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Joint Source and Channel Coding for MIMO Systems:
Is it Better to be Robust or Quick?
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Abstract—A framework is developed for optimizing the tradeoff
between diversity, multiplexing, and delay in multiple-input mul-
tiple-output (MIMO) systems to minimize end-to-end distortion.
The goal is to find the optimal balance between the increased
data rate provided by antenna multiplexing, the reduction in
transmission errors provided by antenna diversity and auto-
matic repeat request (ARQ), and the delay introduced by ARQ.
First, closed-form analytical results are developed to minimize
end-to-end distortion of a vector quantizer concatenated with a
space–time MIMO channel code in the high SNR regime. The
minimization determines the optimal point on the diversity–mul-
tiplexing tradeoff curve. For large but finite SNR this optimal
point is found via convex optimization, which is illustrated with
an example of a practical joint source–channel code design. It is
then shown that for MIMO systems with ARQ retransmission,
sources without a delay constraint have distortion minimized by
maximizing the ARQ window size. This results in a new multi-
plexing–diversity tradeoff region enhanced by ARQ. However,
under a source delay constraint the problem formulation changes
to account for delay distortion associated with random message
arrival and random ARQ completion times. In this case, the
simplifications associated with a high SNR assumption break
down, and a dynamic programming formulation is required to
capture the channel diversity–multiplexing tradeoff as well as
the random arrival and retransmission dynamics. Results based
on this formulation show that a delay-sensitive system obtains
significant performance gains by adapting its operating point on
the diversity–multiplexing–delay region to system dynamics.

Index Terms—Automatic repeat request (ARQ), diversity–mul-
tiplexing–delay tradeoff, joint source–channel coding, multiple-
input multiple-output (MIMO) channels.

I. INTRODUCTION

MULTIPLE antennas can significantly improve the perfor-
mance of wireless systems. In particular, with channel

knowledge at the receiver, a data rate increase equal to the min-
imum number of transmit/receive antennas can be obtained by
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multiplexing data streams across the parallel channels associ-
ated with the channel gain matrix. Alternatively, multiple an-
tennas enable transmit and/or receive diversity which decreases
the probability of error. In a landmark result, Zheng and Tse [27]
developed a rigorous fundamental tradeoff between the data
rate increase possible via multiplexing versus the channel error
probability reduction possible via diversity, characterizing how
a higher spatial multiplexing gain leads to lower diversity and
vice versa. The main result in [27] is an explicit characterization
of the diversity–multiplexing tradeoff region. This result gener-
ated much activity in finding diversity–multiplexing tradeoffs
for other channel models as well as design of space–time codes
that achieve any point on the tradeoff region [1], [8], [6], [16],
[18][24]. The diversity–multiplexing tradeoff was also extended
to the multiple-access channel in [23]. Delay provides a third di-
mension in the tradeoff region, and this dimension was explored
for multiple-input multiple-output (MIMO) channels based on
the automatic repeat request (ARQ) protocol in [7]. In particular,
this work characterized the three-dimensional tradeoff between
diversity, multiplexing, and ARQ-delay for MIMO systems.

Our goal in this paper is to answer the following question:
“Given the diversity–multiplexing–delay tradeoff region, where
should a system operate on this region?” In order to answer this
question we require a performance metric from a layer above
the physical layer; while physical layer tradeoffs are based on
the channel model, the optimization between these tradeoffs de-
pends on what is most important for the application’s end-to-end
performance. The higher layer metric of interest in this paper
will be end-to-end distortion. Specifically, our system model
consists of a lossy source encoder concatenated with a MIMO
channel encoder and, in the last section, an ARQ retransmission
protocol. Our goal is to determine the optimal point on the diver-
sity–multiplexing or diversity–multiplexing–delay tradeoff re-
gion that minimizes the combined distortion due to the source
compression, channel, and delays in the end-to-end system.

Our problem formulation differs from the Shannon-theoretic
joint source–channel coding problem in that we do not assume
asymptotically long block lengths for either the source or
channel code. In particular, the traditional joint source–channel
code formulation assumes stationary and ergodic sources and
channels in the asymptotic regime of large source dimension
and channel code block length. Shannon showed that under
these assumptions the source should be encoded at a rate just
below channel capacity and then transmitted over the channel
at this rate. Since the rate is less than capacity, the channel
introduces negligible error, hence the end-to-end distortion
equals the distortion introduced by compressing the source
to a rate below the channel capacity. Shannon’s well-known
separation theorem indicates that this transmission scheme is
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optimal for minimizing end-to-end distortion and does not re-
quire any coordination between the source and channel coders
or decoders other than agreeing on the channel transmission
rate [4], [5].

Our joint source–channel code formulation is fundamentally
different from Shannon’s since we assume a finite block length
for the channel code. This assumption is inherent to the diver-
sity-multiplexing tradeoff since, without finite block length, the
channel introduces negligible error and hence the diversity gain
in terms of channel error probability is meaningless. The finite
block length guarantees there is a nonnegligible probability of
error in the channel transmission. Thus, there is a tradeoff be-
tween resolution at the source encoder and robustness at the
channel encoder: limiting source distortion requires a high-rate
source code, for which the multiple antennas of the channel must
be used mainly for multiplexing. Alternatively, the source can
be encoded at a lower rate with more distortion, and then the
channel error probability can be reduced through increased di-
versity. Our joint source–channel code must determine the best
tradeoff between these two to minimize end-to-end distortion.
When retransmission is possible and the source is delay-sensi-
tive, there is an additional tradeoff between reducing channel
errors through retransmissions versus the delay these retrans-
missions entail.

