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Abstract—Multiple transmit and receive antennas can be used available channel knowledge by means of a linear transforma-
in wireless systems to achieve high data rate communication. Re- tion. Accurate estimates are in practice not always possible, par-
cently, efficient space—time codes have been developed that ”t”'zeticularly in environments where the parameters of the channel

a large portion of the available capacity. These codes are designed . . - - : ; .
undgr tﬁe assumption that the Ft)ransymitter has no knowle(?ge are rapidly time-varying. This fact is taken into account in the

about the channel. In this work, on the other hand, we consider the Proposed tr_ansmission scheme by assuming thgt the channel
case when the transmitter has partial, but not perfect, knowledge knowledge is nonperfect. In fact, the scheme continues to work

about the channel and how to improve a predetermined code well also when the quality of the side information is low.

fsocfh“.‘t tzisf fact fis taken into aCTOUtm- /? g?rfo”r':a”cel C”tgriﬁ” Early attempts at designing transmission schemes for ex-
is derived for a frequency-nonselective fading channel and then I . .
utilized to optimize(f]a Iinegr transformation of t%e predetermined p.|0ltlng the potential offered by. an_tenna grrays at.the t.ransmlt
code. The resulting optimization problem turns out to be convex side are generally concerned with increasing the diversity order
and can thus be efficiently solved using standard methods. In Of the system. Examples of such work include techniques
addition, a particularly efficient solution method is developed for for introducing artificial frequency/phase offsets [7]-[9] and
the special case of independently fading channel coefficients. Thetime offsets [10] between the transmitted signals. The latter

proposed transmission scheme combines the benefits of conveny, .phinyie is commonly referred to as delay diversity and is
tional beamforming with those given by orthogonal space—time

block coding. Simulation results for a narrow-band system with CloSely related to the layered space-time architecture in [11].
multiple transmit antennas and one or more receive antennas A more systematic approach to find appropriate codes was
demonstrate significant gains over conventional methods in a pioneered in [2], [12]. A major contribution in [2], [12] was

scenario with nonperfect channel knowledge. the development of a design criterion involving the rank and
Index Terms—Array processing, beamforming, diversity, fading eigenva_lues of certgin matriges. The design criterion was later
channels, space-time codes, wireless communication. generalized to multiple receive antennas and to other channel

models in [3], where the now popular notion of space-time
coding was introduced. Examples of trellis codes based on the
design criterion were also provided. A simple block code for
HE use of transmit diversity in wireless communicatiomwo transmit antennas that leads to a low-complexity receiver
systems has recently received considerable attentias developed in [13]. In [4], this concept was extended to
[1]-[4]. By utilizing antenna arrays at both the transmitter agp to eight transmit antennas. Furthermore, it was shown that
well as the receiver the limitations of the radio channel makese so-called orthogonal space-time block codes satisfy the
be overcome and the data rates increased. The high data rede& constraint of the previously mentioned design criterion.
that these multi-input-multi-output (MIMO) systems mayConsequently, these codes also provide the system with its
offer were demonstrated in [5], [6]. There, calculations of theaximum diversity order.
information-theoretic capacity assuming a flat Rayleigh-fading Common to the space-time coding schemes mentioned
environment were presented. This triggered the developmentbbve is that they do not exploit channel knowledge at the
space—time codes that utilize both the spatial and temporal giznsmitter. Information about the channel realization, if it is
mension to achieve a significant portion of the aforementione@ailable, should of course be utilized in order to maximize
capacity [2]-[4]. the performance. As a simple example, consider a scenario
The present work considers how side information in the formith perfect channel state information at both sides of the
of channel estimates at the transmitter can be used in conjussmmunication link. It is well known that by appropriate
tion with certain space-time codes. A transmission schemdiisear processing at the transmitter and the receiver, the system
developed which adapts a predetermined space—time code tadfe be transformed into a set of parallel scalar channels. The
available transmit power may then be optimally allocated to
the individual channels. An example of combining such an
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Fig. 1. An overview of the system.

[15], [16], and [17]—-[19]. While a similar model for the side Il. SYSTEM MODEL

It?;?]rsr?na;tlggavr\ﬁ‘zrlﬂgfseqn Itr]h([al72é£t£:1]c?g?§rt12;r?1lgllr;gt'smugﬁglne rAs illustrated in Fig. 1, a wireless communication system em-
! S| pre . imatl Iﬁl P/ing multiple antennas at both the transmitter and the re-

rors, those papers neither considered space—time codes nor mul- = . L

. . e . celver is considered. The transmitter is assumed to have some,

tiple antennas at the receiver. Another possibility for model

partial channel knowledge is to take on a physical perspective.t not necessarily perfect, knowledge about the current channel

This is the approach used in [19] for adapting a predetermin%?aal'zat'on' In order to utilize this channel knowledge, while at

space—time code to the particular channel. The assumptiont_ fi Same t|me_ not sacrificing the benefits offered by conven-
that work is that the signals propagate along a finite numbertb(?na,I ;pace—tlme codgs, we propose the use O_f a transmitter
directions, known at the transmitter, before entering a rich locinSisting of a space—time encoder followed by a linear transfor-
scattering environment near the receiver. mgnonW. The spacg—tlmg encod_er maps the_ data to be trans-
The main contribution of the present work is the developlitteéd s(n), wheren is a discrete-time index, into codewords
ment and study of a low-complexity transmission scheme whitlpgt are splitinto a set of parallel anld generally d|fferent. symbol
combines the benefits of transmit beamforming and orthogor¥gduences. These codewords are linearly transformed in order to
space—time block coding. To accomplish this, a performanggapt the code to the available channel knowledge. As a result,
criterion is derived which takes the available side informatiohnew set of parallel symbol sequences is formed. Each symbol
into account. The performance criterion could, in principle, biequence is first pulse-shaped and then transmitted over the cor-
used for designing codes from scratch. Although the derivatié®sponding antenna. Finally, the transmitted data is recovered at
is to some extent similar in spirit to the derivation of the desigie receiver by means of maximum-likelihood (ML) decoding.
criterion in [3], that paper did not treat side information and, The information-carrying signals are transmitted over a
therefore, utilized certain approximations which prohibit the ravireless fading channel. The time dispersion introduced
sulting design criterion from exploiting any channel knowledgdéy the channel is assumed to be short compared with the
The setup considered here may also be motivated by curreyimbol period. Therefore, the individual channel between each
standardization proposals for the WCDMA system, where &rmnsmit and receive antenna is frequency-nonselectiveld_ et
orthogonal space—time block code is used in one of the proposed N denote the number of transmit and receive antennas,
transmission modes whereas one of the other proposed mod@spectively. The signal output from each receive antenna is
uses transmit beamforming [20], [21]. then a weighted superposition of thé transmitted signals,
The paper is organized as follows. In Section Il, the datrrupted by additive noise.
model and the model for the side information are introduced. By collecting the filtered and symbol sampled complex base-
A derivation of the performance criterion as well as somgand equivalent outputs from the receiving antenna array in an

general interpretations are given in Section Ill. The proposed x 1 vectorz(n), the received signal at timecan be written
transmission scheme is described in Section IV, leading to wha{

first seems like a nontrivial optimization problem. However,

a simple reformulation of the parameters to be determined z(n) = H'e(n) + e(n)

turns out to give a convex optimization problem which permits . i
a reasonably efficient implementation. Also, closed-forff€re(+)" denotes the complex conjugate transpose operator

expressions for asymptotically optimum linear transformatiof'd Where the linearly transformed symbols, transmitted from
are derived for a number of cases. These also reveal the higii§/ antennas at time instantare represented by
intuitive behavior of the transmission scheme. Furthermore,

: - R . . _ T _ Wa
a particularly efficient optimization algorithm is presented €(n) = [ci(n) c2(n) -+ em(n)]” =Weln). (1)
for a class of simplified fading scenarios. This algorithm is
then applied in Section V to an actual example of a simplifiddere,¢(n) is the corresponding output from the space-time en-
fading scenario. Finally, simulation examples are presenteddader and¥ is the previously mentioned linear transformation
Section VI showing significant gains compared to conventionaiatrix. As will be seen in the following section8/ is deter-
beamforming as well as conventional orthogonal space—timeéned so as to minimize a certain upper bound on the proba-
block coding. bility of a codeword error. The noise teretin) is assumed to be
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a zero-mean, temporally and spatially white, complex Gaussim systems where the channel estimates are obtained through a
random process with covariance matsi . Furthermore, the dedicated feedback channel.

