 1 − α, β̄

def
= 1 − β. With Σc expressed in this way, we

obtain

lim
M→∞

lim
ǫ→0

Σ−1
z HsΣcH

T
s =

[
(1 − α)Pc (1 − α)Pc

0 0

]
, (80)

in (76). Similarly, by direct matrix calculations we get

lim
M→∞

lim
ǫ→0

(I + Σ−1
z HpΣcH

T
p )−1 =

[
1

(1−β)Pp+2akc+a2(1−α)Pc+1
−(1−β)Pc−akc

(1−β)Pp+2akc+a2(1−α)Pc+1

0 1

]
,(81)

lim
M→∞

lim
ǫ→0

Σ−1
z HpΣpH

T
p =

[
βPp + 2akp + a2αPc βPp + akp

0 0

]
. (82)

Hence, on the one hand we have, by the continuity of Rc(Σp,Σc) in M and ǫ, that

lim
M→∞

lim
ǫ→0

Rc(Σp,Σc) =
1

2
log(1 + (1 − α)Pc), (83)

for any choice of β ∈ [0, 1]. On the other hand, we have, by the continuity of Rp(Σp,Σc)
in M and ǫ, that

lim
M→∞

lim
ǫ→0

Rp(Σp,Σc) =
1

2
log

(
1 +

βPp + 2akp + a2αPc

(1 − β)Pp + 2akc + a2(1 − α)Pc + 1

)
. (84)

The limiting rate (84) is maximized by choosing β = 1 (and, therefore, kc = 0) and
kp =

√
αPpPc. Thus,

Σ∗
p =

[
Pp

√
αPpPc√

αPpPc αPc

]
, (85)

Σ∗
c =

[
0 0
0 (1 − α)Pc

]
, (86)

13If, instead, antenna 1 uses only Pp − η power, we can add another antenna with power η whose
signal the receivers can first decode and then subtract off thus boosting at least one of the rates. The
same applies to antenna 2.
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which is achieved by simply choosing

u∗
p1 =

[√
Pp√

αPc

]
, u∗

c1 =

[
0√

(1 − α)Pc

]
, u∗

p2 = 0, u∗
c2 = 0. (87)

Therefore, in the limit as M → ∞ and ǫ → 0, this scheme achieves the rates given by
(24) and (25) in the aligned (1, a, 0, 1)-IC-DMS(A,B).

A.2.3 The aligned (1, a, 0, 1)-IC-DMS(A,B): The converse

Since both Hp and Hs are invertible for every ǫ > 0 and a 6= 0, we can equivalently
represent this channel by the equations

Ỹp = X + Z̃p, (88)

Ỹs = X + Z̃s. (89)

The new noise vectors are given by Z̃p ∼ N (0,H−1
p ΣzH

−T
p ) and Z̃s ∼ N (0,H−1

s ΣzH
−T
s ).

This channel is then exactly in the form of an Aligned MIMO BC channel (AMBC) (see
[19], Section 2), but with mp revealed to the secondary receiver.

Let Ỹn
p ∈ R2×n and Ỹn

s ∈ R2×n denote the channel outputs over a block of n channel
uses. We can upper bound any achievable rate Rp as follows

nRp = H(mp), (90)

= I(mp; Ỹ
n
p ) + H(mp|Ỹn

p ), (91)

(a)

≤ I(mp; Ỹ
n
p ) + nǫ̃p,n, (92)

where (a) follows from Fano’s inequality with ǫ̃p,n → 0 as n → ∞. Noting that the

secondary receiver observes the tuple (Ỹn
s , mp), we can write

nRc = H(mc), (93)

= H(mc) + H(mc|(Ỹn
s , mp)) − H(mc|(Ỹn

s , mp)), (94)

= I(mc; (Ỹ
n
s , mp)) + H(mc|(Ỹn

s , mp)), (95)
(a)

≤ I(mc; (Ỹ
n
s , mp)) + nǫ̃s,n, (96)

(b)
= I(mc; Ỹ

n
s |mp) + nǫ̃s,n, (97)

where (a) follows from Fano’s inequality with ǫ̃s,n → 0 as n → ∞, and (b) follows since
I(mp; mc) = 0.

Thus, we can upper-bound the linear functional of the achievable rates as

µRp + Rc ≤ µ

n
I(mp; Ỹ

n
p ) +

1

n
I(mc; Ỹ

n
s |mp) + µǫ̃p,n + ǫ̃s,n,

=
µ

n
h(Ỹn

p ) − µ

n
h(Ỹn

p |mp) +
1

n
h(Ỹn

s |mp) −
1

n
h(Z̃n

s ) + µǫ̃p,n + ǫ̃s,n (98)
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where µ > 1.

