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Compressed Sensing
David L. Donoho, Member, IEEE

Abstract—Suppose is an unknown vector in (a digital
image or signal); we plan to measure general linear functionals
of and then reconstruct. If is known to be compressible
by transform coding with a known transform, and we recon-
struct via the nonlinear procedure defined here, the number of
measurements can be dramatically smaller than the size .
Thus, certain natural classes of images with pixels need only

= ( 1 4 log5 2( )) nonadaptive nonpixel samples for
faithful recovery, as opposed to the usual pixel samples.

More specifically, suppose has a sparse representation in
some orthonormal basis (e.g., wavelet, Fourier) or tight frame
(e.g., curvelet, Gabor)—so the coefficients belong to an ball
for 0 1. The most important coefficients in that
expansion allow reconstruction with 2 error ( 1 2 1 ). It is
possible to design = ( log( )) nonadaptive measurements
allowing reconstruction with accuracy comparable to that attain-
able with direct knowledge of the most important coefficients.
Moreover, a good approximation to those important coeffi-
cients is extracted from the measurements by solving a linear
program—Basis Pursuit in signal processing. The nonadaptive
measurements have the character of “random” linear combi-
nations of basis/frame elements. Our results use the notions of
optimal recovery, of -widths, and information-based complexity.
We estimate the Gel’fand -widths of balls in high-dimensional
Euclidean space in the case 0 1, and give a criterion
identifying near-optimal subspaces for Gel’fand -widths. We
show that “most” subspaces are near-optimal, and show that
convex optimization (Basis Pursuit) is a near-optimal way to
extract information derived from these near-optimal subspaces.

Index Terms—Adaptive sampling, almost-spherical sections of
Banach spaces, Basis Pursuit, eigenvalues of random matrices,
Gel’fand -widths, information-based complexity, integrated
sensing and processing, minimum 1-norm decomposition, op-
timal recovery, Quotient-of-a-Subspace theorem, sparse solution
of linear equations.

I. INTRODUCTION

AS our modern technology-driven civilization acquires and
exploits ever-increasing amounts of data, “everyone” now

knows that most of the data we acquire “can be thrown away”
with almost no perceptual loss—witness the broad success of
lossy compression formats for sounds, images, and specialized
technical data. The phenomenon of ubiquitous compressibility
raises very natural questions: why go to so much effort to ac-
quire all the data when most of what we get will be thrown
away? Can we not just directly measure the part that will not
end up being thrown away?

In this paper, we design compressed data acquisition proto-
cols which perform as if it were possible to directly acquire just
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the important information about the signals/images—in effect,
not acquiring that part of the data that would eventually just be
“thrown away” by lossy compression. Moreover, the protocols
are nonadaptive and parallelizable; they do not require knowl-
edge of the signal/image to be acquired in advance—other than
knowledge that the data will be compressible—and do not at-
tempt any “understanding” of the underlying object to guide
an active or adaptive sensing strategy. The measurements made
in the compressed sensing protocol are holographic—thus, not
simple pixel samples—and must be processed nonlinearly.

In specific applications, this principle might enable dra-
matically reduced measurement time, dramatically reduced
sampling rates, or reduced use of analog-to-digital converter
resources.

A. Transform Compression Background

Our treatment is abstract and general, but depends on one spe-
cific assumption which is known to hold in many settings of
signal and image processing: the principle of transform sparsity.
We suppose that the object of interest is a vector , which
can be a signal or image with samples or pixels, and that there
is an orthonormal basis for which can
be, for example, an orthonormal wavelet basis, a Fourier basis,
or a local Fourier basis, depending on the application. (As ex-
plained later, the extension to tight frames such as curvelet or
Gabor frames comes for free.) The object has transform coeffi-
cients , and these are assumed sparse in the sense
that, for some and for some

(I.1)

Such constraints are actually obeyed on natural classes of sig-
nals and images; this is the primary reason for the success of
standard compression tools based on transform coding [1]. To
fix ideas, we mention two simple examples of constraint.