MIMO channel is described by the x N matrix The channel estimates at the transmitter are assumed to be
correlated (to an arbitrary degree) with the true channel. This
hii  hiy - hin assumption is motivated, for example, by the well-known Jakes
model [22, p. 26], which describes the variations of the channel,
h21 h22 Tt hQN . . . .
H= due to movement of the mobile receiver, as a function of time. In

this model, the channel coefficients are samples of a stationary
Gaussian process with an autocorrelation function proportional
to Jo(27 ., 7), WwhereJo(z) is the zero-order Bessel function of
he first kind,~ denotes the time lag, anf}, is the maximum
ppler frequency. Hence, the outdated channel estimates avail-
able at the transmitter are correlated with the current channel
and the amount of such correlation is determined by the time it
takes to feed back the estimates.
h = vec(H) For the purpose of describing the side information, let the ma-
trix H, with the corresponding channel coefficieﬁt; denote

wherevec(-) denotes the vectorization operator which stacks tfige estimate off available at the transmitter. Latdenote the
columns of its argument into a vector. The fading of the chann¢gctorized counterpart. We assume thanhdh are jointly com-
is assumed to obey a complex Gaussian distribution with melgx Gaussian. With obvious notation, the statistics of the side
vectormy, and covariance matri®y,,. Note that this assump- information and its relation to the true channel are now com-
tion includes both independent Rayleigh fading and indepepletely described by the mean vectay, the covariance matrix
dent Ricean fading as special cases. In addition, more realidfig;,, and the cross-covariance matf; . In view of the Jakes
fading environments with correlated channel coefficients majodel, the joint Gaussian assumption is reasonable since the
be modeled. side information and the true channel are samples of the same
A quasi-static scenario is considered where the channel is g&ussian random process.
sumed to be constant during the transmission of a burst of codeClearly, the quality of the side information is closely related
words but may vary from one burst to another in a statisticall the degree of correlation with the true channel, as repre-
stationary fashion. For simplicity, the channel realizations are#¢nted by the cross-covariance matrix. A more general measure
this work assumed to be independent. However, it is straightf&t the quality of the side information that will be used exten-
ward to generalize the proposed methods to a correlated fadfi¢ely in this paper is the covariance of the true channel, con-

hyt hae -+ huw

whereh}; is a complex scalar denoting the channel between t
ith transmit antenna and thh receive antenna.The MIMO
channel is also represented by theV x 1 vector

scenario. ditioned on the side information. Lét,, ; denote this quan-
tity. Sincethli‘ describes the remaining uncertainty when the
A. Side Information at the Transmitter side information is known, it should be appearant that, loosely

An estimate of the channel realization is assumed to be aV%)_eakmg, high-quality side information corresponds to a small

. . (measured in a suitable norm) whereas a ldtgg ; cor-
able at the transmitter. There are several examples of how stcHl» ( ) L

. : - responds to side information of low quality. Let us now formally
an estimate may be obtained. An explicit channel can be used Q. . . L T

: . - efine the two notions of “perfect side information” (or “perfect
feed back the channel estimates from the receiver or, if a time-

vision duplex system is used, it is possible for the transmitter?c#)1anne| kn?wledge ) and*no side information” (or “no channel
owledge”) as follows.

estimate the channel directly. In order to use the latter method'in
frequency-division duplex systems, estimates of the channel in« “Perfect side information® || Ry, ;| — 0.
the receive mode must first be transformed to the desired carrier -1
frequency before they can be utilized in the transmission mode. hhlh
In general, the channel estimates are not only noisy but may alsere, || - || denotes the spectral norm [23, p. 295]. A salient
be outdated due to feedback delay or duplex time. In additiactbnsequence of this choice of measure is that the distribution of
the frequency shift transformation in frequency-division duplese true channel is considered as part of the channel knowledge
systems is another possible source of error. as well.

For simplicity, the receiver is from now on assumed to have
perfect channel knowledge. We make this assumption in order to IIl. PERFORMANCE CRITERION
simplify the exposition. However, it is straightforward to extend . . . .
the following developmentto also take channel estimation errorsln th'_s section, we derive a performance cr|te.r|on_ for
at the receiver into account. Moreover, keep in mind that tﬁgace—tlme codes which takes the quality of the side infor-

development in this section is exemplified by, but not IimiteH]"’m.On .|nto account. Rather thqn "?“ this point limiting the
application of the performance criterion to the proposed trans-

ISince the focus of this work is on the transmitting side, it is convenient tmission scheme, the development in this section is structured
define the MIMO channel usinff *, as opposed t&f, so that each column of mhsuch a manner that the derived performance criterion is
&

H represents the vector channel between the transmitter's antenna array an . . . .
corresponding receive antenna. applicable to the design of a wide class of space—time codes.

“No side information”"< ||[R. " .|| — 0.
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In the following sections, the performance criterion will behe dominating term in the union bound. ThiE¥C), — O'l|i1)
applied to the proposed transmission scheme. is a reasonable performance criterion. Note that, although based
As is shown next, a suitable performance criterion is based a high-SNR assumption, we will demonstrate that the perfor-
on the pairwise codeword error probability, conditioned on thmance criterion can be successfully utilized also in situations

side information. We start by motivating this fact. L&t = when the SNR cannot be considered high.

{C, ..., Ck} denote the set of codewords, whdkeis the We now turn our attention to deriving a closed-form expres-

number of codewords. Assume the codewords are of lehgthsion for the performance criterion. Similarly to [3], we start

Each codeword is described by &h x L matrix by conditioning on the true channel realization and utilize a
well-known upper bound on the Gaussian tail function to arrive

Cir=[ea(0) a(l) - a(l-1)] k=1,.., K at

P (ok - C

7 1 ,—d*(Cy,C) /40"
whereey,(n) is thenth transmitted vector of theth codeword. h, h) =3¢ )

Assume that a codewor@ € C is transmitted. The received,,nere
signal vectors corresponding to one codeword may then be ar-
ranged in anV x L matrix X, given by d*(Cy, C) = | H" (Cr — CY)||} 3)

X-HC+E is the Euclidean distance between the codewords. At this
o point, the following standard relations, found in, e.g., [24, pp.

. . . S 121-122], turn out to be useful:
whereF is a matrix of noise vectors. The receiver is assumed to

employ ML decoding of the codewords based on ideal channel tr(AB) = (vec(A"))*vec(B) 4
state information. For the problem at hand this amounts to de- vec(ABC) = (C" @ A)vec(B). (5)

coding the codewords according to i
Here,® denotes the Kronecker product anhd-) is the trace

o= argmin | X — H*C||2 operator. By utilizing (4) and (5) it is possible to rewrite (3) as
=34 - 2
cec & (C,., C)) = tr(H* A(Cy, C)H)
whereC denotes the codeword chosen by the receivetfatid = (vec(A(Cy, C)H))"vec(H)
is the Frobenius norm. The previously mentioned pairwise =h*(Iy ® A(Cy, C))h (6)

codeword error probability, conditioned on the side informa- .
. : . . where, similarly to [3]
tion2 can now be given a clear meaning. It is denoted by

P(C; — Cy|h) and defined, fok: # I, as A(Cy, C) = (Cr — C)(Cr — C))
. ) BT . contains the codeword pair. Since the true channel and the side
Pr [HX —H Gy > | X - H G| ‘0 =Cy, h} information are jointly complex Gaussian, the pdf of the true

channel, conditioned on the side information, is also a complex
which is the probability that, given a transmitted codew6%d Gaussian pdf, given by

the metric corresponding to the codew6rdis smaller. Obvious (g ) R (R )
variations of this notation will also be used. LRt[C # C] b (h ‘h) _¢ o ' %)
denote the codeword error probability, i.e., the probability that hih aMN det (thlﬁ)