Now, from Proposition 4.2 of [19], we know that, for every µ > 1, there exists an
enhanced Aligned Degraded BC channel (ADBC) which contains the capacity region of
the AMBC given by (88) and (89), and for which the maximum of the linear functional
µRp + Rc, over all (Rp, Rc) in the region, is equal to the maximum of the same linear
functional over the capacity region of the corresponding AMBC (i.e., the two regions
meet at the point of tangency). Due to the degradedness, we can write the channel
outputs of the enhanced ADBC as

Ȳn
s = Xn + Z̄n

s , (99)

Ȳn
p = Ȳn

s + Z̄n
p , (100)

(101)

where the matrices Z̄n
s and Z̄n

p are constructed such that their columns, denoted by Z̄s

and Z̄p, are independent, zero-mean Gaussian with covariances satisfying ΣZ̄s
� Σ

Z̃s

and ΣZ̄s
+ ΣZ̄p

� Σ
Z̃p

(see proof of Proposition 4.2 of [19] for how to construct them).

Hence, for this enhanced ADBC, we can write (98) as

µRp + Rc ≤ µ

n
h(Ȳn

p ) +
1

n
h(Ȳn

s |mp) −
µ

n
h(Ȳn

p |mp) −
1

n
h(Z̄n

s ) + µǭn

=
µ

n
h(Ȳn

s + Z̄n
p ) +

1

n
h(Ȳn

s |mp) −
µ

n
h(Ȳn

s + Z̄n
p |mp) −

1

n
h(Z̄n

s ) + µǭn,

≤ µ

n
h(Ȳn

p ) +
1

n
h(Ȳn

s |mp) − µ log
(
e

2

2n
h(Ȳn

s |mp) + e
2

2n
h(Z̄n

p )
)

−1

n
h(Z̄n

s ) + µǭn,(102)

where we have used the conditional version of the vector Entropy Power Inequality (see
Proposition D.1) in the last step.

The key property of the this enhanced ADBC is that the upper bound (102) is maxi-
mized by choosing the input X to be Gaussian, i.e., the vector EPI is tight (see proof of
Theorem 3.1 of [19]). Hence, an optimal achievable scheme for this ADBC is the Costa
precoding strategy14 that is described in Section A.2.2: The largest jointly achievable
rates are given by

Rp = Rp(Σ
∗
p,Σ

∗
c), (103)

Rc = Rc(Σ
∗
p,Σ

∗
c) (104)

where Rp(Σ
∗
p,Σ

∗
c) and Rc(Σ

∗
p,Σ

∗
c) are as given by (75) and (76), respectively.

Since this scheme is also achievable for the AMBC, the capacity region of the ADBC
and AMBC are identical (see Theorem 4.1 of [19]). Moreover, it is obvious that this
scheme is also achievable for the AMBC with additional knowledge of mp at the secondary

14Note that for the ADBC a simple superposition scheme is also optimal.
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receiver: The knowledge of mp is simply ignored by the receiver. Hence, this scheme is
optimal for the aligned (1, a, 0, 1)-IC-DMS(A,B) (as defined by (67) and (68)) with µ > 1
as well.

Since the Pareto-optimal (for µ > 1) rates for the limiting (as M → ∞ and ǫ → 0)
aligned (1, a, 0, 1)-IC-DMS(A,B) exactly match the rates (24) and (25) achievable in the
original (1, a, b, 1)-IC-DMS channel, and since the capacity region of the (1, a, b, 1)-IC-
DMS is contained in the capacity region of the aligned (1, a, 0, 1)-IC-DMS(A,B) for any
M, ǫ > 0, we have completed the proof of the converse part of Theorem 4.1 for µ > 1.

B Proof of Corollary 4.1

The proof of this Corollary follows from Theorem 4.1 and Lemma D.2. In particular, we
observe that the converse to Theorem 4.1 for µ ≥ 1 (see Section A.2) holds for any a > 0
and b ∈ R. However, from Lemma D.2 we see that the choice α = 1 in (24) and (25) is
optimal for any a ≥ 1, as long as µ ≥ 1. Hence the corollary is proved. �.

Remark: This result implies that, for any a ≥ 1, b ∈ R and µ ≥ 1, the linear functional
µRp + Rc is maximized at (Rp, Rc) = (Csum(a), 0). Hence, for a ≥ 1, the entire capacity
region is parametrized by µ ≤ 1, for any b ∈ R.