Joint source–channel code optimization for the binary-sym-
metric channel (BSC) with finite block-length channel codes
and asymptotically high source dimension was previously
studied in [15]. We will use several key ideas and results from
this prior work in our asymptotic analysis, in particular its de-
composition of end-to-end distortion into separate components
associated with either the source code or the channel code. By
applying this decomposition to MIMO channels instead of the
BSC, we obtain the optimal operating point on the Zheng/Tse
diversity–multiplexing tradeoff region in the asymptotic limit
of high source dimension and channel signal-to-noise ratio
(SNR). For any SNR, the MIMO channel under multiplexing
can be viewed as a parallel channel, and source–channel coding
for parallel channels has been previously explored in [17]. That
work differs from ours in that the source models were not high
dimensional and the nonergodic parallel channels did not have
the same diversity–multiplexing tradeoff characterization as in
a MIMO system.

We first develop a closed-form expression for the optimal
“distortion exponent,” introduced in [17], under asymptotically
high SNR. Specifically, for a multiplexing rate and average
distortion measure we compute

(1)

where is the optimal exponential rate at which the distor-
tion goes to zero with SNR. We show that the optimal distortion
exponent corresponds to a particular point on the diversity–mul-
tiplexing tradeoff curve that is determined by the source char-
acteristics. We also demonstrate there is no loss in optimality
for separate source and channel encoding and decoding given
the channel transmission rate. Our optimization framework can
also be used to optimize the diversity–multiplexing tradeoff at
finite SNR, however, the solution is no longer in closed form

and must be found using tools from convex optimization. We
extend this general optimization framework to a wide variety of
practical source–channel codes in nonasymptotic regimes.

We next consider the impact of ARQ retransmissions and
their associated delay. When the source does not have a delay
constraint, the ARQ delay incurs no cost in terms of additional
distortion. Hence, the ARQ protocol should use the maximum
window size to enhance the diversity–multiplexing tradeoff
region associated with the MIMO channel alone. The large
window size essentially allows coding over larger block lengths
than without ARQ, which from Shannon theory does not reduce
data rate, only probability of error. In the high SNR regime,
the optimal distortion exponent for the diversity–multiplexing
tradeoff region enhanced by ARQ is found in the same manner
as without ARQ. Not surprisingly, a delay constraint on the
source changes the problem considerably, since the source
burstiness and queuing delay must now be incorporated into
the problem formulation. These characteristics are known to
be a significant obstacle in merging analysis of the funda-
mental limits at the physical layer with end-to-end network
performance [10]. In this setting, the simplicity associated
with the high SNR regime breaks down, since at high SNR,
retransmissions and their associated delay have very low prob-
ability, which essentially removes the third dimension of delay
in our tradeoff region. We thus use dynamic programming to
model and optimize over the system dynamics as well as the
fundamental physical layer tradeoffs to minimize end-to-end
distortion of a MIMO channel with ARQ.

The remainder of this paper is organized as follows. In
the next section, we present the channel model and summa-
rize the diversity–multiplexing tradeoff results from [27]. In
Section III, we develop our source encoding framework and
apply the MIMO channel error probability results of [27] to
the upper and lower bounds on end-to-end distortion of [15].
Section IV obtains a closed-form expression for the optimal
operating point on the MIMO channel diversity–multiplexing
tradeoff curve in the high SNR regime to minimize end-to-end
distortion. This optimal point is also found for large, but finite,
SNR using convex optimization. In Section V, we present
a similar formulation for optimizing diversity and multi-
plexing in progressive video transmission using space–time
codes. ARQ retransmission and its corresponding delay is
considered in Section VI, where a dynamic programming
formulation is used to optimize the operating point on the
diversity–multiplexing–delay tradeoff region for minimum
end-to-end distortion of delay-constrained sources. A summary
and closing thoughts are provided in Section VII.

II. CHANNEL MODEL

We will use the same channel model and notation as in [27].
Consider a wireless channel with transmit antennas and
receive antennas. The fading coefficients that model the gain
from transmit antenna to receive antenna are independent and
identically distributed (i.i.d.) complex Gaussian with unit vari-
ance. The channel gain matrix with elements

is assumed to be known at
the receiver and unknown at the transmitter. We assume that
the channel remains constant over a block of symbols, while
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Fig. 1. The optimal diversity–multiplexing tradeoff for T �M +N � 1.

each block is i.i.d. Therefore, in each block we can represent the
channel as

(2)

where and are the transmitted and
received signal vectors, respectively. The additive noise vector

is i.i.d. complex Gaussian with unit variance.
We construct a family of codes for this channel of

block length for each level. Define as the av-
erage probability of error and as the number of bits per
symbol for the codebook. A channel code scheme
is said to achieve multiplexing gain and diversity gain if

(3)

and

(4)

All logarithms we consider will have base and we therefore
suppress this base notation in the remainder of the paper.
For each , we define the optimal diversity gain as the
supremum of the diversity gain achieved by any scheme. The
main result from [27] that we will use in the next section is
summarized in the following statement.

Diversity–Multiplexing Tradeoff [27]: Assume the block
length satisfies . Then the optimal
tradeoff between diversity gain and multiplexing gain is the
piecewise-linear function connecting the points

, for integer values of such that
. This function is plotted in

Fig. 1.

In the Zheng/Tse framework, the rate of the codebook
must scale with , otherwise the multi-

plexing gain will go to zero. Hence, in the following sections
we will assume, without loss of generality, that the rate of the
codebook is for any choice of
and block length . We also assume that the codebook achieves

the optimal diversity gain for any choice of . Codes
achieving the optimal diversity–multiplexing tradeoff for
MIMO channels have been investigated in many works, in-
cluding [6], [8], [9], [20] and the references therein.

