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Abstract—Multiple transmit and receive antennas can be used
in wireless systems to achieve high data rate communication. Re-
cently, efficient space–time codes have been developed that utilize
a large portion of the available capacity. These codes are designed
under the assumption that the transmitter has no knowledge
about the channel. In this work, on the other hand, we consider the
case when the transmitter has partial, but not perfect, knowledge
about the channel and how to improve a predetermined code
so that this fact is taken into account. A performance criterion
is derived for a frequency-nonselective fading channel and then
utilized to optimize a linear transformation of the predetermined
code. The resulting optimization problem turns out to be convex
and can thus be efficiently solved using standard methods. In
addition, a particularly efficient solution method is developed for
the special case of independently fading channel coefficients. The
proposed transmission scheme combines the benefits of conven-
tional beamforming with those given by orthogonal space–time
block coding. Simulation results for a narrow-band system with
multiple transmit antennas and one or more receive antennas
demonstrate significant gains over conventional methods in a
scenario with nonperfect channel knowledge.

Index Terms—Array processing, beamforming, diversity, fading
channels, space–time codes, wireless communication.

I. INTRODUCTION

T HE use of transmit diversity in wireless communication
systems has recently received considerable attention

[1]–[4]. By utilizing antenna arrays at both the transmitter as
well as the receiver the limitations of the radio channel may
be overcome and the data rates increased. The high data rates
that these multi-input–multi-output (MIMO) systems may
offer were demonstrated in [5], [6]. There, calculations of the
information-theoretic capacity assuming a flat Rayleigh-fading
environment were presented. This triggered the development of
space–time codes that utilize both the spatial and temporal di-
mension to achieve a significant portion of the aforementioned
capacity [2]–[4].

The present work considers how side information in the form
of channel estimates at the transmitter can be used in conjunc-
tion with certain space–time codes. A transmission scheme is
developed which adapts a predetermined space–time code to the
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available channel knowledge by means of a linear transforma-
tion. Accurate estimates are in practice not always possible, par-
ticularly in environments where the parameters of the channel
are rapidly time-varying. This fact is taken into account in the
proposed transmission scheme by assuming that the channel
knowledge is nonperfect. In fact, the scheme continues to work
well also when the quality of the side information is low.

Early attempts at designing transmission schemes for ex-
ploiting the potential offered by antenna arrays at the transmit
side are generally concerned with increasing the diversity order
of the system. Examples of such work include techniques
for introducing artificial frequency/phase offsets [7]–[9] and
time offsets [10] between the transmitted signals. The latter
technique is commonly referred to as delay diversity and is
closely related to the layered space–time architecture in [11].
A more systematic approach to find appropriate codes was
pioneered in [2], [12]. A major contribution in [2], [12] was
the development of a design criterion involving the rank and
eigenvalues of certain matrices. The design criterion was later
generalized to multiple receive antennas and to other channel
models in [3], where the now popular notion of space–time
coding was introduced. Examples of trellis codes based on the
design criterion were also provided. A simple block code for
two transmit antennas that leads to a low-complexity receiver
was developed in [13]. In [4], this concept was extended to
up to eight transmit antennas. Furthermore, it was shown that
these so-called orthogonal space–time block codes satisfy the
rank constraint of the previously mentioned design criterion.
Consequently, these codes also provide the system with its
maximum diversity order.

Common to the space–time coding schemes mentioned
above is that they do not exploit channel knowledge at the
transmitter. Information about the channel realization, if it is
available, should of course be utilized in order to maximize
the performance. As a simple example, consider a scenario
with perfect channel state information at both sides of the
communication link. It is well known that by appropriate
linear processing at the transmitter and the receiver, the system
can be transformed into a set of parallel scalar channels. The
available transmit power may then be optimally allocated to
the individual channels. An example of combining such an
approach with coding is found in [14].

In this paper, we present a transmission scheme that combines
the two extremes regarding the degree of channel knowledge.
Codes belonging to the class of orthogonal space–time block
codes [4] are linearly processed in order to take the side infor-
mation into account. The side information is modeled using a
purely statistical approach. Previous and related work includes
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Fig. 1. An overview of the system.

[15], [16], and [17]–[19]. While a similar model for the side
information was utilized in [17], [18] for determining suitable
transmit beamformers in the presence of channel estimation er-
rors, those papers neither considered space–time codes nor mul-
tiple antennas at the receiver. Another possibility for modeling
partial channel knowledge is to take on a physical perspective.
This is the approach used in [19] for adapting a predetermined
space–time code to the particular channel. The assumption in
that work is that the signals propagate along a finite number of
directions, known at the transmitter, before entering a rich local
scattering environment near the receiver.

The main contribution of the present work is the develop-
ment and study of a low-complexity transmission scheme which
combines the benefits of transmit beamforming and orthogonal
space–time block coding. To accomplish this, a performance
criterion is derived which takes the available side information
into account. The performance criterion could, in principle, be
used for designing codes from scratch. Although the derivation
is to some extent similar in spirit to the derivation of the design
criterion in [3], that paper did not treat side information and,
therefore, utilized certain approximations which prohibit the re-
sulting design criterion from exploiting any channel knowledge.
The setup considered here may also be motivated by current
standardization proposals for the WCDMA system, where an
orthogonal space–time block code is used in one of the proposed
transmission modes whereas one of the other proposed modes
uses transmit beamforming [20], [21].

The paper is organized as follows. In Section II, the data
model and the model for the side information are introduced.
A derivation of the performance criterion as well as some
general interpretations are given in Section III. The proposed
transmission scheme is described in Section IV, leading to what
first seems like a nontrivial optimization problem. However,
a simple reformulation of the parameters to be determined
turns out to give a convex optimization problem which permits
a reasonably efficient implementation. Also, closed-form
expressions for asymptotically optimum linear transformations
are derived for a number of cases. These also reveal the highly
intuitive behavior of the transmission scheme. Furthermore,
a particularly efficient optimization algorithm is presented
for a class of simplified fading scenarios. This algorithm is
then applied in Section V to an actual example of a simplified
fading scenario. Finally, simulation examples are presented in
Section VI showing significant gains compared to conventional
beamforming as well as conventional orthogonal space–time
block coding.