C is different fromC. The overall design goal is to minimize
this quantity with respect to the set of codewords. Since siéheredet(-) denotes the determinant operator and whejg,

information is available, the set of possible codewdfds a and R, ;, represent the conditional mean and covariance, re-
function of the channel estimafe Conditioning on the side spectively. By averaging both sides of (2) over the distribution

information gives the following relation: in (7), an upper bound to the pairwise error probability is formed
as
Pr |:é' # C':| = / Pr |:é #+ O‘ il:| Dj, (il) dh P (Ok —C ‘fl) < / %e_dQ(CA»,Cz)/ALa?phlil (h ‘fl) dh.
(8)

wherep; (h) is the probability density function (pdf) of the sideThis upper bound is denoted bYCy., C:). Now, introduce the
information. It is now clear that minimizing:[C # C|h] for following expression:
eachh also minimizesPr[C # C, sincep; (h) > 0. In order U(Cy, C) = Iy @ A(Cy, C))/40% + R}

i . ~ ~ hh|h
to obt losed-f fer[C # C|h], k _ L
0 obtain a closed-form expression for|C 7 Clh], we make )Algter expanding the exponent of (7) and combining it with (6),

the common assumption that the signal-to-noise ratio (SNR traightf dt it that th fth s
sufficiently high for the union bound technique to be applicabl S straightiorward to verify 1at In€ sum ot Ine exponents in
e integrand of (8) can be written as

More specifically, it is assumed that the largest pairwise code-
word error probability, conditioned on the side information, ig,* . g~ (¢! — NYRL. .
P y $nh|thh|h v thlh thmm’hlh

2For notational convenience, we will sometimes refer to this as simply the
“pairwise error probability.” - (

—1p—1 * —1p-1
h— U thlﬁmhlﬁ) \If(h—\If thlﬁmhm)
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where the dependence on the codeword pair has been tease, the second term is dominating. The performance criterion
porarily omitted in order to simplify the notation. The integrals in the second case equivalent to

in (8) is now easily solved by making use of the fact that 1
UCL, C) = —F———~ (10)
ST Ry ) YT R ) det A(Cy, Cr)

hh|h
/ T MN det(\y—l) dh which is basically the same as the criterion used in [2], [3] for
designing conventional space—time codes.

is the integral of a complex Gaussian pdf and thus equals oneAS @ final remark, it should be emphasized that the pro-
Consequently, the upper bound in (8) can be expressed as Posed performance criterion can also be used for designing
conventional space—time codes in various scenarios involving

open-loop systems. To see this, bear in mind that if the side
) information is statistically independent of the true channel, the
2det (thlfz) det(¥(Cy, C)) performance criterion reduces to

# —1 —1 —1
emhuiR;.mi.(\P(C’”Cl) 7th\"i)Rhmi.mh\ii

V(Cy, C)) =

_ * p—1 —1p—1
Taking the logarithm and neglecting parameter-independe(rgp’“’ Ci) = m By, Y(Cy, C1) ™" By,
terms yields the desired form of the performance criterion as —logdet(¥(Cy, Cr)) (11)

. el lpel where nowl(Cy,, C)) = (In©A(Cy, C1))/45%+ Ry, . Thus,
UCx, Co) = my ;i B 1 B (Cr CO ™ By oy the developlgnent in )the (present( work a)lié applie;’to situations
—logdet(¥(C%, C1)). (9) where the transmitter only knows the distribution of the true
channel and nothing about the current realization. This version
We stress that this result constitutes a new performance @i-the performance criterion is therefore closely related to the
terion for channel estimate dependent space—time codes. @asign criterion in [2], [3]. In fact, after some simple manipu-
possible approach to designing the corresponding codewolaions, it can be shown that (11) includes several of the results
is to minimize the maximum, taken over all codeword pair$rom the various fading scenarios in [2], [3] as special cases.
of £(Cy, C;). For a similar solution based on the classic de-
sign criterion see, e.g., [25]. However, this procedure is deemed IV. THE TRANSMISSION SCHEME

too computationally demanding for the side information model This section deals with the construction of a tractable trans-

under consideration, since the optimum codewords depend on . o .
b P migsion scheme based on the performance criterion given by (9).

the actual channel estimate and the number of possible chan'&le : : . . . I AT
s discussed in the previous section, one obvious alternative is

estimate realizations is infinite. Hence, a complicated optlmlz%- desian a space—time code using the proposed performance
tion problem would have to be solved in real time for each new., 9 P . 9 proposed p
: . . criterion and an exhaustive search over all possible codewords.

channel estimate that arrives at the transmitter. . .
. However, a more viable approach, for the scenario under con-

On the other hand, for the case of quantized channel estli- N S
. - Slderation, is taken in this work.
mates, such an approach may be perfectly viable due to the firite

. N . As outlined in Section Il, we assume that a space—time code is
number of channel estimate realizations. The entire channel estl— P

mate dependent space—time code can therefore be precalcul red'a\dy determined and try toimprove the code by a linear trans-

ed "’ :

and stored in a lookup table, suitable for real-time use. Vanqrmatlon. Hence, frqm (1) it follows that thieth transformed
. : : codeword may be written as

ations of this approach are further explored in [26]. Howevef,

such a study is beyond the scope of the present work, since we C.=WC,

focus on unquantized channel information. Instead, certain con-

straints on the code will be introduced in the sections to followhereW is an A/ x M matrix, shared by all codewords, and

in order to arrive at a tractable scheme. Cy. € Cis the kth predetermined codeword. Here, the pre-
determined set of codewordsis defined in a similar manner
A. Interpretations of the Performance Criterion asC. In order to limit the average output power, the constraint

The two terms in (9), i.e., in the performance criterion, ¢

. . A . i ““Dlock codes as found in [4] are considered. These codes are de-
be given some interesting interpretations. The first term main

qié/WH% = 1 is imposed. Furthermore, orthogonal space—time
gned for open-loop type of systems and have the appealing

deals with the channel knowledge obtained from the actual re=
alization of the channel estimate, as containednjﬂﬂ. The ;?roperty that
second term, on the other hand, does not depend on the real- A(Cy, C1) = il p1, Vi £1 (12)

ization of the channel estimate and therefore strives for a code

design suitable for an open-loop system, which has no side Where ., is a scaling factor which depends on the codeword
formation except prior knowledge of the distribution of the trupair. SubstitutingC;, = WC,, C; = W, and (12) into (9)
channel. This interpretation is further supported by consideritgnds to the performance criterion

the two special cases of perfect side informati|@R,gh|,;|| — 0) i} L . o
and of no side informatiorﬂ(R;;mH — 0), respectively. In the LWW?, pn) = mhmthm‘I’(WW s Ht) thmmhlﬁ
first case, the first term is seen to dominate and in the second —logdet(U(WW™, up)) (13)
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where let ¥ = A\ + (1 — M)Wy, where¥; = U7, ¥, = U} are ar-
* * _ bitrary positive definite matrices antd< A < 1 represent any
= T 2 1 o . . e . - - .
YWW", ) = Iy ©WW ) /4o + By 5 line in the set of positive definite matrices. By making use of the
As seen, with a slight abuse of notation, we have retaiifed identity
and ¥(-) as function names, even though the arguments have oX ()t _,0X(9) .
changed. Obvious variations of this notation will be used in the 90 ~X(9) 90 X(6)
following. the second-order derivative of the first term with respect i®

The dependence on the codeword pair is now only throughsily obtained as
the scaling factog;. Since (13) is a decreasing function of v el el 1 1
ik, the error probability is dominated by the codeword pairszmmi.thm‘I’ (W1 — W)l (T, — W)W thmmhlﬁ'
corresponding to the minimup,,. Thus, only one such pair is This quadratic form is nonnegative since the matrix
considered in the optimization procedure. An optiral(op- R . R
timal in the sense that it minimizes the criterion function under R, ;W (W1 — W)U (¥, — W)U R, .

consideration) could now, at least in principle, be determintleg ositive semidefinite. Because the second-order derivative is
by minimizing 4{WW™, p,;,) With respect toW, while sat- P :

isfying the power constraint. Herg,,;, denotes the minimum nonnegative it follows that the first term is convex with respect

1. However, a highly challenging optimization problem, Wit)‘{o A (see e.g., [29, p. 91]) and thus, according to the theorem in

a criterion function possessing multiple minimas, would need %9’ p- 94], als.o over the set of posmye defmlt'e matr@es
be solved. The convexity of the second term is established in, e.g., [23,