III. END-TO-END DISTORTION

This section presents our system model for the end-to-end
transmission of source data. We use the same source coding
model as [15] in order to exploit their decomposition of
end-to-end distortion into separate source and channel dis-
tortion components. We assume the original source data is
a random variable with probability density , which has
support on a closed and bounded subset of with nonempty
interior. An -bit quantizer is applied to via the following
transformation:

(5)

where is the standard indicator function,
and is a partition of into disjoint regions. Each re-
gion is represented by a single codevector . The th-order
distortion due to the encoding process is

(6)

where is the th power of the Euclidian norm.
We assume that the rate of the channel codebook

is matched to the rate of the quantizer (i.e., ).
Each codevector from the quantizer is mapped into a
codeword from through a permutation mapping . We
assume the mapping is chosen equally likely at random from
the possibilities. The codeword is transmitted over the
channel described in Section II and decoded at the receiver. Let

be the probability that codeword is decoded
at the receiver given that was transmitted. The probability

will depend on the , the quantizer ’s codeword set,
and the permutation mapping . Hence, we can write the total
end-to-end distortion as follows:

(7)

Ideally, we would like to be able to analyze the distortion av-
eraged over all index assignments and possibly remove the de-
pendence on and . In general, we cannot find a closed-form
expression for this distortion due to the dependence on ’s
codewords, , and the SNR. However, given our matched
source and channel rate , it is clear that we
have a tradeoff between transmitting at a high data rate to re-
duce source distortion and transmitting at a low data rate to re-
duce channel errors. In particular, if we run full multiplexing
in the MIMO channel (i.e., set ) we can use
a large . This would result in low distortion at the source en-
coder but possibly create many transmission errors. Conversely,
we could use full diversity in the channel (i.e., set )
to combat errors and then suffer the distortion from a low value
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of . Between the two extremes lies a source code rate and a
corresponding channel multiplexing rate that minimizes (7).

Although we cannot find a simple general expression for
, in the following subsections we will deter-

mine tight asymptotic bounds for the distortion through the use
of high-resolution source coding theory and high-SNR analysis
of the MIMO channel. In addition, as approaches infinity
we will find a simple expression for the optimal choice of and

that depends only on the block length , source dimension
, number of transmit antennas , and number of receive

antennas .
The high-resolution asymptotic regime is often used in source

coding theory to obtain analytical results, since the performance
characteristics of many encoder types are well understood in this
regime [26]. Moreover, it has been show that the high-resolution
asymptotics often provide a good approximation for nonasymp-
totic performance [19][22]. As described in [26], we say that a
quantizer operates in the high-resolution asymptotic regime
if its noiseless distortion asymptotically approaches

(8)

as goes to infinity, where the term in (8) may depend on
and . Many practical quantizers achieve this asymptotic

distortion, e.g., uniform and lattice-based quantizers [3], [25].
This high-resolution asymptotic regime is quite accurate for our
system model since we require the rate of our channel codebook

to scale as . Hence, at asymptotically high
SNR, the source coder will receive an increasing number of bits,
thereby approaching its high-resolution regime.

In the next two subsections, we will construct upper and lower
asymptotic bounds for the end-to-end average distortion of our
system. The starting point for both bounds comes from the anal-
ysis of [15]. In Section IV, we will show that these bounds are
tight and find the optimal multiplexing rate that minimizes dis-
tortion in the high SNR regime.

A. Upper Bound for Distortion

We first construct an upper bound for the end-to-end distor-
tion (7) that depends on . As shown in [15]

(9)

where is the probability of codeword error given that
codeword was transmitted. This bound essentially splits (7)
into two pieces; one corresponding to correctly received channel

codewords and the other corresponding to erroneous channel
decoding. The term corresponding to correct transmission is
bounded by the noiseless distortion while the term cor-
responding to errors is bounded by a constant1 multiplied by the
channel codeword error probability.

By construction, the rate of our channel codebook (and hence
the source encoder) is , therefore

(10)

as approaches infinity or, equivalently, as approaches
infinity. In order to bound the probability of codeword error we
need a few quantities from [27]. For the channel defined in (2),
let and be the outage probability and
outage exponent that satisfy

(11)

The exponent can be directly computed and the equation
for doing so is presented in [27].

We can also bound the probability of error with no outage
through

(12)

where is the exponent associated with choosing the
channel codewords to be i.i.d. Gaussian. Again, the formula for
computing can be found in [27]. Then we can bound the
overall probability of error by

error, no outage

(13)

With the bound (13) in hand we may now upper-bound the total
distortion by

(14)

Note that the distortion upper bound in (14) does not depend
on the source-to-channel codeword mapping , since the bounds
(11) and (12) as well as the source distortion (10) do not depend
on this mapping. Hence, the bound (14) holds for the distortion
averaged over all possible source–codeword mappings, and only
depends on the quantizer through the parameters , and .
Thus, by averaging over all source–channel codeword mappings
we get that for any quantizer satisfying (8) in the high-reso-
lution asymptotic regime, the end-to-end average distortion is
bounded above by

(15)

1This term is O(1) because our source is bounded.
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B. Lower Bound for Distortion

Our lower bound for distortion will also make use of a result
from [15]. Let be the distortion averaged over all

possible mappings . Then from [15] we have

(16)

Note that as in the upper bound, for any quantizer satisfying
(8) in the asymptotic regime, the lower bound depends on
only through the parameters and . However, a key dif-
ference between this bound and the upper bound (14) is that
it is based on averaging distortion over all source–codeword
mappings . In particular, this bound is based on the assump-
tion that each source-to-channel codeword mapping is random
and equally probable (i.e., the probability of mapping a given
source codeword to a given channel codeword is uniform). From
[27], we may lower-bound the error probability via
the outage exponent as

(17)

Thus, our lower bound for average distortion for any quantizer
satisfying (8) in the asymptotic regime of high resolution be-

comes

(18)

IV. MINIMIZING TOTAL DISTORTION

In this section, we will optimize the bounds presented in the
previous section and show that they are tight. In order to achieve
analytical results for the minimum distortion bound, we con-
sider the asymptotic regime of SNR approaching infinity. In
general, our total distortion is an exponential sum of the form

(19)

where we define as the source distortion exponent and
as the channel distortion exponent. We minimize total distortion
in the form of (19) by choosing the exponents and to
be within of each other. The function depends on the
source distortion while depends on the channel error prob-
ability. For example, in (18), if we assume the bound is tight and
neglect terms that become negligible at high SNR, then

(since ) and . Note
that if the exponents in (19) are not of the same order then one
term in the sum dominates the other as approaches infinity.
As we shall see, the fact that these two terms are of the same
order is the key to obtaining a closed-form expression for the
optimal diversity–multiplexing tradeoff point.