II. SYSTEM MODEL

As illustrated in Fig. 1, a wireless communication system em-
ploying multiple antennas at both the transmitter and the re-
ceiver is considered. The transmitter is assumed to have some,
but not necessarily perfect, knowledge about the current channel
realization. In order to utilize this channel knowledge, while at
the same time not sacrificing the benefits offered by conven-
tional space–time codes, we propose the use of a transmitter
consisting of a space–time encoder followed by a linear transfor-
mation . The space–time encoder maps the data to be trans-
mitted , where is a discrete-time index, into codewords
that are split into a set of parallel and generally different symbol
sequences. These codewords are linearly transformed in order to
adapt the code to the available channel knowledge. As a result,
a new set of parallel symbol sequences is formed. Each symbol
sequence is first pulse-shaped and then transmitted over the cor-
responding antenna. Finally, the transmitted data is recovered at
the receiver by means of maximum-likelihood (ML) decoding.

The information-carrying signals are transmitted over a
wireless fading channel. The time dispersion introduced
by the channel is assumed to be short compared with the
symbol period. Therefore, the individual channel between each
transmit and receive antenna is frequency-nonselective. Let
and denote the number of transmit and receive antennas,
respectively. The signal output from each receive antenna is
then a weighted superposition of the transmitted signals,
corrupted by additive noise.

By collecting the filtered and symbol sampled complex base-
band equivalent outputs from the receiving antenna array in an

vector , the received signal at timecan be written
as

where denotes the complex conjugate transpose operator
and where the linearly transformed symbols, transmitted from
the antennas at time instantare represented by

(1)

Here, is the corresponding output from the space–time en-
coder and is the previously mentioned linear transformation
matrix. As will be seen in the following sections, is deter-
mined so as to minimize a certain upper bound on the proba-
bility of a codeword error. The noise term is assumed to be



JÖNGRENet al.: COMBINING BEAMFORMING AND ORTHOGONAL SPACE–TIME BLOCK CODING 613

a zero-mean, temporally and spatially white, complex Gaussian
random process with covariance matrix . Furthermore, the
MIMO channel is described by the matrix

...
...

...

where is a complex scalar denoting the channel between the
th transmit antenna and theth receive antenna.1 The MIMO

channel is also represented by the vector

where denotes the vectorization operator which stacks the
columns of its argument into a vector. The fading of the channel
is assumed to obey a complex Gaussian distribution with mean
vector and covariance matrix . Note that this assump-
tion includes both independent Rayleigh fading and indepen-
dent Ricean fading as special cases. In addition, more realistic
fading environments with correlated channel coefficients may
be modeled.

A quasi-static scenario is considered where the channel is as-
sumed to be constant during the transmission of a burst of code-
words but may vary from one burst to another in a statistically
stationary fashion. For simplicity, the channel realizations are in
this work assumed to be independent. However, it is straightfor-
ward to generalize the proposed methods to a correlated fading
scenario.

A. Side Information at the Transmitter

An estimate of the channel realization is assumed to be avail-
able at the transmitter. There are several examples of how such
an estimate may be obtained. An explicit channel can be used to
feed back the channel estimates from the receiver or, if a time-di-
vision duplex system is used, it is possible for the transmitter to
estimate the channel directly. In order to use the latter method in
frequency-division duplex systems, estimates of the channel in
the receive mode must first be transformed to the desired carrier
frequency before they can be utilized in the transmission mode.
In general, the channel estimates are not only noisy but may also
be outdated due to feedback delay or duplex time. In addition,
the frequency shift transformation in frequency-division duplex
systems is another possible source of error.

For simplicity, the receiver is from now on assumed to have
perfect channel knowledge. We make this assumption in order to
simplify the exposition. However, it is straightforward to extend
the following development to also take channel estimation errors
at the receiver into account. Moreover, keep in mind that the
development in this section is exemplified by, but not limited

1Since the focus of this work is on the transmitting side, it is convenient to
define the MIMO channel usingHHH , as opposed toHHH , so that each column of
HHH represents the vector channel between the transmitter’s antenna array and the
corresponding receive antenna.

to, systems where the channel estimates are obtained through a
dedicated feedback channel.

The channel estimates at the transmitter are assumed to be
correlated (to an arbitrary degree) with the true channel. This
assumption is motivated, for example, by the well-known Jakes
model [22, p. 26], which describes the variations of the channel,
due to movement of the mobile receiver, as a function of time. In
this model, the channel coefficients are samples of a stationary
Gaussian process with an autocorrelation function proportional
to , where is the zero-order Bessel function of
the first kind, denotes the time lag, and is the maximum
Doppler frequency. Hence, the outdated channel estimates avail-
able at the transmitter are correlated with the current channel
and the amount of such correlation is determined by the time it
takes to feed back the estimates.

For the purpose of describing the side information, let the ma-
trix , with the corresponding channel coefficients, denote
the estimate of available at the transmitter. Letdenote the
vectorized counterpart. We assume thatand are jointly com-
plex Gaussian. With obvious notation, the statistics of the side
information and its relation to the true channel are now com-
pletely described by the mean vector , the covariance matrix

, and the cross-covariance matrix . In view of the Jakes
model, the joint Gaussian assumption is reasonable since the
side information and the true channel are samples of the same
Gaussian random process.

Clearly, the quality of the side information is closely related
to the degree of correlation with the true channel, as repre-
sented by the cross-covariance matrix. A more general measure
of the quality of the side information that will be used exten-
sively in this paper is the covariance of the true channel, con-
ditioned on the side information. Let denote this quan-
tity. Since describes the remaining uncertainty when the
side information is known, it should be appearant that, loosely
speaking, high-quality side information corresponds to a small

(measured in a suitable norm) whereas a large cor-
responds to side information of low quality. Let us now formally
define the two notions of “perfect side information” (or “perfect
channel knowledge”) and “no side information” (or “no channel
knowledge”) as follows.

• “Perfect side information” .

• “No side information” .

Here, denotes the spectral norm [23, p. 295]. A salient
consequence of this choice of measure is that the distribution of
the true channel is considered as part of the channel knowledge
as well.