In order to obtain a tractable solution, we take on an alterng- 466]. Consequently, (16) is convex over all positive definite

tive approach involving a reparameterization. An inspection of° Due 1o the affine relation betwedl and Z, the criterion

both (13) and the power constraint suggests the parameteriza ﬁ)&cé'c()):;r;% T;’e;rzlizxw;h r([azs7p]ec[:t2§)] It‘ll'igas:i{r\:eegmta'?nt'hzzon
Z = WW™. A two-step procedure is now used for finding a ! Vex ! ) : ptmizat

optimal solution to the problem outlined in the previous parg_roblem is therefore convex, which implies that all local minima

graph. Rewriting the criterion function and the constraints i re also global minima.

terms of the new parameters gives the following optimization we W'". not 90 Into grea_lt qleta_ll describing an algorithm that
solves this particular optimization problem, since there are a

problem: number of standard techniques that are applicable. For example,
Zopy =arg min U(Z) (14) interior point methods can be used for efficiently solving this
P kind of problem [30].
tr(Z)=1

whereZ > 0 means thaZ is positive semidefinité With a slight A. Asymptotic Properties of the Solution

abuse of notation, the performance critertfW W, jin) is Although the optimization problem given by (14) must, in

written here as general, be solved numerically, there are a few special cases that
. Nt permit a closed-form solution. These special cases concern the
UZ) =my iR, . ((IN ® Z)n + thm) R, imui asymptotic properties of the solution. In particular, here our at-

1 tention is turned to the behavior of the solution when the channel
— log det ((IN ®2Z)n+ thu}) (15) quality is perfect and when there is no channel information, re-
wheren = pmin/402. An optimal linear transformation is fi- s_pectively. In addi_tion, the influence of the SNR Igvelli.s inves-
nally obtained ad¥ ,; = Zil/)f where(-)!/2 is a matrix square tigated. The sol_utlons t.urn.out to agree well Wlt.h mtumpn and
root such thatZ,,, = W W,,,. Note that a square root al_allow for some mterestln_g interpretations. Detailed derivations
can be found in Appendix I.

opt.*
ways exists sinc&,,;,: is a nonnegative definite matrix. Clearly, : : )

y Pt g y In the first case, no channel knowledge is assumed, i.e.,
|Lﬁ;’i|ﬁ|| — 0. The criterion function used in (14) is then

the solution is not unique.

The described reformulation is attractive since (14) is how
convex optimization problem. To see that the criterion functigRinimized for Z.. = In;/M. As a result, the optimal linear
is convex, first note thal#(Z, i) defines an affine transfor- tr_ansformanon is a scaled unitary matrix, an obvious choice
mation ofZ and thaWf(Z, jimin ) is positive definite over the set 9iven by Wa, = I,/ \/M Thus, the codewords are trans-
of all positive semidefiniteZ. Since affine transformations pre-Mitted without modification. This makes sense considering

serve convexity [27], [28], we can now establish the convexifj}¢ assumptions under which the predetermined space-time
of the criterion function by showing that code was designed. It also makes sense in view of the fact

- —1p— - that the transmitter does not know the channel and therefore
m R U R m, ; + logdet(¥ 16 : _
. hlh™"hh|h hhlh""hlh +_0?’ e ) ) (16) has to choose a “neutral” solution. We refer to the resulting
is convex over the set of positive definite matrides ‘transmission technique as conventional orthogonal space—time
To see that the first term is convex, we utilize a theorem sayipg,ck coding (OSTBC).
that a function is convex over a s&tif it is convex whenre-  The second case concerns infinite SNR, in the sense that
stricted to any line that intersects[29, p. 94]. For this purpose, N = ftmin/40% — oco. Similarly to the case of no channel
3In general, we taked > B andA > B to mean that the matrid — Bis  Knowledge, the optimal linear transformation can be chosen to
positive definite and positive semidefinite, respectively. be a scaled unitary matrix. This indicates that the usefulness of
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channel knowledge diminishes as the SNR increases. Simwdaample, consider again the Alamouti code in (19) and observe
tion results described in Section VI further support this claimthat the contribution to the transmitted signal fre(m) is

In the third case, the channel knowledge is assumed to be stn) 0
perfect. Let2{™ denote thekth block of sizeM x M on the C=W, [ 0 S(n)*}

di | ofm, ;m* . and define®
OO O S EETNES 2 =[e(n) en+1)] = [wis(n) was(n)’]

N (m) wherew; andw, are the columns di ... It is now clear that to
6= Z L (A7) maximize the SNR for both(n) ande(n + 1), the two columns
k=1 of W . should be matched to the channel, i.e., both should be
To simplify the analysis, it is assumed that one of the eigeparallel to the strongest left singular vector of the channel. Sim-
values of® is strictly larger than all the other. This assumptioilar arguments apply te(n + 1) and also to other orthogonal
is further commented on in the following. Studying the behavi®pace-time block codes.
of the solution a$|th|i.|| — 0 gives the following asymptoti-  Also, note that the assumption th@thas a strictly largest
cally optimal linear transformation: eigenvalue is weak. The reason why is because of the often
B random nature ofnhl,; (or h, sincemhlh — h), and thus also
Wa=[vy 0 - 0] (18) of @, in practical fading scenarios. In particular, the probability
wherew,, is the eigenvector o® corresponding to the largestthat the assumption is violated is, except for some degenerate
eigenvalue. choices of the first- and second-order moments of the channel,
Due to the special structure of orthogonal space—time blokgeneral vanishingly small for the Gaussian fading model used
codes, and since only one columni#t., is nonzero, (18) may here. This s, for example, the case in the simplified fading sce-
be interpretated as beamforming in the directiom gf To see hario described in Section V.
this, consider, for example, the two transmit antenna case and ag=inally, in the fourth case, we consider an SNR value tending
sume that the codewords of the predetermined space—time cit#ero, i.e.p — 0. Itturns outthat the result is similar to the one
are given by derived in the previous case. Hence, the asymptotically optimal
linear transformation is again given by (18). Howe&is now

A 3(71) S(TL + 1) (19) defined as

—s(n+1)*  s(n)* N
. . e - Q(m) Q(R)
where s(n) is a sequence representing the data symbols to P Y )
be transmitted. The code in (19) is the well-known Alamouti k=1

space—time code [13]. By utilizing the asymptotic result in (18 ereﬂgf"’) is thelth block of sizeM x M on the diagonal of

and the expression for the space—time code it is seen that ihe . . . . .
P P Again, the existence of an eigenvalugthat is strictly

signal transmitted over the two antennas during time instan a?hgir. than all the other is assumed
andn + 1 can be written as g )

Note that in the case of one receive antenna, the beamforming
C=W,C=[cn) en+1)] =[vys(n) vys(n+1)]. strategy proposedin[17], although derived using a different per-
o o ] formance criterion, is seen to also give a beamformer propor-
Clearly, beamforming in the direction of; is performed. The (ijona) tow,,. The approach taken on in [17] was to maximize
present development can be generalized to all the orthogogiad average SNR. As also pointed out there, such a performance
space-time block codes found in [4]. criterion makes sense for small SNR values. Hence, the result
Note that because of the perfect channel knowledggy the fourth case in this section provides a generalization of the
my,;, — h in the mean square sense, i, ; is essentially corresponding result in [17] to multiple receive antennas when
the same as. Consequentlym,,;m; . — hh™ which, in 3 predetermined space—time code is used.
turn, means tha® — HH", both in mean square. Hence, for
all practical purposessy, can be considered equal to the lefB- An Algorithm for a Simplified Scenario
singular vector ol corresponding to the largest singular value In this subsection, we consider a simplified fading scenario
[23, p. 414]. Thus, the transmission is now conducted in mu@horder to obtain a semi-closed-form solution of the optimiza-
the same way as in a scheme which utilizes the singular vakign problem given in (14). In spite of the existence of a fairly
decomposition of the channel matrix to convert the MIMQ@sfficient numerical optimization technique for the general case,
system into a set of parallel subchannels. Such a method wi&s complexity of the algorithm described in this section is sub-
examined, for example, in [14] where a water-filling procedurstantially lower.
was used for allocating transmit power (and thus distribution Let us first make the simplifying assumption that the
of data rates) among all the subchannels. However, our trapsnditional covariance matrix is diagonal, also expressed as
mission scheme differs, among other things, in that only tljeh W= al . Here,a represents the conditional variance
strongest subchannel is used. This is due to the structureopiheé channel coefficients. A scenario where this assumption

the underlying orthogonal space—time block code. Becausej®feasonable is considered in Section V. By introducing
the orthogonality, the decoding of the constituent data symbols N

decouples, allowing the transmission scheme to be studied T lz Qlm
by considering the symbols separately from each other. For o=
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and neglecting parameter independent terms, it is now possitdeum solution is known. Let— 1 denote this quantity. Inserting
to rewrite the performance criterion (15) in the following way:(24) into the power constraint (21) then gives the equation