A. Asymptotic Regime

We first consider the upper bound for total distortion (14). We
need to match the exponents for the three terms in the bound,
otherwise one term will not go to zero as the SNR goes to in-
finity. Fortunately, part of this has already been accomplished in
[27]. Specifically, for the case where the block length satisfies

, it was shown in [27] that
, although the terms are not the same. Hence,

if we consider the asymptotic regime of approaching in-
finity we get the first equation at the bottom of the page. If we
choose an that solves

(20)

where is the piecewise-linear function connecting
for integer values of , then we

have the second equation at the bottom of the page.
We now consider the lower bound (18) on average distor-

tion. Again, for the case where we have
that . We can match the exponents in (18)
by choosing the same that satisfies (20), which yields the
third equation at the bottom of the page. Since the asymptotic
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Fig. 2. The optimal multiplexing rate r to balance source and channel
distortion.

upper and lower bounds are tight, we have proved the following
theorem.

Theorem 1: In the limit of asymptotically high SNR, the op-
timal end-to-end distortion for a vector quantizer cascaded with
the MIMO channel characterized by (2) satisfies

(21)

The choice of optimal multiplexing rate is illustrated in
Fig. 2, which plots from Fig. 1 together with as a
function of . We see that the source distortion exponent
increases linearly with , while the channel distortion expo-
nent decreases piecewise linearly with . To balance the
source and channel distortion, is chosen such that

.
It should be noted that the tightness of the above bounds only

hold when . For , the upper
bound remains the same while the lower bound changes, which
leaves a gap between our bounds.

B. Asymptotic Distortion Properties

The asymptotic distortion and optimal distortion exponent
from Theorem 1 possess a few nonintuitive properties. First,
while it is possible to choose (full multiplexing)
or (full diversity), it is never optimal to do so.
When minimizing we require nonzero amounts of
both diversity and multiplexing, otherwise one of the terms in
the distortion bounds (15) and (18) will not tend to zero as
approaches infinity. It is also interesting to examine the optimal
distortion exponent as the block length or source dimension

become large. As becomes large (and remains fixed) we
must increase in order to match the terms in (20). This is con-
sistent with our intuition since a high-dimensional source will
require a large amount of multiplexing, otherwise the distortion
at the source encoder becomes very large. It is more surprising
that as becomes large (and remains fixed) we should de-
crease , i.e., increase diversity at the expense of multiplexing.
This is in contrast to traditional source–channel coding, where
we encode our source at a rate just below the channel capacity

when the block length tends to infinity.
In this case, however, we do not encode at channel capacity be-
cause the source dimension remains fixed as becomes large.
Thus, since the source encoding rate is proportional to , we are
already getting an asymptotically large channel rate for source
encoding, and, therefore, should use our antennas for diversity
rather than for additional rate through multiplexing.

C. Source–Channel Code Separation

One feature that we do share with the traditional source–
channel coding results is the notion of separation. In a tradi-
tional Shannon-theoretic framework, the source encoder needs
to know only the channel capacity to design its source code.
Then one may encode the source independently of the channel
(at the channel capacity rate) and achieve the optimal end-to-end
distortion. In this case, the end-to-end distortion is due only to
the source encoder since the channel is error free (over asymp-
totically long block lengths).

In our model, we consider a source encoder concatenated with
a MIMO channel that is restricted to transmission over finite
block lengths. With this restriction, the channel introduces er-
rors even at transmission rates below capacity. These channel
errors give rise to the diversity–multiplexing tradeoff. Under
this finite block-length channel coding, we obtain a source and
channel coding strategy to minimize end-to-end distortion. Our
results indicate that separate source and channel coding is still
optimal for this minimization. However, we now get (equal) dis-
tortion from both the source and channel code, in contrast to
the optimal strategy in Shannon’s separation theorem where the
source is encoded at a rate below channel capacity and thus no
distortion is introduced by the channel.

D. Nonasymptotic Bounds

We now analyze the behavior of our distortion bounds and
the corresponding choice of for finite . In particular,
we will consider the case of large but finite SNR, such that the
SNR is sufficiently large to neglect the term in the expo-
nent of (8) and (18), and to assume and neglect the

exponential term in (15) and (18). With these ap-
proximations, the optimal diversity–multiplexing tradeoff is ob-
tained by solving the following convex optimization problem:

s.t. (22)

Figs. 3–5 provide numerical results based on the solution
to (22) comparing the total end-to-end distortion versus the
number of antennas assigned to multiplexing. Each plot con-
tains multiple curves that represent different SNR levels. The
difference between the three plots is the ratio of the block
length to source vector dimension . Notice that for much
smaller than (Fig. 3) we will use almost all of our antennas
for multiplexing. For of the same order as (Fig. 4) we will
choose about the same number of antennas for multiplexing
and for diversity. For smaller than (Fig. 5) we will use more
antennas for diversity than for multiplexing. Note that even
at low SNR, we can still find via the convex optimization
formulation in (22), but must include the neglected terms
and in the distortion expressions to which we
apply this optimization. In our numerical results we found that
neglecting these terms for SNR’s above 20 dB had little impact.

V. PRACTICAL SOURCE AND CHANNEL CODING

While the results in the previous section lead to closed-form
solutions for optimal joint source–channel coding in the high
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Fig. 3. Total distortion versus number of antennas assigned to multiplexing in
an 8 � 8 system (T � k). Distortion for SNR = 1 exceeds 1.