III. PERFORMANCECRITERION

In this section, we derive a performance criterion for
space–time codes which takes the quality of the side infor-
mation into account. Rather than at this point limiting the
application of the performance criterion to the proposed trans-
mission scheme, the development in this section is structured
in such a manner that the derived performance criterion is
applicable to the design of a wide class of space–time codes.
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In the following sections, the performance criterion will be
applied to the proposed transmission scheme.

As is shown next, a suitable performance criterion is based
on the pairwise codeword error probability, conditioned on the
side information. We start by motivating this fact. Let

denote the set of codewords, whereis the
number of codewords. Assume the codewords are of length.
Each codeword is described by an matrix

where is the th transmitted vector of theth codeword.
Assume that a codeword is transmitted. The received
signal vectors corresponding to one codeword may then be ar-
ranged in an matrix , given by

where is a matrix of noise vectors. The receiver is assumed to
employ ML decoding of the codewords based on ideal channel
state information. For the problem at hand this amounts to de-
coding the codewords according to

where denotes the codeword chosen by the receiver and
is the Frobenius norm. The previously mentioned pairwise
codeword error probability, conditioned on the side informa-
tion,2 can now be given a clear meaning. It is denoted by

and defined, for , as

which is the probability that, given a transmitted codeword,
the metric corresponding to the codewordis smaller. Obvious
variations of this notation will also be used. Let
denote the codeword error probability, i.e., the probability that

is different from . The overall design goal is to minimize
this quantity with respect to the set of codewords. Since side
information is available, the set of possible codewordsis a
function of the channel estimate. Conditioning on the side
information gives the following relation:

where is the probability density function (pdf) of the side
information. It is now clear that minimizing for
each also minimizes , since . In order
to obtain a closed-form expression for , we make
the common assumption that the signal-to-noise ratio (SNR) is
sufficiently high for the union bound technique to be applicable.
More specifically, it is assumed that the largest pairwise code-
word error probability, conditioned on the side information, is

2For notational convenience, we will sometimes refer to this as simply the
“pairwise error probability.”

the dominating term in the union bound. Thus,
is a reasonable performance criterion. Note that, although based
on a high-SNR assumption, we will demonstrate that the perfor-
mance criterion can be successfully utilized also in situations
when the SNR cannot be considered high.

We now turn our attention to deriving a closed-form expres-
sion for the performance criterion. Similarly to [3], we start
by conditioning on the true channel realization and utilize a
well-known upper bound on the Gaussian tail function to arrive
at

(2)

where

(3)

is the Euclidean distance between the codewords. At this
point, the following standard relations, found in, e.g., [24, pp.
121–122], turn out to be useful:

(4)

(5)

Here, denotes the Kronecker product and is the trace
operator. By utilizing (4) and (5) it is possible to rewrite (3) as

(6)

where, similarly to [3]

contains the codeword pair. Since the true channel and the side
information are jointly complex Gaussian, the pdf of the true
channel, conditioned on the side information, is also a complex
Gaussian pdf, given by

(7)

where denotes the determinant operator and where
and represent the conditional mean and covariance, re-
spectively. By averaging both sides of (2) over the distribution
in (7), an upper bound to the pairwise error probability is formed
as

(8)
This upper bound is denoted by . Now, introduce the
following expression:

After expanding the exponent of (7) and combining it with (6),
it is straightforward to verify that the sum of the exponents in
the integrand of (8) can be written as
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where the dependence on the codeword pair has been tem-
porarily omitted in order to simplify the notation. The integral
in (8) is now easily solved by making use of the fact that

is the integral of a complex Gaussian pdf and thus equals one.
Consequently, the upper bound in (8) can be expressed as

Taking the logarithm and neglecting parameter-independent
terms yields the desired form of the performance criterion as

(9)

We stress that this result constitutes a new performance cri-
terion for channel estimate dependent space–time codes. One
possible approach to designing the corresponding codewords
is to minimize the maximum, taken over all codeword pairs,
of . For a similar solution based on the classic de-
sign criterion see, e.g., [25]. However, this procedure is deemed
too computationally demanding for the side information model
under consideration, since the optimum codewords depend on
the actual channel estimate and the number of possible channel
estimate realizations is infinite. Hence, a complicated optimiza-
tion problem would have to be solved in real time for each new
channel estimate that arrives at the transmitter.

On the other hand, for the case of quantized channel esti-
mates, such an approach may be perfectly viable due to the finite
number of channel estimate realizations. The entire channel esti-
mate dependent space–time code can therefore be precalculated
and stored in a lookup table, suitable for real-time use. Vari-
ations of this approach are further explored in [26]. However,
such a study is beyond the scope of the present work, since we
focus on unquantized channel information. Instead, certain con-
straints on the code will be introduced in the sections to follow
in order to arrive at a tractable scheme.

A. Interpretations of the Performance Criterion

The two terms in (9), i.e., in the performance criterion, can
be given some interesting interpretations. The first term mainly
deals with the channel knowledge obtained from the actual re-
alization of the channel estimate, as contained in . The
second term, on the other hand, does not depend on the real-
ization of the channel estimate and therefore strives for a code
design suitable for an open-loop system, which has no side in-
formation except prior knowledge of the distribution of the true
channel. This interpretation is further supported by considering
the two special cases of perfect side information ( )

and of no side information ( ), respectively. In the
first case, the first term is seen to dominate and in the second

case, the second term is dominating. The performance criterion
is in the second case equivalent to

(10)

which is basically the same as the criterion used in [2], [3] for
designing conventional space–time codes.

As a final remark, it should be emphasized that the pro-
posed performance criterion can also be used for designing
conventional space–time codes in various scenarios involving
open-loop systems. To see this, bear in mind that if the side
information is statistically independent of the true channel, the
performance criterion reduces to

(11)

where now . Thus,
the development in the present work also applies to situations
where the transmitter only knows the distribution of the true
channel and nothing about the current realization. This version
of the performance criterion is therefore closely related to the
design criterion in [2], [3]. In fact, after some simple manipu-
lations, it can be shown that (11) includes several of the results
from the various fading scenarios in [2], [3] as special cases.