• Bounded Variation model for images. Here image bright-
ness is viewed as an underlying function on the
unit square , which obeys (essentially)

The digital data of interest consist of pixel sam-
ples of produced by averaging over pixels.
We take a wavelet point of view; the data are seen as a su-
perposition of contributions from various scales. Let
denote the component of the data at scale , and let
denote the orthonormal basis of wavelets at scale , con-
taining elements. The corresponding coefficients
obey .
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• Bump Algebra model for spectra. Here a spectrum (e.g.,
mass spectrum or magnetic resonance spectrum) is
modeled as digital samples of an underlying
function on the real line which is a superposition of
so-called spectral lines of varying positions, amplitudes,
and linewidths. Formally

Here the parameters are line locations, are ampli-
tudes/polarities, and are linewidths, and represents a
lineshape, for example the Gaussian, although other pro-
files could be considered. We assume the constraint where

, which in applications represents an en-
ergy or total mass constraint. Again we take a wavelet
viewpoint, this time specifically using smooth wavelets.
The data can be represented as a superposition of con-
tributions from various scales. Let denote the com-
ponent of the spectrum at scale , and let denote
the orthonormal basis of wavelets at scale , containing

elements. The corresponding coefficients again obey
, [2].

While in these two examples, the constraint appeared, other
constraints with can appear naturally as well;

see below. For some readers, the use of norms with
may seem initially strange; it is now well understood that the
norms with such small are natural mathematical measures of
sparsity [3], [4]. As decreases below , more and more sparsity
is being required. Also, from this viewpoint, an constraint
based on requires no sparsity at all.

Note that in each of these examples, we also allowed for sep-
arating the object of interest into subbands, each one of which
obeys an constraint. In practice, in the following we stick
with the view that the object of interest is a coefficient vector
obeying the constraint (I.1), which may mean, from an applica-
tion viewpoint, that our methods correspond to treating various
subbands separately, as in these examples.

The key implication of the constraint is sparsity of the
transform coefficients. Indeed, we have trivially that, if de-
notes the vector with everything except the largest coeffi-
cients set to

(I.2)

for , with a constant depending only on
. Thus, for example, to approximate with error , we

need to keep only the biggest terms in .

B. Optimal Recovery/Information-Based Complexity
Background

Our question now becomes: if is an unknown signal whose
transform coefficient vector obeys (I.1), can we make a
reduced number of measurements which will allow
faithful reconstruction of . Such questions have been discussed
(for other types of assumptions about ) under the names of
Optimal Recovery [5] and Information-Based Complexity [6];
we now adopt their viewpoint, and partially adopt their nota-
tion, without making a special effort to be really orthodox. We

use “OR/IBC” as a generic label for work taking place in those
fields, admittedly being less than encyclopedic about various
scholarly contributions.

We have a class of possible objects of interest, and are
interested in designing an information operator
that samples pieces of information about , and an algorithm

that offers an approximate reconstruction of .
Here the information operator takes the form

where the are sampling kernels, not necessarily sampling
pixels or other simple features of the signal; however, they are
nonadaptive, i.e., fixed independently of . The algorithm is
an unspecified, possibly nonlinear reconstruction operator.

We are interested in the error of reconstruction and in the
behavior of optimal information and optimal algorithms. Hence,
we consider the minimax error as a standard of comparison

So here, all possible methods of nonadaptive linear sampling are
allowed, and all possible methods of reconstruction are allowed.

In our application, the class of objects of interest is the set
of objects where obeys (I.1) for a given

and . Denote then

Our goal is to evaluate and to have practical
schemes which come close to attaining it.

C. Four Surprises

Here is the main quantitative phenomenon of interest for this
paper.

Theorem 1: Let be a sequence of problem sizes with
, , and , , . Then for
there is so that

(I.3)

We find this surprising in four ways. First, compare (I.3) with
(I.2). We see that the forms are similar, under the calibration

. In words: the quality of approximation to
which could be gotten by using the biggest transform coef-
ficients can be gotten by using the pieces of
nonadaptive information provided by . The surprise is that
we would not know in advance which transform coefficients are
likely to be the important ones in this approximation, yet the
optimal information operator is nonadaptive, depending at
most on the class and not on the specific object. In
some sense this nonadaptive information is just as powerful as
knowing the best transform coefficients.

This seems even more surprising when we note that for ob-
jects , the transform representation is the optimal
one: no other representation can do as well at characterizing

by a few coefficients [3], [7]. Surely then, one imagines,
the sampling kernels underlying the optimal information



DONOHO: COMPRESSED SENSING 1291

operator must be simply measuring individual transform coef-
ficients? Actually, no: the information operator is measuring
very complex “holographic” functionals which in some sense
mix together all the coefficients in a big soup. Compare (VI.1)
below. (Holography is a process where a three–dimensional
(3-D) image generates by interferometry a two–dimensional
(2-D) transform. Each value in the 2-D transform domain is
influenced by each part of the whole 3-D object. The 3-D
object can later be reconstructed by interferometry from all
or even a part of the 2-D transform domain. Leaving aside
the specifics of 2-D/3-D and the process of interferometry, we
perceive an analogy here, in which an object is transformed to a
compressed domain, and each compressed domain component
is a combination of all parts of the original object.)