SNR regime, they only apply to a specific class of source and
channel codes and distortion metrics. We now examine the di-
versity–multiplexing tradeoff for a broad class of source codes,
channel codes, and distortion metrics. The basic optimization
framework (22) can still be applied to this more general class
of problems. Furthermore, this framework can be applied in
nonasymptotic settings, thereby allowing us to study the diver-
sity–multiplexing tradeoff under typical operating conditions.
In this section, we present an example of end-to-end distor-
tion optimization, via the diversity–multiplexing tradeoff, for
source–channel distortion models that are fitted to real video
streams, and MIMO channels.

We use the progressive video encoder model developed in
[13]. The overall mean-square distortion is evaluated as

(23)

where is the distortion induced by the source encoder and
is the distortion created by errors in the channel. Although

the total distortion is represented by two separate components,
each component shares some common terms so we will still
have a tradeoff between diversity and multiplexing. The model
for source distortion developed in [13] consists of a six-
parameter analytical formula that is fitted to a particular traffic
stream. Numerical results for as a function of the source
encoding rate are provided in [13, Fig. 2]. The source encoder
design is based on a parameter corresponding to the amount
of redundant data in consecutive encoding blocks. In general, a
larger value of leads to a smaller at the cost of increased
complexity.

The model for the channel distortion is fitted to the fol-
lowing equation:

(24)

where given the parameters and are based on the par-
ticular source encoder and traffic stream, is the number of
antennas used for multiplexing, and is the probability

Fig. 4. Total distortion versus number of antennas assigned to multiplexing in
an 8 � 8 system (T � k). Distortion for SNR = 1 exceeds 0:01.

Fig. 5. Total distortion versus number of antennas assigned to multiplexing in
an 8 � 8 system (T � k). Distortion for SNR = 1 exceeds 0:0001.

of codeword error as a function of . We will assume sources
with in our analysis since it provides the lowest dis-
tortion for any given rate. This source encoder setting also pro-
vides the highest sensitivity to channel errors, which allows us
to highlight the tradeoff between multiplexing and diversity in
our optimization.

Our channel transmission scheme follows the setup in [16].
We use eight transmit and eight receive antennas with a set of
linear space–time codes that can trade off multiplexing for diver-
sity (specifically, these codes only trade integer values of and

). The actual code construction in [16] is fairly complex
and involves several inner and outer codes designed to handle
both Ricean- and Rayleigh-fading channels in a MIMO orthog-
onal frequency-division multiplexing (OFDM) system. For the
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Fig. 6. Total distortion versus number of antennas assigned to multiplexing for
differing levels of normalized SNR.

purposes of our numerical results, the actual code design is ir-
relevant, we only require the probability of error as a function
of SNR and the number of antennas assigned to multiplexing,
which is given in [16, Fig. 4]. Our optimization can be applied to
space–time channel codes developed by other authors [8], [6],
[18] by using the error probability associated with their codes in
our optimization. Since the channel coding scheme of [16] does
not permit us to assign fractions of antennas, we must solve the
following integer program for the optimal distortion and number
of multiplexing antennas:

s.t. (25)

Fig. 6 contains a set of curves that show the total distortion
achieved as a function of the number of antennas assigned to
multiplexing. The uppermost curve corresponds to the lowest
SNR and the bottom curve corresponds to the highest SNR. We
see that we have an explicit tradeoff here that depends on SNR.
At low SNR, the total distortion is minimized by assigning most
antennas to diversity to compensate for the high error proba-
bility in the channel. As SNR increases, we assign more an-
tennas to multiplexing since this is a better use of antennas when
the error probability is low. One significant difference between
this plot and the asymptotic results in Section IV is that here we
do assign our antennas to full multiplexing as the SNR becomes
large. The reason we observe this behavior is that the rate of our
codebook in this example does not scale with SNR. Thus, as the
SNR becomes large we eventually reach a point where distor-
tion would be reduced by moving to a higher rate code that is
not available in the space–time code under consideration.
Hence, the optimal choice in this case is to eventually move to
full multiplexing. The implication of this result is that a MIMO
system should have enough antennas to exploit full multiplexing
at all available SNRs. A design framework for such codes has
been developed in [6], but the error probability analysis of these

codes is still needed to perform the joint source–channel coding
optimization.

VI. THE DIVERSITY–MULTIPLEXING–DELAY TRADEOFF

Instead of accepting decoding errors in the channel, many
wireless systems perform error correction via some form of
ARQ. In particular, the receiver has some form of error detection
code, and if a transmission error is detected on a given packet,
a feedback path is used to send this error information back to
the transmitter, which then resends part or all of the packet to
increase the chance of successful decoding. The packet retrans-
missions, combined with random arrival times of the messages
at the transmitter, cause queues to form in front of the source
coder and hence each block of data will experience random de-
lays. Here, the notion of delay we wish to capture is the time
between the arrival time of a message at the transmitter and the
time at which it is successfully decoded at the receiver (also
known as the “sojourn time” in queueing systems).

While ARQ increases the probability of decoding a packet
correctly, it also introduces additional delay. The window size
of the ARQ protocol determines how many retransmission at-
tempts will be made for a given packet. The larger this window
size, the more likely the packet will be successfully received,
and the larger the possible delays associated with retransmis-
sion will be. ARQ can be viewed as a form of diversity, and
hence it complements antenna diversity in MIMO systems.
For MIMO systems with ARQ, there is a three-dimensional
tradeoff between diversity due to multiple antennas and ARQ,
multiplexing, and delay. This three-dimensional tradeoff region
was recently characterized by El Gamal, Caire, and Damen
in [7], and we will use this region in lieu of the Zheng/Tse
diversity–multiplexing region in this section. We will first
summarize results from [7] characterizing this region, then
use this region to optimize the diversity–multiplexing–ARQ
tradeoff for distortion under delay constraints.