M 2,2 AT2 A
1 M-Il+1 anN + / a?n?N? + danAg b
E(Z) = hlh((I]\’ X ZCW’]) + I]\l]\’) lmhlﬁ 1 + — Z \/ =

an P 2amp
10g det((IN X ZO{U) + IJWN) (25)
1
= ((IN @ (Zan+1Iy))~ mh|hmh|h) from which 1 can be determined. Lef(u, [) represent the
—logdet(In ® (Zom+ In)) left-hand side of the equation. Sing&y, I) is strictly in-

s creasing as a function @f, the solution is unique and may be
=tr ((Z"‘”JFIM) T) — Nlogdet(Zan + Inr) found numerically. For example, applying Newton’s method

gives rapid convergence. In this case, a suitable starting value is
where the second equality is due to the well-known relation an(M — 1 +1)? < N(M—1+1+ Om))
1

ir(AB) = tr(BA). In order to minimize this criterion we let ¢ = (M —1+1+an)? M_l+1

Z= VA‘évgndé ‘gfrxv represelnt EPE e(;genvallljeldecomobtamed by using equal power on all eigenvectors whose eigen-
position (EVD) 0iZ andY, respectively. The diagonal element alues are assumed to be nonzero. In order to arrive at the cor-

of A andA representlng the. eigenvalues, are here'denoted t value ofl, an iterative approach is used where, starting at
{\ M and{\;}4,, respectively. In each set, the eigenvalues_ 1, successive values ofare tried. An algorithm similar to
are assumed to be sorted in ascending order. It is also assum%d bone utilized when computing the well-known water-filling
thatV andV are unitary. Substituting for this new parameteri- ower profile can be used for this purpose [32, p. 253]. The
zatl_on_ mtpf(Z) and mto_the constraln_ts r_esults inan eqUIVaIeIgtptlmum linear transformation is finally obtained by an appro-
optimization problem given by the criterion function priate matrix square root &. Thus, the whole procedure can
be summarized as follows.

AL, V) = o ((Aan + L)V VAV'Y)

Nlogdes(han + L) (20) ) U =1
~Nlogdet(Aan + 1) - (20) 2) Solvef(y, I) = 0 with respect tqu.
subject to the constraints 3) Compute
o \ anN + \/@2772N2+4cw75\iu 1 - v
i = - =l ..., M.
Ak =1 (21) 20mp an
)\‘=1> 0 . Y 27 4) If \; < 0thenset\; =0,! =1+ 1 and repeat from 2).
v Yy t=1, ..., ( ) 5) Computevlfopt _ VAI/Q.
At << Ay (23)

Note that we have tacitly assumed that the predetermined

Itis seen thaV is independent of the constraints and that it onl§Pace—time code is designed fdr transmit antennas, sind¥
affects the first term in (20). Keepingy constant and following IS @ square matrix. However, the algorithm for the simplified
the development in [29, p. 131], the optimdkican then be scenario can easily be adapted to also handle the important
chosen a¥’ = V. For this to hold, (23) is needed. case of anM x M’ linear transformation, wher&/’ denotes

The remaining optimization problem is clearly convex. Théhe number of rows in the predetermined codeword matrix
solution may therefore be obtained by means of the KarusAd whereM’ < M. Toward this end, the starting value bf
Kuhn—Tucker (KKT) conditions [29, p. 164]. Temporarily reShould be modified ta/ — M’ + 1 and only the columns of
laxing the problem by omitting the last constraint, and thef op: that correspond td\;}}2,, 4, should be retained
finding a set of eigenvalues which satisfy the KKT conditionffom execution step 5). In this way, a simple predetermined
for the relaxed problem, is the approach used for deriving teede, designed for a small number of transmit antennas, can be
solution. A detailed derivation is provided in Appendix II. Théised in conjunction with a much larger antenna array. Such a

optimal eigenvalues for the relaxed problem turn out to be givéi@nsmission scheme is also interesting in view of the fact that
by orthogonal space—time codes exist for only a limited number
of transmit antennas [4].

anN+ \/@2772N2+4cw75\iu 1
Ai=max < 0, 5 -— (24) V. A SIMPLIFIED SCENARIO
anp an

Let us now detour from the general complex Gaussian fading
wherey is the Lagrange multiplier corresponding to the powaassumption and instead consider a simplified fading scenario.
constraint. Note that this is also the optimum for the origindlhe transmission scheme from Section IV-B will in this section
problem since the above solution automatically satisfies (23)be tailored specifically to this scenario.

The value ofy; is obtained by inserting (24) into the power In the simplified scenario, it is assumed that the antennas
constraint (21) and solving the resulting equation. One possilaleboth the transmitter and the receiver are spaced sufficiently
procedure for accomplishing this is now described. To start witlar apart so that the fading is independent. A rich scattering
assume that the number of eigenvalues equal to zero in the epvironment with non-line-of-sight conditions is also assumed.
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It is then reasonable to model the true channel coefficiefts eigenvalue off, i.e., only Xy, is nonzero. In view of (27), it is
as independent and identically distributed (i.i.d.) zero-meatear thatuy, is also the strongest left singular vectorif
complex Gaussian. Let; denote the variance of each indi- The second case considers no channel knowledges i-e.0.
vidual channel coefficient. The coefficients of the channéirom (27) it is obvious thal then tends to zero, which means
estimatesh;; are modeled in the same way. Similarly tahat the corresponding eigenvalugk;}2Z, also tend to zero.
[17], each estimated channel coefficién; is assumed to be Hence, from (24), it follows thaf; 122, will all be equal. As
correlated with the corresponding true channel coefficient a resultW,, = V/v/M. Such a linear transformation implies
and uncorrelated with all others. In order to describe the degteat Z,, = I,;/M, which constitutes a transmission scheme
of correlation, introduce the normalized correlation coefficierquivalent to conventional OSTBC.
p = Elhih3;)/on. Thus, assuming:;; and h;; are jointly For the special case when the number of antennas at either the
complex Gaussian, the distribution of the true channel and ttransmitter or the receiver is two or lower, i.ein{M, N} <
side information is completely characterized by the covarianggthe transmission scheme can be further simplified. Only two
matricesRyy, = oz, Ryj, = oiplyn, Ryj, = oilyn, of the eigenvalues, are then nonzero, sin¢g is the sum of
and the mean vectoms;, = m; = 0. Straightforward cal- N rank-one matrices of siz&/ x M. This allows the transmis-
culations show that this model leads to a conditional chanrgtn scheme to be simplified by reorganizing the terms in (25)
distribution described by and then squaring repeatedly so that a polynomial equation is
- obtained. For example, consider a system with one receive an-
i, = ph Ryyj = on(L = o). (26) tenna and assume tﬂe simplified sceyrlwario. It follows that
Although the previous measure of channel quality, as repre- o pf? e
sented byR,, ;, can be retained in this scenario, we opt for YT="—hh.

as the quantity describing the channel quality. Such a quantity @

was also used in [17]. Perfect channel knowledge now corfanalytical expressions for the eigenvalues, as well as for the

sponds tg — 1. As seen from (26), this in turn implies that€igenvector corresponding to the largest eigenvalue, are easily

IR, ]l — 0. Hence, we also have perfect channel quality daund to be given by
defined by our original channel quality measure. On the other . . . o s