IV. THE TRANSMISSIONSCHEME

This section deals with the construction of a tractable trans-
mission scheme based on the performance criterion given by (9).
As discussed in the previous section, one obvious alternative is
to design a space–time code using the proposed performance
criterion and an exhaustive search over all possible codewords.
However, a more viable approach, for the scenario under con-
sideration, is taken in this work.

As outlined in Section II, we assume that a space–time code is
already determined and try to improve the code by a linear trans-
formation. Hence, from (1) it follows that theth transformed
codeword may be written as

where is an matrix, shared by all codewords, and
is the th predetermined codeword. Here, the pre-

determined set of codewordsis defined in a similar manner
as . In order to limit the average output power, the constraint

is imposed. Furthermore, orthogonal space–time
block codes as found in [4] are considered. These codes are de-
signed for open-loop type of systems and have the appealing
property that

(12)

where is a scaling factor which depends on the codeword
pair. Substituting , , and (12) into (9)
leads to the performance criterion

(13)
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where

As seen, with a slight abuse of notation, we have retained
and as function names, even though the arguments have
changed. Obvious variations of this notation will be used in the
following.

The dependence on the codeword pair is now only through
the scaling factor . Since (13) is a decreasing function of

, the error probability is dominated by the codeword pairs
corresponding to the minimum . Thus, only one such pair is
considered in the optimization procedure. An optimal(op-
timal in the sense that it minimizes the criterion function under
consideration) could now, at least in principle, be determined
by minimizing with respect to , while sat-
isfying the power constraint. Here, denotes the minimum

. However, a highly challenging optimization problem, with
a criterion function possessing multiple minimas, would need to
be solved.

In order to obtain a tractable solution, we take on an alterna-
tive approach involving a reparameterization. An inspection of
both (13) and the power constraint suggests the parameterization

. A two-step procedure is now used for finding an
optimal solution to the problem outlined in the previous para-
graph. Rewriting the criterion function and the constraints in
terms of the new parameters gives the following optimization
problem:

(14)

where means that is positive semidefinite.3 With a slight
abuse of notation, the performance criterion is
written here as

(15)

where . An optimal linear transformation is fi-
nally obtained as , where is a matrix square
root such that . Note that a square root al-
ways exists since is a nonnegative definite matrix. Clearly,
the solution is not unique.

The described reformulation is attractive since (14) is now a
convex optimization problem. To see that the criterion function
is convex, first note that defines an affine transfor-
mation of and that is positive definite over the set
of all positive semidefinite . Since affine transformations pre-
serve convexity [27], [28], we can now establish the convexity
of the criterion function by showing that

(16)

is convex over the set of positive definite matrices.
To see that the first term is convex, we utilize a theorem saying

that a function is convex over a set if it is convex when re-
stricted to any line that intersects[29, p. 94]. For this purpose,

3In general, we takeAAA � BBB andAAA � BBB to mean that the matrixAAA �BBB is
positive definite and positive semidefinite, respectively.

let , where , are ar-
bitrary positive definite matrices and represent any
line in the set of positive definite matrices. By making use of the
identity

the second-order derivative of the first term with respect tois
easily obtained as

This quadratic form is nonnegative since the matrix

is positive semidefinite. Because the second-order derivative is
nonnegative it follows that the first term is convex with respect
to (see e.g., [29, p. 91]) and thus, according to the theorem in
[29, p. 94], also over the set of positive definite matrices.

The convexity of the second term is established in, e.g., [23,
p. 466]. Consequently, (16) is convex over all positive definite

. Due to the affine relation between and , the criterion
function is convex also with respect to. It is easily verified that
the constraints are convex [27], [28]. The entire optimization
problem is therefore convex, which implies that all local minima
are also global minima.

We will not go into great detail describing an algorithm that
solves this particular optimization problem, since there are a
number of standard techniques that are applicable. For example,
interior point methods can be used for efficiently solving this
kind of problem [30].

A. Asymptotic Properties of the Solution

Although the optimization problem given by (14) must, in
general, be solved numerically, there are a few special cases that
permit a closed-form solution. These special cases concern the
asymptotic properties of the solution. In particular, here our at-
tention is turned to the behavior of the solution when the channel
quality is perfect and when there is no channel information, re-
spectively. In addition, the influence of the SNR level is inves-
tigated. The solutions turn out to agree well with intuition and
allow for some interesting interpretations. Detailed derivations
can be found in Appendix I.

In the first case, no channel knowledge is assumed, i.e.,
. The criterion function used in (14) is then

minimized for . As a result, the optimal linear
transformation is a scaled unitary matrix, an obvious choice
given by . Thus, the codewords are trans-
mitted without modification. This makes sense considering
the assumptions under which the predetermined space–time
code was designed. It also makes sense in view of the fact
that the transmitter does not know the channel and therefore
has to choose a “neutral” solution. We refer to the resulting
transmission technique as conventional orthogonal space–time
block coding (OSTBC).

The second case concerns infinite SNR, in the sense that
. Similarly to the case of no channel

knowledge, the optimal linear transformation can be chosen to
be a scaled unitary matrix. This indicates that the usefulness of
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channel knowledge diminishes as the SNR increases. Simula-
tion results described in Section VI further support this claim.

In the third case, the channel knowledge is assumed to be
perfect. Let denote the th block of size on the
diagonal of and define as

(17)

To simplify the analysis, it is assumed that one of the eigen-
values of is strictly larger than all the other. This assumption
is further commented on in the following. Studying the behavior
of the solution as gives the following asymptoti-
cally optimal linear transformation:

(18)

where is the eigenvector of corresponding to the largest
eigenvalue.

Due to the special structure of orthogonal space–time block
codes, and since only one column of is nonzero, (18) may
be interpretated as beamforming in the direction of. To see
this, consider, for example, the two transmit antenna case and as-
sume that the codewords of the predetermined space–time code
are given by

(19)

where is a sequence representing the data symbols to
be transmitted. The code in (19) is the well-known Alamouti
space–time code [13]. By utilizing the asymptotic result in (18)
and the expression for the space–time code it is seen that the
signal transmitted over the two antennas during time instant
and can be written as

Clearly, beamforming in the direction of is performed. The
present development can be generalized to all the orthogonal
space–time block codes found in [4].