A. The ARQ Protocol and its Diversity Gain

We assume the same channel model (2) as before
and the following ARQ scheme. Each information message is
encoded into a sequence of blocks each of size . Transmis-
sion commences with the first block and after decoding the mes-
sage the receiver sends a positive (ACK) or negative (NACK) ac-
knowledgment back to the transmitter. In the case of a NACK,
the transmitter sends the next block in the sequence and the re-
ceiver uses all accumulated blocks to try to decode the message.
This process proceeds until either the receiver correctly decodes
the message or until all blocks have been sent. If a NACK is
sent after the transmission of the th block then an error is de-
clared, the message is removed from the system, and the trans-
mitter starts over with the next queued message. As in [7], we
will use the term “round” to describe a single block transmis-
sion of length . We will refer to all rounds associated with
the ARQ protocol as an “ARQ block.” Hence, each ARQ block
consists of up to rounds, and each round is of size .

The fading coefficients that model the gain from transmit
antenna to receive antenna are i.i.d. complex Gaussian
with unit variance. The channel gain matrix with elements

is assumed
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to be known at the receiver and unknown at the transmitter.
There are two channel models investigated in [7]: the long-term
static model and the short-term static model. In the long-term
static model, the channel remains constant over each ARQ
block of up to symbols, and the fading associated with each
ARQ block is i.i.d. In the short-term static model, the fading
is constant over one ARQ round, then changes to a new i.i.d.
value. The long-term model applies to a quasi-static situation
such as might be seen in a wireless local-area network (LAN)
channel. The short-term model is more dynamic and might
correspond to fading associated with a portable mobile device.
The ARQ diversity gain is very similar for the two models.
In particular, the diversity exponent for the short-term static
model is a factor of larger than for the long-term static model,
corresponding to the -fold time diversity in the short-term
model. We will use the long-term static model in our analysis
and numerical results, since it allows us to focus on the diver-
sity associated with the ARQ rather than time diversity. Our
analysis easily extends to the short-term static model by adding
the extra factor of to the ARQ diversity exponent.

Under the long-term static channel model, in round
of an ARQ block we can represent the

channel as

(26)

where and are the transmitted and re-
ceived signals in block , respectively. The additive noise vector

is i.i.d. complex Gaussian with unit variance.
With the above model in hand, let us define a family of codes

, indexed by the SNR level. Each code has length
and the bit rate of the first block in each code is .

Suppose we consider a sequence of ARQ blocks. At time , the
random variable if a message is successfully
decoded at the receiver, and otherwise. Then, we can
define the average throughput of the ARQ protocol using these
codes as

(27)

and we can view as the average number of transmitted
bits per channel use. Further define as the average
probability of error of the ARQ block (i.e., the probability that
a NACK is sent after transmission rounds). The multiplexing
gain of the ARQ protocol is defined in [7] as

(28)

and the diversity gain as

(29)

For each and we define the optimal diversity gain
as the supremum of the diversity gain achieved by any scheme.
For (i.e., no ARQ) we have the original diversity–mul-
tiplexing tradeoff from Section II. Hence, is the piece-
wise-linear function joining the points

at integer values of for . For
we have the following result from [7].

Diversity Gain of ARQ: The diversity gain for the ARQ pro-
tocol with a maximum of blocks is

(30)

The diversity gain achieved by ARQ is quite remarkable. Ac-
cording to (30), for any we can achieve the
full diversity gain for sufficiently large . Thus, for

sufficiently large, there is no reason to utilize spatial diversity
since all needed diversity can be obtained through ARQ. For
not sufficiently large, the maximum ARQ window size would
still be utilized to minimize the amount of spatial diversity re-
quired. The diversity–multiplexing–ARQ tradeoff (30) is anal-
ogous to the Zheng/Tse diversity–multiplexing tradeoff .
Thus, the same analysis as in Section III can be applied to mini-
mize end-to-end distortion based on the diversity–multiplexing
tradeoff induced by the ARQ. In particular, end-to-end
distortion for MIMO channels with asymptotically high SNR
and ARQ retransmissions, in the absence of a delay constraint,
is minimized using the following procedure:

1) choose the largest ARQ window size possible;
2) determine the resulting ARQ diversity gain from

(30);
3) solve (20) for the optimal rate using instead of

.
This procedure not only minimizes end-to-end distortion, but

also indicates that separate source and channel coding is op-
timal, provided the source and channel encoders know and
the maximum value of . Moreover, the results in [8] show that
the rate penalty for ARQ is negligible in the high SNR regime.

In order to analyze the diversity, multiplexing, and delay
tradeoff for delay-sensitive sources we must recognize two
important subtleties about the above results. First, in systems
that transmit delay-constrained traffic we may not be able to
tolerate a long ARQ window (in some cases ARQ may not be
tolerated at all). Second, we must carefully consider the impact
of asymptotically high SNR, which is crucial in the proofs
of the above results. Specifically, in the high SNR regime the
occurrence of a NACK in the ARQ protocol becomes a rare
event (i.e., the probability of a NACK tends to zero as SNR
approaches infinity). Therefore, with probability tending to one,
each message is decoded correctly during the first transmission
attempt—resulting in a multiplexing gain equivalent to that of a
system without ARQ. The increasingly rare errors are corrected
by the ARQ process, which results in increased diversity.

The main difficulty in using these asymptotic results to
evaluate delay performance is that in the high SNR regime
there is essentially no delay due to ARQ. In other words,
queuing delays associated with retransmissions are rare in the
high SNR regime. Based on this fact and using standard results
from queuing theory, one can show that under stable arrival
rates the arriving messages almost always find the system
empty. Hence, with high probability, an arriving message will
immediately begin transmission and suffer no queuing delay. In
wireless systems, errors during a transmission attempt are not
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rare events. Indeed, most wireless systems typically become
reliable only after the application of ARQ. In other words,
errors after completion of the ARQ process might be rare
events, but errors during the ARQ process are not rare. As we
shall see in the next subsection, this subtle difference requires
an optimization framework that can model and optimize over
the queuing dynamics associated with ARQ.