C Proof of the converse part of Theorem 4.3

Let “genie B” disclose mc to the primary transmitter, thus getting a 2×1 MIMO BC chan-
nel with per-antenna power constraints. The input-output relationship for this channel
can be written as

Yp = hT
p X + Zp, (105)

Ys = hT
s X + Zs, (106)

where hp = [1 a]T and hs = [b 1]T . We choose µ ≤ 1 in the linear functional µRp + Rc

and recall that the optimal transmission vector X is Gaussian and given by (70) and the
optimal encoding strategy is to generate Xp by Costa precoding for hT

p (Xc1uc1 +Xc2uc2)
(see [19]). Consequently, in place of (75) and (76), we get, respectively,

Rp = R̂p(Σ
∗
p,Σ

∗
c)

def
=

1

2
log
(
1 + hT

p Σ∗
php

)
, (107)

Rc = R̂c(Σ
∗
p,Σ

∗
c)

def
=

1

2
log

(
1 +

hT
s Σ∗

chs

1 + hT
s Σ∗

phs

)
, (108)
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where Σ∗
c and Σ∗

c are the solutions of (77) but with µ ≤ 1. Substituting the covariance
matrices (78) and (79) into (107) and (108), we get

R̂p(Σp,Σc) = R̂p(β, α, kp, a, b)
def
=

1

2
log
(
1 + βPp + 2akp + αa2Pc

)
, (109)

R̂c(Σp,Σc) = R̂c(β, α, kp, a, b)
def
=

1

2
log

(
1 +

b2(1 − β)Pp + 2kcb + (1 − α)Pc

1 + b2βPp + 2kpb + αPc

)
.(110)

The expression in (110) is maximized by choosing kc =
√

(1 − β)(1 − α)PpPc, i.e., making
Σc unit rank. If b = 0 it is clear that β = 1 and kp =

√
αPpPc maximizes the linear

functional µR̂p(β, α, kp, a, b) + R̂c(β, α, kp, a, b). In general, we would like to find the set
of all values of b for which β = 1 and kp =

√
αPpPc are optimal. For such values of b,

we then have

R̂p(Σp,Σc) =
1

2
log

(
1 +

(√
Pp + a

√
αPc

)2
)

, (111)

R̂c(Σp,Σc) =
1

2
log

(
1 +

(1 − α)Pc

1 +
(
b
√

Pp +
√

αPc

)2

)
, (112)

which exactly match the achievable rates given in Lemma 4.2. To this end, let B(µ, a)
denote the set of all b > 0 such that the function

max
0≤α≤1

µR̂p (β, α, kp, a, b) + R̂c(β, α, kp, a, b) (113)

is maximized, over all β ∈ [0, 1] and kp ∈ [−
√

βαPpPc,
√

βαPpPc], by choosing β = 1 and

kp =
√

αPpPc. We let bmax(µ, a)
def
= maxb∈B(µ,a) to obtain the statement of the theorem.

Appealing to the remark in the proof of Corollary 4.1 (see Appendix B), we observe
that the boundary of the capacity region in this very-high-interference-gain regime is
completely parametrized by µ ≤ 1. Hence, we have proved the theorem.

D Supporting results

Proposition D.1 The rate region specified in Theorem 4.1 is a convex set.

Proof: A point R = (Rp, Rc) is in the rate region specified in Theorem 4.1 if and only if
there exists α ∈ [0, 1] such that

0 ≤ Rc ≤ 1

2
log(1 + (1 − α)Pc), (114)

0 ≤ Rp ≤ 1

2
log
(
1 + a2Pc + Pp + 2a

√
αPpPc

)
+

1

2
log

(
1

1 + a2(1 − α)Pc

)
. (115)
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Suppose that there exist two points R(1) = (R
(1)
p , R

(1)
c ) and R(2) = (R

(2)
p , R

(2)
c ) that are in

the region. Let α(1) ∈ [0, 1] and α(2) ∈ [0, 1] be their corresponding parameters in (114)
and (115). Then for any λ ∈ [0, 1], we have that

λR(1)
c + (1 − λ)R(2)

c ≤ λ

2
log(1 + (1 − α(1))Pc) +

1 − λ

2
log(1 + (1 − α(2))Pc),(116)

≤ 1

2
log(1 + (1 − α∗)Pc) (117)

where α∗ def
= λα(1) + (1 − λ)α(2) and the last inequality follows from Jensen’s inequality.