Note that because of the perfect channel knowledge,
in the mean square sense, i.e., is essentially

the same as . Consequently, which, in

turn, means that , both in mean square. Hence, for
all practical purposes, can be considered equal to the left
singular vector of corresponding to the largest singular value
[23, p. 414]. Thus, the transmission is now conducted in much
the same way as in a scheme which utilizes the singular value
decomposition of the channel matrix to convert the MIMO
system into a set of parallel subchannels. Such a method was
examined, for example, in [14] where a water-filling procedure
was used for allocating transmit power (and thus distribution
of data rates) among all the subchannels. However, our trans-
mission scheme differs, among other things, in that only the
strongest subchannel is used. This is due to the structure of
the underlying orthogonal space–time block code. Because of
the orthogonality, the decoding of the constituent data symbols
decouples, allowing the transmission scheme to be studied
by considering the symbols separately from each other. For

example, consider again the Alamouti code in (19) and observe
that the contribution to the transmitted signal from is

where and are the columns of . It is now clear that to
maximize the SNR for both and , the two columns
of should be matched to the channel, i.e., both should be
parallel to the strongest left singular vector of the channel. Sim-
ilar arguments apply to and also to other orthogonal
space–time block codes.

Also, note that the assumption thathas a strictly largest
eigenvalue is weak. The reason why is because of the often
random nature of (or , since ), and thus also
of , in practical fading scenarios. In particular, the probability
that the assumption is violated is, except for some degenerate
choices of the first- and second-order moments of the channel,
in general vanishingly small for the Gaussian fading model used
here. This is, for example, the case in the simplified fading sce-
nario described in Section V.

Finally, in the fourth case, we consider an SNR value tending
to zero, i.e., . It turns out that the result is similar to the one
derived in the previous case. Hence, the asymptotically optimal
linear transformation is again given by (18). However,is now
defined as

where is the th block of size on the diagonal of
. Again, the existence of an eigenvalue ofthat is strictly

larger than all the other is assumed.
Note that in the case of one receive antenna, the beamforming

strategy proposed in [17], although derived using a different per-
formance criterion, is seen to also give a beamformer propor-
tional to . The approach taken on in [17] was to maximize
the average SNR. As also pointed out there, such a performance
criterion makes sense for small SNR values. Hence, the result
for the fourth case in this section provides a generalization of the
corresponding result in [17] to multiple receive antennas when
a predetermined space–time code is used.

B. An Algorithm for a Simplified Scenario

In this subsection, we consider a simplified fading scenario
in order to obtain a semi-closed-form solution of the optimiza-
tion problem given in (14). In spite of the existence of a fairly
efficient numerical optimization technique for the general case,
the complexity of the algorithm described in this section is sub-
stantially lower.

Let us first make the simplifying assumption that the
conditional covariance matrix is diagonal, also expressed as

. Here, represents the conditional variance
of the channel coefficients. A scenario where this assumption
is reasonable is considered in Section V. By introducing
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and neglecting parameter independent terms, it is now possible
to rewrite the performance criterion (15) in the following way:

where the second equality is due to the well-known relation
. In order to minimize this criterion we let

and represent the eigenvalue decom-
position (EVD) of and , respectively. The diagonal elements
of and , representing the eigenvalues, are here denoted by

and , respectively. In each set, the eigenvalues
are assumed to be sorted in ascending order. It is also assumed
that and are unitary. Substituting for this new parameteri-
zation into and into the constraints results in an equivalent
optimization problem given by the criterion function

(20)

subject to the constraints

(21)

(22)

(23)

It is seen that is independent of the constraints and that it only
affects the first term in (20). Keeping constant and following
the development in [29, p. 131], the optimumcan then be
chosen as . For this to hold, (23) is needed.

The remaining optimization problem is clearly convex. The
solution may therefore be obtained by means of the Karush–
Kuhn–Tucker (KKT) conditions [29, p. 164]. Temporarily re-
laxing the problem by omitting the last constraint, and then
finding a set of eigenvalues which satisfy the KKT conditions
for the relaxed problem, is the approach used for deriving the
solution. A detailed derivation is provided in Appendix II. The
optimal eigenvalues for the relaxed problem turn out to be given
by

(24)

where is the Lagrange multiplier corresponding to the power
constraint. Note that this is also the optimum for the original
problem since the above solution automatically satisfies (23).

The value of is obtained by inserting (24) into the power
constraint (21) and solving the resulting equation. One possible
procedure for accomplishing this is now described. To start with,
assume that the number of eigenvalues equal to zero in the op-

timum solution is known. Let denote this quantity. Inserting
(24) into the power constraint (21) then gives the equation

(25)

from which can be determined. Let represent the
left-hand side of the equation. Since is strictly in-
creasing as a function of, the solution is unique and may be
found numerically. For example, applying Newton’s method
gives rapid convergence. In this case, a suitable starting value is

obtained by using equal power on all eigenvectors whose eigen-
values are assumed to be nonzero. In order to arrive at the cor-
rect value of , an iterative approach is used where, starting at

, successive values ofare tried. An algorithm similar to
the one utilized when computing the well-known water-filling
power profile can be used for this purpose [32, p. 253]. The
optimum linear transformation is finally obtained by an appro-
priate matrix square root of . Thus, the whole procedure can
be summarized as follows.

1) Set .

2) Solve with respect to .

3) Compute

4) If then set , and repeat from 2).

5) Compute .

Note that we have tacitly assumed that the predetermined
space–time code is designed for transmit antennas, since
is a square matrix. However, the algorithm for the simplified
scenario can easily be adapted to also handle the important
case of an linear transformation, where denotes
the number of rows in the predetermined codeword matrix
and where . Toward this end, the starting value of
should be modified to and only the columns of

that correspond to should be retained
from execution step 5). In this way, a simple predetermined
code, designed for a small number of transmit antennas, can be
used in conjunction with a much larger antenna array. Such a
transmission scheme is also interesting in view of the fact that
orthogonal space–time codes exist for only a limited number
of transmit antennas [4].

V. A SIMPLIFIED SCENARIO

Let us now detour from the general complex Gaussian fading
assumption and instead consider a simplified fading scenario.
The transmission scheme from Section IV-B will in this section
be tailored specifically to this scenario.