B. Delay-Distortion Model

This subsection presents our model for a delay-sensitive
system. We do not assume a high SNR regime in our analysis
since, as stated in the previous subsection, this leads to rare
ARQ errors and hence effectively removes the ARQ queuing
delay. We do assume that the finite SNR is fixed for each
problem instance, i.e., we do not optimize power control,
although this optimization was investigated in [7] and shown
to provide significant diversity gains in the long-term static
channel.

We assume the original source data is a random vector
with probability density , which has support on a closed,
bounded subset of with nonempty interior. During each
transmission block of length an instance of arrives at the
system independently with probability and is queued for
transmission. We assume that each message has a deadline
at the receiver. Hence, if a message arrives at time and is
not received by time then its deadline expires and the
message is dropped from the system. We assume that each
message is quantized according to the scheme discussed below.
The quantized version of each message is then mapped into
a codeword in the codebook and passed to the
MIMO-ARQ transmitter discussed in the previous section.

Due to the random message arrival times and the random
completion times of the ARQ process we will have queuing and
delay in this system. Our goal is to select a diversity gain, mul-
tiplexing gain, and ARQ window size to minimize the distor-
tion created by both the quantizer and the messages lost due to
channel error or delay. The intuition behind the diversity–multi-
plexing–ARQ tradeoff is straightforward. We would like to use
as much multiplexing as possible since this will allow us to use
more bits to describe a message and reduce encoder distortion.
However, high levels of multiplexing induce more errors in the
wireless channel, thereby requiring longer ARQ windows to re-
duce errors. The longer ARQ windows induce higher delays,
which also cause higher distortion due to messages missing their
deadlines. We must balance all of these quantities to optimize
system performance.

We use the same vector encoder and distortion model from
Section III. As before, we assume that the total average distor-
tion can be split into two dependent pieces

(31)

where is the distortion caused by messages de-
clared in error. Here the errors are incurred whenever the ARQ
process fails or when a message’s deadline expires. We also as-
sume the distortion due to erroneous messages is bounded by
the overall loss probability

(32)

where is the probability that a message violates
its deadline and is the probability of error for the ARQ
block, which depends on its window size .

Our goal is to minimize the total delay-distortion bound

(33)

In order to optimize (33) we require a formulation that accounts
for the different delays experienced by each message. Hence, as
described in the next subsection, we turn to the theory of Markov
decision processes to model and solve this problem.

C. Minimizing Distortion Via Dynamic Programming

We now develop a dynamic programming optimization
framework to minimize (33). We assume without loss of gener-
ality that the queue in our system is of maximum size . This is
not a restrictive assumption since each message requires at least
one time block of size for transmission, hence any arriving
message that sees more than messages in the queue will not be
able to meet its deadline and could be dropped without affecting
our performance analysis. Note that unlike standard queuing
models that only track the number of messages awaiting trans-
mission, we must also track the amount of time a particular
message has waited in the queue. In particular, given that one
message is queued for transmission, our state-space model
must differentiate between a message that has just arrived and
a message whose deadline is about to expire. Since the queue
size is bounded, we can only have a finite number of messages
in the queue, and hence the combined message and waiting
time model exists in a finite space.

We define the queue process , which
takes values on a finite space . Similarly, we define the state
of the ARQ process on a finite space

. Here, the state of the ARQ process denotes the number
of the current transmission round in the current ARQ block.
Finally, we define the overall state of the system as a process

such that (i.e.,
the space is the product space of and ).

Since the arrival process is geometric and each ARQ round is
assumed to be i.i.d., the process is a finite-state discrete-time
Markov chain. The transition dynamics of this Markov chain
are governed by the choices of diversity, multiplexing, and the
ARQ window size. We assume that at the start of each ARQ
block the transmitter chooses the number of bits to assign to the
vector encoder and hence the amount of spatial diversity and
multiplexing in the codeword selected from . The
transmitter also selects the length of the ARQ window. These
choices then remain fixed until either the message is received or
the ARQ window expires. Define the space of actions as the
set of all possible combinations of multiplexing gain and ARQ
window length. Note that a choice of multiplexing gain implic-
itly selects the number of bits given to the source encoder as well
as the amount of spatial diversity. We assume that the number
of antennas and are finite and that the ARQ window size
is also finite. Hence, the action space is a finite set.

We define the control policy as a probability distribution on
the space . We can view the elements of as

action chosen in state
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For any control , the Markov chain is irreducible and aperi-
odic.2 Define as the transition matrix for corresponding
to control policy . Hence, is a
stochastic matrix with entries

For each state–action pair, we define a reward function .
For the states in corresponding to completion of the ARQ
process, the reward function denotes the distortion incurred in
that particular state. Hence

(34)

Let be the set of all available control policies. Then for any
define the limiting average value of starting from state

as

where is the random reward earned at time under
control policy . Since is an irreducible and aperiodic Markov
chain for any control , we know from [2] that the above value
function reduces to

(35)

where is the stationary distribution of
under control and is the column vector of rewards earned
for each state under control . Hence, the value function
is simply the expected value of our reward function with re-
spect to the stationary distribution of . Notice that given our
definition for in (34), the value function provides us with
the delay-based distortion (33) caused by control policy . Thus,
we want to minimize distortion by minimizing the value func-
tion .

Specifically, our goal is to find a that minimizes
. From [2] we know this problem can be solved through

the following linear program:

(36)

subject to

where is the Kronecker delta, is the steady-state
probability of being in state and taking action , and

2To create a nonirreducible Markov chain, we would be required to success-
fully transmit a packet with probability one.