Another surprise is that, if we enlarged our class of informa-
tion operators to allow adaptive ones, e.g., operators in which
certain measurements are made in response to earlier measure-
ments, we could scarcely do better. Define the minimax error
under adaptive information allowing adaptive operators

where, for , each kernel is allowed to depend on the
information gathered at previous stages .
Formally setting

we have the following.

Theorem 2: For , there is so that for

So adaptive information is of minimal help—despite the quite
natural expectation that an adaptive method ought to be able
iteratively somehow “localize” and then “close in” on the “big
coefficients.”

An additional surprise is that, in the already-interesting case
, Theorems 1 and 2 are easily derivable from known results

in OR/IBC and approximation theory! However, the derivations
are indirect; so although they have what seem to the author as
fairly important implications, very little seems known at present
about good nonadaptive information operators or about concrete
algorithms matched to them.

Our goal in this paper is to give direct arguments which cover
the case of highly compressible objects, to give di-
rect information about near-optimal information operators and
about concrete, computationally tractable algorithms for using
this near-optimal information.

D. Geometry and Widths

From our viewpoint, the phenomenon described in The-
orem 1 concerns the geometry of high-dimensional convex and
nonconvex “balls.” To see the connection, note that the class

is the image, under orthogonal transformation, of
an ball. If this is convex and symmetric about the
origin, as well as being orthosymmetric with respect to the axes

provided by the wavelet basis; if , this is again symmetric
about the origin and orthosymmetric, while not being convex,
but still star-shaped.

To develop this geometric viewpoint further, we consider two
notions of -width; see [5].

Definition 1.1: The Gel’fand -width of with respect to
the norm is defined as

where the infimum is over -dimensional linear subspaces of
, and denotes the orthocomplement of with respect

to the standard Euclidean inner product.

In words, we look for a subspace such that “trapping”
in that subspace causes to be small. Our interest in Gel’fand

-widths derives from an equivalence between optimal recovery
for nonadaptive information and such -widths, well known in
the case [5], and in the present setting extending as
follows.

Theorem 3: For and

(I.4)

(I.5)

Thus the Gel’fand -widths either exactly or nearly equal the
value of optimal information. Ultimately, the bracketing with
constant will be for us just as good as equality, owing to
the unspecified constant factors in (I.3). We will typically only
be interested in near-optimal performance, i.e., in obtaining
to within constant factors.

It is relatively rare to see the Gel’fand -widths studied
directly [8]; more commonly, one sees results about the
Kolmogorov -widths.

Definition 1.2: Let be a bounded set. The
Kolmogorov -width of with respect the norm is defined
as

where the infimum is over -dimensional linear subspaces
of .

In words, measures the quality of approximation of
possible by -dimensional subspaces .

In the case , there is an important duality relationship
between Kolmogorov widths and Gel’fand widths which allows
us to infer properties of from published results on . To
state it, let be defined in the obvious way, based on
approximation in rather than norm. Also, for given
and , let and be the standard dual indices

, . Also, let denote the standard unit
ball of . Then [8]

(I.6)

In particular
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The asymptotic properties of the left-hand side have been de-
termined by Garnaev and Gluskin [9]. This follows major work
by Kashin [10], who developed a slightly weaker version of this
result in the course of determining the Kolmogorov -widths of
Sobolev spaces. See the original papers, or Pinkus’s book [8]
for more details.

Theorem 4: (Kashin, Garnaev, and Gluskin (KGG)) For
all and

Theorem 1 now follows in the case by applying KGG
with the duality formula (I.6) and the equivalence formula (I.4).
The case of Theorem 1 does not allow use of duality
and the whole range is approached differently in this
paper.

E. Mysteries …

Because of the indirect manner by which the KGG result im-
plies Theorem 1, we really do not learn much about the phenom-
enon of interest in this way. The arguments of Kashin, Garnaev,
and Gluskin show that there exist near-optimal -dimensional
subspaces for the Kolmogorov widths; they arise as the null
spaces of certain matrices with entries which are known to
exist by counting the number of matrices lacking certain prop-
erties, the total number of matrices with entries, and com-
paring. The interpretability of this approach is limited.