. Moo= o= -0 A _p_||h||2
hand, no channel knowledge correspondg te~ 0. For this L= = AM-1 =5 M=
case“R;;lilH does not tend to zero. The two measures thus diz?ﬁd
agree. However, what seems like an inconsistency is really not,
since the asymptotically optimum linear transformation can, for I 28)
this case, be shown to B¥ .. = I,//M, regardless of which AT
of the two quality measures is used. The similarity in the asymp- . ) . .
totic results is explained by the inherent symmetry in the distfiespectively. Tedious but straightforward calculations now show
bution implied by (26) ap — 0. Due to the symmetry, the dis- that theprocedure for determining the optimum eigenvalues re-
tribution can be considered noninformative from the perspectidgces to the following.
_of a transmitter, re_sulting inan _open-loop_typerf system. This 1) | et = o(M + an) and compute the equation at the
is clearly not true m_general, since everhifandh are uncor- bottom of the following page.
related, the distribution of the true channel represents a form of 1 1

2) Computex = T an

channel knowledge on its own. an’

=

3) If A > 0thenset\;y = --- = Ap—; = A and compute
A. Applying the Transmission Scheme Ay =1—(M—1)A
This subsection deals with how the transmission scheme tha#) If A < 0thenset\; =--- =y _1 =0, Ay =1

was described in Section V-B can be customized for the Sigyq,qh we have assumed the simplified fading scenario, the
plified scenario. In addition, the behavior of the optimal “nea&evelopment generalizes easily to all scenarios Wi'i—;;gﬁzﬂ is

transformation is studied. diagonal. One important example of such a scenario is line-of-

In order to use the transmission scheme for the simplifieglyni ¢ongitions in which the mean value of the true channel is
scenario,« and T need to be computed. Based on (26), it ifonzero, e.g., an environment with Ricean fading.

seen that By analyzing the above procedure it is possible to make some
N e interesting observations regarding the distribution of power

Y==> @ =""HH (27) among the eigenmodes. The expressionXan the second

@ = @ step of the procedure is clearly decreasing as a functigjh of
wherea = 02(1 — |p[2). Itis now straightforward to apply the Hence, whe_|1||h|| _is above some threshold, the expression after
algorithm described in Section IV-B. the comparison in step four will be executed and all the power

Let us investigate how the transmission scheme distributes théllocated to the direction of the channel estimaté©n the
available power. Assuming perfect side information, pe= 1, other hand, falling below the threshold means that a part of

the asymptotic result for the perfect channel knowledge ca$€ total power is allocated th and the remaining power is

Fhscussed In SeCt'o_n IV-A, is applicable. He.nce' all the POWEI4g quivalent in the sense that the corresponding values of the criterion function
is allocated to the eigenvectny,, corresponding to the largestare the same.
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divided equally between th#/ — 1 directions orthogonal to channel coefficients was arbitrarily setegt = 1. The channel
the channel estimate. Recall thetis inversely proportional to was constant during the transmission of a codeword and inde-
7. A slightly more involved analysis then shows that the powg@endently fading from one codeword to another. Furthermore,
distribution behaves similarly with respect to the noise variantiee predetermined orthogonal space—time block codes were
o2 as well. The opposite behavior is observed for the fadingken from the rate one codes found in [4]. The particular
variances;. Thus, whens? is below a certain threshold all code used in each case is therefore directly determined by the
power is allocated td, whereas exceeding the same thresholtimber of transmit antennas. All elements of the codewords
leads to a portion of the total power being allocateditand were taken from a binary phase-shift keying (BPSK) constel-
the remaining power equally divided among the orthogonkition. The input to the space-time encoder was assumed to
directions. Simulation results presented in Section VI illustraterm an i.i.d. sequence of equally probable symbol alternatives.
how the allocation of power affects the performance. Throughout the simulations, the bit error rate (BER) was used
In the case of only two transmit antennas, a closed-form exs the performance measure. Finally, the SNR was defined as
pres§ion foW ., may be formulated. For this purpose, fat E [HH*CH%]
andho denote the two elements hf The eigenvectowo; is ob- SNR= ~TMNa?

tained from (28), whereas the other remaining eigenvector is Oder a conventional OSTBC system, the expression for the SNR

tained by forming a vector orthogonaliio It follows that the . . ) L

optimal linear transformation can be written as is equal to the total received average signal power divided by
the total noise power. Since the codes under consideration span

1 l_;}; ;}1] { /AL 0 } as many time instants as the number of transmit antedniss,

T P here equal ta\1.
/|h1|2+ a2 hi ho 0 Vi
A. Varying the SNR

Thus, our transmission scheme basically consists of a thresholtiin the first case, a system with two transmit antennas and one

test and some simple computations which are easily imple-_ . . .
mented using a lookup table. The complexity of the algorithrrﬁcelve antenna was considered. The channel quality was set to
| = 0.9. The BER as a function of the SNR for the various trans-

must therefore be considered very low. Note that this agrepes ; . . -
) i . . ) . mission methods is depicted in Fig. 2. As seen, the performance
well with the information-theoretic results outlined in [33], o .
- of the proposed transmission scheme is for all SNR values better
where a similar threshold effect was observed. : .
Based on the assumptions in the present section and u tIJP]an conventional OSTBC but, as expected, worse than ideal
P b e%mformmg. As the SNR decreases, the curve for the proposed

thg correspond!ng transmlssmr_] scheg,,, may now be.ef- scheme approaches the one for ideal beamforming whereas for
ficiently determined. However, in order for the optimization tQ

be carried out, the variance$ ando? and the correlation coef- Increasing SNR it approaches the performance of conventional

ficient p must be known. In practice, these may be estimatedo§TBC' Thus, the proposed scheme combines the advantages

) : of both beamforming and OSTBC. This is also in good agree-
the receiver and fed back to the transmitter. Another approacrHs(?m with both the asymptotic results of Section IV-A as well

to treat them as design parameters chosen such that they rou%h

. . Lo s the observations in Section V-A regarding the allocation of
match the conditions the system is operating in. Nevertheless; in .
. ! ower among the eigenmodes. Note that the two curves for con-
the simulations to follow, we assume these parameters are per- . . .
. véntional OSTBC and ideal beamforming also show the perfor-
fectly known at the transmitter. o .
mance of our transmission scheme in the casg ef 0 and
p — 1, respectively. Conventional beamforming is seen to give
good performance at low SNR values, but as the SNR increases,
In order to examine the performance of the proposéhe lack of correct channel knowledge leads to a serious perfor-
transmission scheme, and to investigate how it compares witlance degradation.
conventional methods, simulations were conducted for severaln the second case, the number of transmit antennas was in-
different cases. The performance was compared with three otbe¥ased to eight. This was done in order to illustrate how the
methods—conventional OSTBC, conventional beamformingumber of transmit antennas influences the performance. The
and, what is here referred to as, ideal beamforming. Idegiannel quality was now set jo = 0.7. The BER versus the
beamforming is similar to conventional beamforming exce@NR for the four methods are presented in Fig. 3. As seen,
that the beamformer is based on perfect channel knowledgethe potential gains due to channel knowledge are now consid-
For all examined cases, the simplified scenario with perfeetably higher. These gains remain to a large extent even when

knowledge ofo?, o2, andp was assumed. The variance of the¢he number of receive antennas is increased, as illustrated in

Wopt =

VI. SIMULATION RESULTS

~112 ~112 ~ 14
o stz 0 Atz = e A e

2(M + an)?

I’L:
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O Conventional OSTBC / Proposed scheme:p— 0
x  Proposed scheme: p=0.9
¢ Conventional beamforming: p=0.9 "
v ldeal beamforming / Proposed scheme: p— 1
10-4 ) 1 L 1
-10 -5 0 5 10 15

SNR [dB]

Fig. 2. Two transmit antennas, one receive antenna, and BPSK modulation.

O Conventional OSTBC / Proposed scheme: p— 0
x  Proposed scheme: p=0.7
¢ Conventional beamforming: p=0.7
v Ideal beamforming / Proposed scheme: p— 1
-6
10 1 1 1 1 1 1 1 I} 1
-10 -8 -6 -4 -2 4 6 8 10

0 2
SNR [dB]

Fig. 3. Eight transmit antennas, one receive antenna, and BPSK modulation.

a comparison between the proposed method and conventiate&inonstrating significant gains were also obtained for scenarios
OSTBC in Fig. 4. Although not presented, simulation resultsith fewer transmit antennas.
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| - o Conventional OSTBC: N=
Proposed scheme: N=1,
Conventional OSTBC: N
Proposed scheme: N=2,
Conventional OSTBC: N=4
Proposed scheme: N=4, p=
Conventional OSTBC: N=8

Proposed scheme: N=8, p=0.7

1 0-6 1 1 1 1 1 1 | 1

-10 -8 -6 -4 -2 0 2
SNR [dB]

1

p=
=2
p=

0.7
0.7
0.7

badotst

Fig. 4. Eight transmit antennas and BPSK modulation.