In the simplified scenario, it is assumed that the antennas
at both the transmitter and the receiver are spaced sufficiently
far apart so that the fading is independent. A rich scattering
environment with non-line-of-sight conditions is also assumed.
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It is then reasonable to model the true channel coefficients
as independent and identically distributed (i.i.d.) zero-mean
complex Gaussian. Let denote the variance of each indi-
vidual channel coefficient. The coefficients of the channel
estimates are modeled in the same way. Similarly to
[17], each estimated channel coefficient is assumed to be
correlated with the corresponding true channel coefficient,
and uncorrelated with all others. In order to describe the degree
of correlation, introduce the normalized correlation coefficient

. Thus, assuming and are jointly
complex Gaussian, the distribution of the true channel and the
side information is completely characterized by the covariance
matrices , , ,
and the mean vectors . Straightforward cal-
culations show that this model leads to a conditional channel
distribution described by

(26)

Although the previous measure of channel quality, as repre-
sented by , can be retained in this scenario, we opt for
as the quantity describing the channel quality. Such a quantity
was also used in [17]. Perfect channel knowledge now corre-
sponds to . As seen from (26), this in turn implies that

. Hence, we also have perfect channel quality as
defined by our original channel quality measure. On the other
hand, no channel knowledge corresponds to . For this
case, does not tend to zero. The two measures thus dis-
agree. However, what seems like an inconsistency is really not,
since the asymptotically optimum linear transformation can, for
this case, be shown to be , regardless of which
of the two quality measures is used. The similarity in the asymp-
totic results is explained by the inherent symmetry in the distri-
bution implied by (26) as . Due to the symmetry, the dis-
tribution can be considered noninformative from the perspective
of a transmitter, resulting in an open-loop type of system. This
is clearly not true in general, since even ifand are uncor-
related, the distribution of the true channel represents a form of
channel knowledge on its own.

A. Applying the Transmission Scheme

This subsection deals with how the transmission scheme that
was described in Section IV-B can be customized for the sim-
plified scenario. In addition, the behavior of the optimal linear
transformation is studied.

In order to use the transmission scheme for the simplified
scenario, and need to be computed. Based on (26), it is
seen that

(27)

where . It is now straightforward to apply the
algorithm described in Section IV-B.

Let us investigate how the transmission scheme distributes the
available power. Assuming perfect side information, i.e., ,
the asymptotic result for the perfect channel knowledge case,
discussed in Section IV-A, is applicable. Hence, all the power
is allocated to the eigenvector , corresponding to the largest

eigenvalue of , i.e., only is nonzero. In view of (27), it is
clear that is also the strongest left singular vector of.

The second case considers no channel knowledge, i.e., .
From (27) it is obvious that then tends to zero, which means
that the corresponding eigenvalues also tend to zero.
Hence, from (24), it follows that will all be equal. As
a result, . Such a linear transformation implies
that , which constitutes a transmission scheme
equivalent4 to conventional OSTBC.

For the special case when the number of antennas at either the
transmitter or the receiver is two or lower, i.e.,
, the transmission scheme can be further simplified. Only two

of the eigenvalues are then nonzero, since is the sum of
rank-one matrices of size . This allows the transmis-

sion scheme to be simplified by reorganizing the terms in (25)
and then squaring repeatedly so that a polynomial equation is
obtained. For example, consider a system with one receive an-
tenna and assume the simplified scenario. It follows that

Analytical expressions for the eigenvalues, as well as for the
eigenvector corresponding to the largest eigenvalue, are easily
found to be given by

and

(28)

respectively. Tedious but straightforward calculations now show
that theprocedure for determining the optimum eigenvalues re-
duces to the following.

1) Let and compute the equation at the
bottom of the following page.

2) Compute .

3) If then set and compute

4) If then set ,

Although we have assumed the simplified fading scenario, the
development generalizes easily to all scenarios where is
diagonal. One important example of such a scenario is line-of-
sight conditions in which the mean value of the true channel is
nonzero, e.g., an environment with Ricean fading.

By analyzing the above procedure it is possible to make some
interesting observations regarding the distribution of power
among the eigenmodes. The expression forin the second
step of the procedure is clearly decreasing as a function of.
Hence, when is above some threshold, the expression after
the comparison in step four will be executed and all the power
is allocated to the direction of the channel estimate. On the
other hand, falling below the threshold means that a part of
the total power is allocated to and the remaining power is

4Equivalent in the sense that the corresponding values of the criterion function
are the same.
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divided equally between the directions orthogonal to
the channel estimate. Recall that is inversely proportional to
. A slightly more involved analysis then shows that the power

distribution behaves similarly with respect to the noise variance
as well. The opposite behavior is observed for the fading

variance . Thus, when is below a certain threshold all
power is allocated to , whereas exceeding the same threshold
leads to a portion of the total power being allocated toand
the remaining power equally divided among the orthogonal
directions. Simulation results presented in Section VI illustrate
how the allocation of power affects the performance.

In the case of only two transmit antennas, a closed-form ex-
pression for may be formulated. For this purpose, let
and denote the two elements of. The eigenvector is ob-
tained from (28), whereas the other remaining eigenvector is ob-
tained by forming a vector orthogonal to. It follows that the
optimal linear transformation can be written as

Thus, our transmission scheme basically consists of a threshold
test and some simple computations which are easily imple-
mented using a lookup table. The complexity of the algorithm
must therefore be considered very low. Note that this agrees
well with the information-theoretic results outlined in [33],
where a similar threshold effect was observed.

Based on the assumptions in the present section and using
the corresponding transmission scheme, may now be ef-
ficiently determined. However, in order for the optimization to
be carried out, the variances and and the correlation coef-
ficient must be known. In practice, these may be estimated at
the receiver and fed back to the transmitter. Another approach is
to treat them as design parameters chosen such that they roughly
match the conditions the system is operating in. Nevertheless, in
the simulations to follow, we assume these parameters are per-
fectly known at the transmitter.