Similarly,

λR(1)
p + (1 − λ)R(2)

p ≤
[
λ

2
log

(
1 + a2Pc + Pp + 2a

√
α(1)PpPc

)
(118)

+
1 − λ

2
log

(
1 + a2Pc + Pp + 2a

√
α(2)PpPc

)]
(119)

+

[
λ

2
log

(
1

1 + a2(1 − α(1))Pc

)
(120)

+
1 − λ

2
log

(
1

1 + a2(1 − α(2))Pc

)]
,(121)

(a)

≤ 1

2
log
(
1 + a2Pc + Pp + 2a

√
PpPc

(
λ
√

α(1) + (1 − λ)
√

α(2)
))

(122)

+
1

2
log

(
1

1 + a2(1 − λα(1) − (1 − λ)α(2))Pc

)
, (123)

(b)

≤ 1

2
log
(
1 + a2Pc + Pp + 2a

√
PpPcα∗

)
+

1

2
log

(
1

1 + a2(1 − α∗)Pc

)
.(124)

(a) follows from Jensen’s inequality applied to the concave function log(k1 + k2x) (for

constant k1, k2 > 0) and the concave function log
(

1
1+(1−x)k

)
(for constant k > 0). In-

equality (b) follows from Jensen’s inequality applied to the square-root function. Hence
λR(1) + (1 − λ)R(2) is in the region as well, hence the region is a convex set. �

Proposition D.2 (Conditional EPI) Suppose Y n ∈ R
n and Zn ∈ R

n are independent
random vectors and m ∈ {1, 2, . . . , M} (for some M) is independent of Zn. Then we
have that

h(Y n + Zn|m) ≥ n

2
log
(
e

2

n
h(Y n|m) + e

2

n
h(Zn)

)
. (125)
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Proof:

h(Y n + Zn|m) =

M∑

i=1

h(Y n + Zn|m = i)P(m = i), (126)

(a)

≥
M∑

i=1

n

2
log
(
e

2

n
h(Y n|m=i) + e

2

n
h(Zn)

)
P(m = i), (127)

(b)

≥ n

2
log
(
e

2

n
h(Y n|m) + e

2

n
h(Zn)

)
, (128)

where (a) follows from the classical Entropy Power Inequality (EPI) (see e.g. [5]), and
(b) follows from Jensen’s inequality applied to the convex function log(e2x/n + k) (for
constant k and n). �.

Lemma D.1 Given two zero-mean random variables X and Y with a fixed covariance
matrix KXY we have that

h(Y |X) ≤ 1

2
log

(
2πe

(
E[Y 2] − E[Y X]2

E[X2]

))
, (129)

with equality when X and Y are jointly Gaussian.

Proof: Let β = E[XY ]
E[X2]

. Then the MMSE estimator of Y given X is given by Ŷ = βX.

h(Y |X)
(a)
= h(Y − βX|X), (130)
(b)

≤ h(Y − βX), (131)
(c)

≤ 1

2
log
(
2πe

(
E[(Y − βX)2]

))
, (132)

=
1

2
log

(
2πe

(
E[Y 2] − E[XY ]2

E[X2]

))
, (133)

where (a) follows from the fact that shifts do not change the differential entropy, (b)
follows since conditioning does not increase entropy, and (c) follows since the Gaussian
distribution maximizes the entropy for a given variance. By the orthogonality principle,
(b) is tight when X and Y are jointly Gaussian and in that case (c) is tight as well. �

Lemma D.2

max
0≤α≤1

µ

2
log

(
1 +

(
√

Pp + a
√

αPc)
2

1 + a2(1 − α)Pc

)
+

1

2
log (1 + (1 − α)Pc) (134)

=
µ

2
log

(
1 +

(√
Pp + a

√
Pc

)2
)

,

for a ≥ 1 and µ ≥ 1.
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Proof: On the one hand we have that

max
0≤α≤1

µ

2
log

(
1 +

(
√

Pp + a
√

αPc)
2

1 + a2(1 − α)Pc

)
+

1

2
log (1 + (1 − α)Pc) , (135)

= max
0≤α≤1

1

2
log

((
1 + a2(1 − α)Pc + (

√
Pp + a

√
αPc)

2
)µ

(1 + (1 − α)Pc)

(1 + a2(1 − α)Pc)µ

)
,(136)

≤ max
0≤α≤1

1

2
log

((
1 + a2(1 − α)Pc + (

√
Pp + a

√
αPc)

2
)µ

(1 + a2(1 − α)Pc)µ−1

)
, (137)

= max
0≤α≤1

1

2
log

((
1 + a2Pc + Pp + 2a

√
αPpPc

)µ

(1 + a2(1 − α)Pc)µ−1

)
, (138)

=
µ

2
log

(
1 +

(√
Pp + a

√
Pc

)2
)

. (139)

On the other hand, the maximization problem in (134) can be lower bounded with
µ
2

log
(
1 +

(√
Pp + a

√
Pc

)2)
, by choosing α = 1. Hence the lemma is proved. �
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