B. Varying the Channel Quality ditions, it is possible to interchange the order of the limit and

The third and last case concerns how the channel quality finimization operator, i.e.,

fects the performance. Again, a system with two transmit an- ) )
T, = lim argmin V,(x)

tennas and one receive antenna is considered. The SNR was set S poa CmeEX

at 10 dB and the BER versus the channel quality was plotted. = argmin lim V,(z)
The result is shown in Fig. 5, which thus provides an illustra- X pa

tion of how the proposed scheme adapts to the variations in the = arglmréi‘fx} Vi(z)

channel quality. Hence, when the channel quality is low it is sim-
ilar to conventional OSTBC and when itis high it is essentiallfherex denotes the feasibility set and(x) A lim, ., V,(z).

the same as ideal beamforming. From [34, p. 221] it follows that this holds ¥,(z) converges
uniformly inz overa’ to the limit functionV'(z), &’ is a compact
VII. CONCLUSION set (i.e., closed and bounded), an@e) is continuous and has

In this work, side information was utilized for improving a2 Unique global minimum. _
predetermined orthogonal space—time block code by means of © @PPly this theorem to the problem at hand, introduce a
a linear transformation. A transmission scheme that effectivejjterion function#’(Z) that is equal to the original criterion
combines conventional transmit beamforming with orthogonfinction£(Z), except for parameter-independent terms and fac-
space-time block coding was proposed. The resulting optimigfs- Letfi(Z) = lim £(Z), where the limit is taken as either
tion problem was shown to be convex and could therefore b8nnjill = 0,1 — o0, [|R,, ;|| — 0, orn — 0, depending on
solved efficiently. Closed-form solutions were derived unddfe asymptotic case under consideration. Moreover, define the
certain asymptotic assumptions. Furthermore, the assumpt§g of allowable parameters as
of a simplified fading scenario resulted in a particularly efficient .
optimization algorithm. Numerical results demonstrated signif- Z(e) ={2|Z2 = Z" = elm, w(Z) = 1}. (29)
icant gains over both an open-loop system and a system u

Sj _ . . -
conventional beamforming. &]garly, the requirement th&f(e) is compact is satisfied. Nor-

mally, € is taken to be zero. The set in (29) then corresponds to
the feasibility set of the original optimization problem, as de-
scribed in (14). However, in order to satisfy the requirement
of a continuous limit functior?;(Z), we will for some of the
The strategy for deriving the asymptotic results presenteddases first restricE(e) by assuming that is small and positive
Section IV-A is to make use of the fact that, under certain coand then argue why we can let= 0 without affecting the re-

APPENDIX |
ASYMPTOTIC RESULTS
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' O Conventional OSTBC / Proposed scheme: p— 0 |]
X  Proposed scheme
¢ Conventional beamforming
v ldeal beamforming / Proposed scheme: p — 1
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Fig. 5. Two transmit antennas, one receive antenna, SN® dB, and BPSK modulation.

sult. Proving that(Z) converges uniformly té;(Z) overZ(e) where(-)1/2 is now a matrix square root with Hermitian sym-
amounts to showing that metry. As shown below, this function converges uniformh#n
to the limit function

] 4 — _< = —
o s, [¢(2) - ti(2)] = o0. h(Z)= Jim #(Z)=-logdei(Iy ©Zn) + MNlogn
R '||—0
In order to simplify the notation, the criterion function is, for =—Nlogdet(Z). (31)

the remaining part of this section, written as The limit function is obviously continuous. By utilizing La-

U gt grangian multipliers and an EVD &, it is straightforward to
{Z)=m'R" (Ix©Zn)+ R )" R m show that; (Z), subjecttaZ € Z(e), has a unique global min-
—logdet((In ® Zn) + R’l) imum Z,; = I,;/M. This fact, and the uniform convergence
in Z over Z(e), implies that, for a fixed positive < 1/M
where we note that = jimin/40? is @ quantity proportional to . L
the SNR. Furthermore, recall thi || = oax, Whereo,,. is 2 = ”Ryfﬁl_)o arg Zglér(la)g (Z) =Im/M.  (32)
the maximum singular value & . Keep also in mind that if the

argument is a vector, the result is the usual vector norm. However, the solution is valid evendf= 0. The reason is that

¢'(Z) is a convex function and the solution to the above problem

does not render the first constraint tight. Hence, relaxing the

first constraint tos = 0 does not change the optimum. Since
The first case that is considered is no channel knowledge, (B'W™ = Z andZ.. = I;/M, the optimum linear transfor-

IR™| — 0. To remove parameter-independent terms in tfBation in the case of no channel knowledge may, therefore, be

limit function, the equivalent criterion functioh(Z) = ¢(Z)+ chosen ad¥ ., = Iy, /v M. .

M N log(n) is considered. For now, assume that 0. SinceZ 10 See the uniform convergencezioverZ(e) as| R || —

is then nonsingula¥’(Z) can be written as 0, consider the difference

V(2Z)-0(Z)=m*R" Y (INn©®Zn)+ R 'R 'm
—logdet(Inn + (In © Zn) V2R (In ® Zn)~Y/?). (33)

A. Case 1: No Channel Knowledge

0(Z)y=m*R™ Iy ® Zn)+ R *R™'m

- logdet(IMN + (IN ® Z77)_1/2
R Iy ® Zn)~M?) From [23, p. 471] it readily follows that

—logdet(In @ Zn) + M N log(n) (30) (A+B)"' < B!, A=0, B>0 (34)
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and the first term in (33) is therefore upper-bounded as which obviously tends to zero as the SNR tends to infinity. The

N 11 21 1 convergence is therefore uniform. The arguments following (32)

[m R ((Iy @ Zn) + B7)" B "m| < |[m|]"|[B"] then show that the asymptotically optimal linear transformation
Since the determinant equals the product of the eigenvalues, i@y once more be chosen®@s,; = I, /v M. This completes

second term can be written as the derivation for the case of infinite SNR.
MN
Z log(1 + i) C. Case 3: Perfect Channel Knowledge
k=1 The third case concerns perfect channel knowledge. For the
where),, is thekth eigenvalue of present and the next case, we carelet 0. The original con-
1rpet _1/2 straints are therefore assumed. Parameter-independent terms
Uy @2Zn)~ /"R (Iy®@2Zn)""/". and factors in the limit function are removed by considering

This matrix is Hermitian and positive definite which means thdf€ €quivalent criterion function
its eigenvalues and its singular values are the same. Thus, the V(Z) = (¢(Z) — log det(R) — m*R—lm)/n

eigenvalues can be upper-bounded as _
g PP =m* Iy + Iy ®Zn)R)™ R 'm/n

N = 03 < Omax = |(Iny @ Zn) 2RI @ Zn) ™ —logdet(Inn + RY*(Iy @ Zn)RY?)/n
iy @ 27 2R _ R —m R m/1, (36)
- n -

. We start by showing that this function converges uniformly in
whereo, represents théth singular value and...x denotes z to the obviously continuous limit function

the largest singular value. The second equality is due to the fact

that the spectral norm is equal to the maximum singular value 63(2) = ”}gﬁgo V(Z)=-m"(Ix®Z)m.  (37)
of its argument. An upper bound to the second term in (33) may
be formed as The Taylor series [23, p. 301]
[l > xh
> log(1+ M) < MNlog <1 + —) . (35) I-X)"'=> X
k=1 en k=0
By utilizing the triangle inequality it is now clear that valid if || X|| < 1 is used for writing the first term in (36) as

sup |¢'(Z) - 01(Z)| oo

Zez(e) m* <R—1 ~(Ive@Zn+> (-Ive Zn)R)’“R_1>m/77.
< |lm|?|R|| + M N log <1 + m) . -

- en By exploiting the triangle inequality and the formula for a geo-

metric series an upper bound of the infinite sum, for sufficiently

Since this expression, for a constant 0, clearly tends to zero smalls||R]|, is obtained as

asHR_]L || — 0, we have shown that(Z) converges uniformly
to ¢1(Z) within the parameter set defined I8(¢). This com-
pletes the derivation for the no channel knowledge case.