VI. SIMULATION RESULTS

In order to examine the performance of the proposed
transmission scheme, and to investigate how it compares with
conventional methods, simulations were conducted for several
different cases. The performance was compared with three other
methods—conventional OSTBC, conventional beamforming,
and, what is here referred to as, ideal beamforming. Ideal
beamforming is similar to conventional beamforming except
that the beamformer is based on perfect channel knowledge.

For all examined cases, the simplified scenario with perfect
knowledge of , , and was assumed. The variance of the

channel coefficients was arbitrarily set at . The channel
was constant during the transmission of a codeword and inde-
pendently fading from one codeword to another. Furthermore,
the predetermined orthogonal space–time block codes were
taken from the rate one codes found in [4]. The particular
code used in each case is therefore directly determined by the
number of transmit antennas. All elements of the codewords
were taken from a binary phase-shift keying (BPSK) constel-
lation. The input to the space–time encoder was assumed to
form an i.i.d. sequence of equally probable symbol alternatives.
Throughout the simulations, the bit error rate (BER) was used
as the performance measure. Finally, the SNR was defined as

SNR

For a conventional OSTBC system, the expression for the SNR
is equal to the total received average signal power divided by
the total noise power. Since the codes under consideration span
as many time instants as the number of transmit antennas,is
here equal to .

A. Varying the SNR

In the first case, a system with two transmit antennas and one
receive antenna was considered. The channel quality was set to

. The BER as a function of the SNR for the various trans-
mission methods is depicted in Fig. 2. As seen, the performance
of the proposed transmission scheme is for all SNR values better
than conventional OSTBC but, as expected, worse than ideal
beamforming. As the SNR decreases, the curve for the proposed
scheme approaches the one for ideal beamforming whereas for
increasing SNR it approaches the performance of conventional
OSTBC. Thus, the proposed scheme combines the advantages
of both beamforming and OSTBC. This is also in good agree-
ment with both the asymptotic results of Section IV-A as well
as the observations in Section V-A regarding the allocation of
power among the eigenmodes. Note that the two curves for con-
ventional OSTBC and ideal beamforming also show the perfor-
mance of our transmission scheme in the case of and

, respectively. Conventional beamforming is seen to give
good performance at low SNR values, but as the SNR increases,
the lack of correct channel knowledge leads to a serious perfor-
mance degradation.

In the second case, the number of transmit antennas was in-
creased to eight. This was done in order to illustrate how the
number of transmit antennas influences the performance. The
channel quality was now set to . The BER versus the
SNR for the four methods are presented in Fig. 3. As seen,
the potential gains due to channel knowledge are now consid-
erably higher. These gains remain to a large extent even when
the number of receive antennas is increased, as illustrated in
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Fig. 2. Two transmit antennas, one receive antenna, and BPSK modulation.

Fig. 3. Eight transmit antennas, one receive antenna, and BPSK modulation.

a comparison between the proposed method and conventional
OSTBC in Fig. 4. Although not presented, simulation results

demonstrating significant gains were also obtained for scenarios
with fewer transmit antennas.
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Fig. 4. Eight transmit antennas and BPSK modulation.

B. Varying the Channel Quality

The third and last case concerns how the channel quality af-
fects the performance. Again, a system with two transmit an-
tennas and one receive antenna is considered. The SNR was set
at 10 dB and the BER versus the channel quality was plotted.
The result is shown in Fig. 5, which thus provides an illustra-
tion of how the proposed scheme adapts to the variations in the
channel quality. Hence, when the channel quality is low it is sim-
ilar to conventional OSTBC and when it is high it is essentially
the same as ideal beamforming.

VII. CONCLUSION

In this work, side information was utilized for improving a
predetermined orthogonal space–time block code by means of
a linear transformation. A transmission scheme that effectively
combines conventional transmit beamforming with orthogonal
space–time block coding was proposed. The resulting optimiza-
tion problem was shown to be convex and could therefore be
solved efficiently. Closed-form solutions were derived under
certain asymptotic assumptions. Furthermore, the assumption
of a simplified fading scenario resulted in a particularly efficient
optimization algorithm. Numerical results demonstrated signif-
icant gains over both an open-loop system and a system using
conventional beamforming.

APPENDIX I
ASYMPTOTIC RESULTS

The strategy for deriving the asymptotic results presented in
Section IV-A is to make use of the fact that, under certain con-

ditions, it is possible to interchange the order of the limit and
minimization operator, i.e.,

where denotes the feasibility set and .
From [34, p. 221] it follows that this holds if converges
uniformly in over to the limit function , is a compact
set (i.e., closed and bounded), and is continuous and has
a unique global minimum.

To apply this theorem to the problem at hand, introduce a
criterion function that is equal to the original criterion
function , except for parameter-independent terms and fac-
tors. Let , where the limit is taken as either

, , , or , depending on
the asymptotic case under consideration. Moreover, define the
set of allowable parameters as

(29)

Clearly, the requirement that is compact is satisfied. Nor-
mally, is taken to be zero. The set in (29) then corresponds to
the feasibility set of the original optimization problem, as de-
scribed in (14). However, in order to satisfy the requirement
of a continuous limit function , we will for some of the
cases first restrict by assuming that is small and positive
and then argue why we can let without affecting the re-
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Fig. 5. Two transmit antennas, one receive antenna, SNR= 10 dB, and BPSK modulation.

sult. Proving that converges uniformly to over
amounts to showing that

In order to simplify the notation, the criterion function is, for
the remaining part of this section, written as

where we note that is a quantity proportional to
the SNR. Furthermore, recall that , where is
the maximum singular value of . Keep also in mind that if the
argument is a vector, the result is the usual vector norm.

A. Case 1: No Channel Knowledge

The first case that is considered is no channel knowledge, i.e.,
. To remove parameter-independent terms in the

limit function, the equivalent criterion function
is considered. For now, assume that . Since

is then nonsingular, can be written as

(30)

where is now a matrix square root with Hermitian sym-
metry. As shown below, this function converges uniformly in
to the limit function

(31)

The limit function is obviously continuous. By utilizing La-
grangian multipliers and an EVD of , it is straightforward to
show that , subject to , has a unique global min-
imum . This fact, and the uniform convergence
in over , implies that, for a fixed positive

(32)

However, the solution is valid even if . The reason is that
is a convex function and the solution to the above problem

does not render the first constraint tight. Hence, relaxing the
first constraint to does not change the optimum. Since

and , the optimum linear transfor-
mation in the case of no channel knowledge may, therefore, be
chosen as .