Fig. 7. Optimal ARQ window size versus queue state versus deadline length k
(SNR = 10 dB).

is the probability of jumping to state given action in state
. The state-action frequencies provide a unique mapping

to an optimal control [2].
With this dynamic programming formulation in hand we can

solve for the optimal diversity gain, multiplexing gain, and ARQ
window size as a function of queue state and deadline sensi-
tivity. We demonstrate the performance of these solutions with
a numerical example in the next subsection.

D. Distortion Results

Consider the ARQ system described above with messages ar-
riving in each time block with probability . We assume
a MIMO-ARQ system with an SNR of
10 dB that utilizes the incremental redundancy codes proposed
in [6], which have been shown to achieve the diversity–mul-
tiplexing–ARQ tradeoff. For these codes, we allow the ARQ
window size to take values in a finite set . We
also consider the deadline length ranging over several values

to examine the impact of delay sensitivity on
the solution to our dynamic program (36). For each value of
we solve a new version of (36). The plots of Figs. 7 and 8 contain
the data accumulated by averaging over all of these solutions.

Fig. 7 plots the optimal ARQ window length as a function
of queue state for different values of . We see that for short
deadlines we cannot afford long ARQ windows for any queue
state. As the deadlines become more relaxed, we can increase
the ARQ window size. However, as the queue fills up, we are
forced to again decrease the amount of ARQ diversity.

Fig. 8 plots the optimal multiplexing gain as a function
of queue state for different values of . Here we see that with
short deadlines we must use fairly low amounts of spatial mul-
tiplexing (i.e., high spatial diversity), since we cannot use ARQ
diversity. As the deadlines become more relaxed, we can in-
crease the amount of spatial multiplexing and use ARQ for di-
versity. Once again, as the queue fills up, we must switch back
to low levels of multiplexing or, equivalently, high levels of di-
versity to ensure a lower error probability and hence that fewer
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Fig. 8. Optimal multiplexing gain versus queue state versus deadline length k

(SNR = 10 dB).

Fig. 9. Distortion for the fixed allocation problem versus multiplexing gain
versus ARQ window size (SNR = 10 dB).

retransmissions are needed to clear a given message from the
system.

We also evaluate the performance advantage gained by
adapting the settings of diversity, multiplexing, and ARQ rather
than choosing fixed allocations. For , we computed the
distortion resulting from all possible fixed allocations of ARQ
window length and multiplexing gain. The curved surface in
Fig. 9 plots the distortion of these fixed allocations for all
values of and . The flat surface in Fig. 9 is the distortion
achieved by the adaptive scheme (plotted as a reference), which
indicates a distortion reduction of up to 70 dB. Even in the most
favorable cases, the adaptive scheme outperforms any fixed
scheme by more than 50%.

VII. SUMMARY

We have investigated the optimal tradeoff between diver-
sity, multiplexing, and delay in MIMO systems to minimize
end-to-end distortion under both asymptotic assumptions as
well as in practical operating conditions. We first considered

the tradeoff between diversity and multiplexing without a delay
constraint. In particular, for the asymptotic regime of high SNR
and source dimension, we obtained a closed-form expression
for the optimal rate on the Zheng/Tse diversity–multiplexing
tradeoff region as a simple function of the source dimension,
code block length, and distortion norm. We also showed that in
this asymptotic regime, separate source and channel coding at
the optimized rate minimizes end-to-end distortion. However,
in contrast to codes designed according to Shannon’s separa-
tion theorem, the finite block length assumption in our setting
causes distortion to be introduced by both the source code
and the channel code, even though the source encoding rate is
below channel capacity. We showed that the same optimization
framework can be applied even without an asymptotically large
SNR. However, outside this asymptotic regime, closed-form
expressions for the optimal diversity–multiplexing tradeoff
(and corresponding transmission rate) cannot be found, and
convex optimization tools are required to find this optimal
operating point. Finally, we developed an optimization frame-
work to minimize end-to-end distortion for a broad class of
practical source and channel codes, and applied this framework
to a specific example of a video source code and space–time
channel code. Our numerical results illustrate quantitatively
how the optimal number of antennas used for multiplexing
increases with both the source rate and the SNR.

We then extended our analysis to delay-constrained sources
and MIMO systems using an ARQ retransmission protocol.
ARQ provides additional diversity in the system at the expense
of delay. Minimizing end-to-end delay thus entails finding the
optimal operating point on the diversity–multiplexing–delay
tradeoff region. We developed a dynamic programming formu-
lation for this optimization to capture the diversity–multiplexing
tradeoffs of the channel as well as the dynamics of random
message arrival times and random ARQ block completion
times. The dynamic program can be solved using standard
techniques, which we applied to a MIMO system with
different ARQ window sizes and delay constraints. We obtained
numerical results indicating the optimal amount of diversity,
multiplexing, and ARQ to use as a function of the queue state
and message deadline. We also demonstrated that adaptation
of the diversity–multiplexing characteristics of the MIMO
channel code to the time-varying backlog in the system leads
to distortion reduction of up to 70 dB versus a static allocation.

The unconsummated union between information theory and
networks has vexed both communities for many years. As
pointed out in [10], part of the reason for this disconnect is that
source burstiness and end-to-end delay are major components
in the study of networks, yet play little role in traditional
Shannon theory, where delay is asymptotically infinite and
channel capacity inherently assumes a source with infinite
data to send. We hope that our work provides one small step
toward consummating this union by merging information-the-
oretic tradeoffs associated with the channel with models and
analysis tools from networking to handle source burstiness and
system delay. Much work remains to be done in this area by
extending our ideas and developing new ones for coupling the
fundamental performance limits of general multihop networks
with queuing delay, traffic statistics, and end-to-end metric



HOLLIDAY et al.: JOINT SOURCE AND CHANNEL CODING FOR MIMO SYSTEMS 1405

optimization for heterogeneous applications running over these
networks.
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