Z (~(Ix @ Zn)R)*R™!

<> My @ Zn||*|R|F
k=2

B. Case 2: Infinite SNR B My © Z77||2||R||
Inthe second case itis assumed that the SNR tends to infinity, ~ 1—|[In ® Zn|| ||R]|
i.e.,n7 — oo. Again, we start by assuming> 0. Similarly to 5 5
the previous case, an equivalent criterion function can be written = m
as in (30), which also in this case converges uniformlgito 1—al|Z]| | R]|
55(Z) = lim £(Z) = —Nlogdet(Z) = 1,(Z). < IRl
n—oe ~1—n|R

To see that the convergence is uniform, consider the two ter®S the last inequality, we used the fact th&| < 1, which is
in (33). Utilizing (34), the first term is now upper-bounded by e {4 the trace constraint ¢ Now, let )y, represent théth

B B mlI2I|R~12 eigenvalue of
Imll2 R0 L @ 2y~ < IR
K RY*(Iy ® Zn)RY?.
whereas the upper bound of the second term is again given by
(35). Hence, we have Since it then holds that
sup |'(Z) — £2(Z)] M < |RVZP|Ix @ Znl| = n| R\ Z]] < nl|R|

ZeZ(e)

21112 —1 the second term in (36) is upper-bounded by
IR <1 L ||>
€7

M N log(1 +n||RI|)/n-
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Finally, collecting the results for the first two terms yields ~ Combining this with the power constraiffi#’||Z2 = 1 means

B R )2 thatzfy:l l|? = 1, _and henc& ., = vy v},. Consequently,

sup |[0(2)—13(2Z)| < +MN log(1+n||R||)/n. regardless of the unit norm vectoec(W ,.) chosen from the
Ze2(0) 1-nl|B] aforementioned eigenspace, it holds t#at = vj;v%,, which

The right-hand side clearly tends to zero|[d&| — 0. Hence, is thus a unique minimum point @&(Z). Accordingly, the use

the convergence is uniform. of £3(Z) in the asymptotical analysis is justified. Letting, for
Changing the sign of the limit function in (37) and reparaneXample,u; = 1, up = --- = py = 0, and utilizing Z,, =

eterizing usingZ = WW* shows that the optimum of the limit W W, an asymptotically optimum solution is given by
function/3(Z) is given b

3(Z)isg y Wa=[vy 0 - O]

W, =arg max m*(Iy @ WW" )m. (38) ) o o _

s previously indicated, the solution is not unique. For example,
s A ly indicated, the sol F |

) ) permuting the columns gives the same value of the cost function.
To solve this, le€2 = mm* and define

D. Case 4: Zero SNR

N
6= Z . (39) In the fourth case, the SNR is assumed to tend to zero, i.e.,
k=1 n — 0. The derivation is to a large extent similar to the previous
where;, denotes théth block of sizeM x M on the diagonal case. The Taylor expansion
of §. The cost function in the above optimization problem can

then be written as log det(I + X) = tr(X) + O(|| X||*)
m' Iy @ WW m =tx((Iy @ WW)Q) whereO(-) is the big ordo operator, is used to write the second
= tr(W* OW) term of (36) as
= (vec(®"W))* vec(W) tr(RY*(Ix ® Z)RY?) + O(n).

= (vec(W))"(Tas @ O)vec(W)  (40) Combining this with (37) results in the limit function
where the two last equalities are due to (4) and (5), respectively.
The power constraint is written on the forwec(W)|| = 1.  f4(Z) = }]{%EI(Z)
Such an optimization problem is readily solved utilizing the . 1/2 1/2
EVD of I,; ® ©. For this purpose, lek,; denote the largest =-m"(Iy ©Zym - (R Iy Z)RY ). (42)
eigenvalue 0® and recall the assumption that it is strictly largef; is now evident from
than all the other eigenvalues, i.&;4 is unique. It can easily be )
verified that the eigenvalues &f, @O are obtained by repeating sup [¢(2) - 1u(2)| < |l B[][|ml| 10|
the eigenvalues o® M times. Hence),, is also the largest Zcz(0) — 1-n|R]

eiger_lvalue OfM@@’ with mult'iplicity M. The setof optimum_ E t the convergence is uniform. Thus, after changing the sign
solutions of (38) is therefore given by the eigenspace associa I%%(Z) and parameterizing in terms &, the cost function

X . 0
with Aa. Introducing the complex-valued scaldys, 2L |, the
solution can be written in the form can be taken as

% * 1/2 * 1/2
vec(Was) = pntts + iotts + - -+ uns (41) m*(In @ WW*m + tx(RY*(Iy @ WW*)RY?).
where Using the relationt(AB) = tr(BA), this expression can be
Fwa ] r 0 r 0 rewritten as
0 Uy : tr(Iy @ WW ) (mm* + R)) = tr((Iy @ WWQ) (43)
w=1 0] w=|0| . uy=]o0 where nowi2 = mm*-+R. Finally, due to the similarity between
: : 0 (43) and (40), the development from the previous case shows
that an asymptotically optimum linear transformation is given
L 0 1 L 0 1 L Vas by
andw,,; are the eigenvectors dfy; ® © and@©, respectively,
corresponding to\,;. Here,0 is an M x 1 vector with all el- Woa=[vme 0 --- 0]
ements equal to zero. Using (41) all the solutions may also be ) ) : i
expressed as wherew),; is the eigenvector corresponding to the largest eigen-
value of®. Here,® is again defined as in (39).
W = [Nl’UM 125107 S NMWW]
implying that APPENDIX I
AN ALGORITHM FOR A SIMPLIFIED SCENARIO
M
Zoy = Wa Wi =vyvly, Z | |- In this appendix, the solution of the optimization problem de-

= fined by (20)—(23) is derived. It is easily seen that both the cost
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function and the feasibility set are convex. Thus, the solution is
given by the KKT conditions. In order to simplify the develop-

ment, the optimization problem is temporarily relaxed by omit-
ting (23). For the remaining problem, the optimum is given by

any { A} that satisfy the KKT conditions

M
> =1 (44)

k=1
A >0 (45)

omj\i anN
- - -y =0 46
(1+anX)?  1+ank T (46)
V; = (47)
v = (48)
wherei = 1, ..., M and wherei, andy; are Lagrange mul-

(1

(2]

(3]

[4]

(3]
(6]

tipliers for the power constraint and the inequality constraints, [”]

respectively. We start by solving fef in (46) and substituting
into (47) and (48). Thus, the last three conditions reduce to

anj\i anN
< 49
oz T Trany, =" 49
ani; anN _o. (50)

Xi | g — -
PO ) T T anh

(50) must be zero. Rewriting this condition as
(1 + anXi)? = anN(1 + anhi) — and; =0

and solving for)\; gives

anN +1/a2n2N2? + dank; 1
N \/ n nAip 1 (51)
2amp an

(8]

[9]

[10]
[11]
First, assume that; > 0. It follows that the second factor in

[12]

(13]

[14]

(15
where the positive root was picked due to (45). Note that (49)

is now satisfied by equality. Hence, we have a valid solution a
long as (51) gives a positive result and (44) is satisfied. On th

other hand, for the case of a nonpositive result, we\Jet 0.

That this indeed satisfies the KKT conditions is seen by veri

fying that (49) is true. Since

aniN + \/@2772N2 + daniip 1 <0
2amp an ~

and\; = 0 implies that

w > and; +anN (52)

by writing the optimum eigenvalues as

anN + \/a2n2N2 +danhip 1

2anp an

(53)

A; = max 0,

16]
[17]

(18]
(19]

(20]
it is obvious that all the KKT conditions, with the possible ex-
ception of (44), are satisfied. Finally, also (44) can be handle?m]
(22]
(23]

[24]
and then solving fop: in (44). It is apparent that (53) gives [25]

eigenvalues that are sorted in ascending order. Therefore, the

constraint that was initially omitted, i.e., (23), is automatically 06
satisfied. Thus, (53) gives the optimum eigenvalues also for th[e )

original problem.
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