To see the uniform convergence inover as
consider the difference

(33)

From [23, p. 471] it readily follows that

(34)
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and the first term in (33) is therefore upper-bounded as

Since the determinant equals the product of the eigenvalues, the
second term can be written as

where is the th eigenvalue of

This matrix is Hermitian and positive definite which means that
its eigenvalues and its singular values are the same. Thus, the
eigenvalues can be upper-bounded as

where represents theth singular value and denotes
the largest singular value. The second equality is due to the fact
that the spectral norm is equal to the maximum singular value
of its argument. An upper bound to the second term in (33) may
be formed as

(35)

By utilizing the triangle inequality it is now clear that

Since this expression, for a constant , clearly tends to zero
as , we have shown that converges uniformly
to within the parameter set defined by . This com-
pletes the derivation for the no channel knowledge case.

B. Case 2: Infinite SNR

In the second case it is assumed that the SNR tends to infinity,
i.e., . Again, we start by assuming . Similarly to
the previous case, an equivalent criterion function can be written
as in (30), which also in this case converges uniformly into

To see that the convergence is uniform, consider the two terms
in (33). Utilizing (34), the first term is now upper-bounded by

whereas the upper bound of the second term is again given by
(35). Hence, we have

which obviously tends to zero as the SNR tends to infinity. The
convergence is therefore uniform. The arguments following (32)
then show that the asymptotically optimal linear transformation
may once more be chosen as . This completes
the derivation for the case of infinite SNR.

C. Case 3: Perfect Channel Knowledge

The third case concerns perfect channel knowledge. For the
present and the next case, we can let . The original con-
straints are therefore assumed. Parameter-independent terms
and factors in the limit function are removed by considering
the equivalent criterion function

(36)

We start by showing that this function converges uniformly in
to the obviously continuous limit function

(37)

The Taylor series [23, p. 301]

valid if is used for writing the first term in (36) as

By exploiting the triangle inequality and the formula for a geo-
metric series an upper bound of the infinite sum, for sufficiently
small , is obtained as

For the last inequality, we used the fact that , which is
due to the trace constraint on. Now, let represent the th
eigenvalue of

Since it then holds that

the second term in (36) is upper-bounded by
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Finally, collecting the results for the first two terms yields

The right-hand side clearly tends to zero as . Hence,
the convergence is uniform.

Changing the sign of the limit function in (37) and reparam-
eterizing using shows that the optimum of the limit
function is given by

(38)

To solve this, let and define

(39)

where denotes theth block of size on the diagonal
of . The cost function in the above optimization problem can
then be written as

(40)

where the two last equalities are due to (4) and (5), respectively.
The power constraint is written on the form .
Such an optimization problem is readily solved utilizing the
EVD of . For this purpose, let denote the largest
eigenvalue of and recall the assumption that it is strictly larger
than all the other eigenvalues, i.e., is unique. It can easily be
verified that the eigenvalues of are obtained by repeating
the eigenvalues of times. Hence, is also the largest
eigenvalue of , with multiplicity . The set of optimum
solutions of (38) is therefore given by the eigenspace associated
with . Introducing the complex-valued scalars , the
solution can be written in the form

(41)

where

...
...

...

and are the eigenvectors of and , respectively,
corresponding to . Here, is an vector with all el-
ements equal to zero. Using (41) all the solutions may also be
expressed as

implying that

Combining this with the power constraint means
that , and hence . Consequently,
regardless of the unit norm vector chosen from the
aforementioned eigenspace, it holds that , which
is thus a unique minimum point of . Accordingly, the use
of in the asymptotical analysis is justified. Letting, for
example, , , and utilizing

, an asymptotically optimum solution is given by

As previously indicated, the solution is not unique. For example,
permuting the columns gives the same value of the cost function.

D. Case 4: Zero SNR

In the fourth case, the SNR is assumed to tend to zero, i.e.,
. The derivation is to a large extent similar to the previous

case. The Taylor expansion

where is the big ordo operator, is used to write the second
term of (36) as

Combining this with (37) results in the limit function

(42)

It is now evident from

that the convergence is uniform. Thus, after changing the sign
of and parameterizing in terms of , the cost function
can be taken as

Using the relation , this expression can be
rewritten as

(43)

where now . Finally, due to the similarity between
(43) and (40), the development from the previous case shows
that an asymptotically optimum linear transformation is given
by

where is the eigenvector corresponding to the largest eigen-
value of . Here, is again defined as in (39).

APPENDIX II
AN ALGORITHM FOR A SIMPLIFIED SCENARIO

In this appendix, the solution of the optimization problem de-
fined by (20)–(23) is derived. It is easily seen that both the cost
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function and the feasibility set are convex. Thus, the solution is
given by the KKT conditions. In order to simplify the develop-
ment, the optimization problem is temporarily relaxed by omit-
ting (23). For the remaining problem, the optimum is given by
any that satisfy the KKT conditions

(44)

(45)

(46)

(47)

(48)

where and where and are Lagrange mul-
tipliers for the power constraint and the inequality constraints,
respectively. We start by solving for in (46) and substituting
into (47) and (48). Thus, the last three conditions reduce to

(49)

(50)

First, assume that . It follows that the second factor in
(50) must be zero. Rewriting this condition as

and solving for gives

(51)

where the positive root was picked due to (45). Note that (49)
is now satisfied by equality. Hence, we have a valid solution as
long as (51) gives a positive result and (44) is satisfied. On the
other hand, for the case of a nonpositive result, we let .
That this indeed satisfies the KKT conditions is seen by veri-
fying that (49) is true. Since

and implies that

(52)

it is obvious that all the KKT conditions, with the possible ex-
ception of (44), are satisfied. Finally, also (44) can be handled
by writing the optimum eigenvalues as

(53)

and then solving for in (44). It is apparent that (53) gives
eigenvalues that are sorted in ascending order. Therefore, the
constraint that was initially omitted, i.e., (23), is automatically
satisfied. Thus, (53) gives the optimum eigenvalues also for the
original problem.
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