The implicitness of the information operator is matched
by the abstractness of the reconstruction algorithm. Based on
OR/IBC theory we know that the so-called central algorithm
is optimal. This “algorithm” asks us to consider, for given
information , the collection of all objects which
could have given rise to the data

Defining now the center of a set

center

the central algorithm is

center

and it obeys, when the information is optimal,

see Section III below.
This abstract viewpoint unfortunately does not translate into

a practical approach (at least in the case of the ,
). The set is a section of the ball

, and finding the center of this section does not corre-
spond to a standard tractable computational problem. Moreover,
this assumes we know and , which would typically not be
the case.

F. Results

Our paper develops two main types of results.

• Near-Optimal Information. We directly consider the
problem of near-optimal subspaces for Gel’fand -widths
of , and introduce three structural conditions
(CS1–CS3) on an -by- matrix which imply that its
nullspace is near-optimal. We show that the vast majority
of -subspaces of are near-optimal, and random
sampling yields near-optimal information operators with
overwhelmingly high probability.

• Near-Optimal Algorithm. We study a simple nonlinear re-
construction algorithm: simply minimize the norm of
the coefficients subject to satisfying the measurements.
This has been studied in the signal processing literature
under the name Basis Pursuit; it can be computed by linear
programming. We show that this method gives near-op-
timal results for all .

In short, we provide a large supply of near-optimal infor-
mation operators and a near-optimal reconstruction procedure
based on linear programming, which, perhaps unexpectedly,
works even for the nonconvex case .

For a taste of the type of result we obtain, consider a specific
information/algorithm combination.

• CS Information. Let be an matrix generated by
randomly sampling the columns, with different columns
independent and identically distributed (i.i.d.) random
uniform on . With overwhelming probability for
large , has properties CS1–CS3 discussed in detail
in Section II-A below; assume we have achieved such a
favorable draw. Let be the basis matrix with
basis vector as the th column. The CS Information
operator is the matrix .

• -minimization. To reconstruct from CS Information, we
solve the convex optimization problem

subject to

In words, we look for the object having coefficients
with smallest norm that is consistent with the informa-
tion .

To evaluate the quality of an information operator , set

To evaluate the quality of a combined algorithm/information
pair , set

Theorem 5: Let , be a sequence of problem sizes
obeying , , ; and let be a
corresponding sequence of operators deriving from CS matrices
with underlying parameters and (see Section II below). Let

. There exists so that
is near-optimal:
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for , . Moreover, the algorithm delivering
the solution to is near-optimal:

for , .

Thus, for large , we have a simple description of near-op-
timal information and a tractable near-optimal reconstruction
algorithm.

G. Potential Applications

To see the potential implications, recall first the Bump Al-
gebra model for spectra. In this context, our result says that,
for a spectrometer based on the information operator in The-
orem 5, it is really only necessary to take
measurements to get an accurate reconstruction of such spectra,
rather than the nominal measurements. However, they must
then be processed nonlinearly.

Recall the Bounded Variation model for images. In that con-
text, a result paralleling Theorem 5 says that for a specialized
imaging device based on a near-optimal information operator it
is really only necessary to take measure-
ments to get an accurate reconstruction of images with pixels,
rather than the nominal measurements.

The calculations underlying these results will be given below,
along with a result showing that for cartoon-like images (which
may model certain kinds of simple natural imagery, like brain
scans), the number of measurements for an -pixel image is
only .

H. Contents

Section II introduces a set of conditions CS1–CS3 for
near-optimality of an information operator. Section III considers
abstract near-optimal algorithms, and proves Theorems 1–3.
Section IV shows that solving the convex optimization problem

gives a near-optimal algorithm whenever . Sec-
tion V points out immediate extensions to weak- conditions
and to tight frames. Section VI sketches potential implications
in image, signal, and array processing. Section VII, building on
work in [11], shows that conditions CS1–CS3 are satisfied for
“most” information operators.

Finally, in Section VIII, we note the ongoing work by two
groups (Gilbert et al. [12] and Candès et al. [13], [14]), which
although not written in the -widths/OR/IBC tradition, imply
(as we explain), closely related results.

II. INFORMATION

Consider information operators constructed as follows. With
the orthogonal matrix whose columns are the basis elements
, and with certain -by- matrices obeying conditions

specified below, we construct corresponding information oper-
ators . Everything will be completely transparent to
the choice of orthogonal matrix and hence we will assume
that is the identity throughout this section.

In view of the relation between Gel’fand -widths and min-
imax errors, we may work with -widths. Let denote as

usual the nullspace . We define the width of a set
relative to an operator

subject to (II.1)

In words, this is the radius of the section of cut out by
the nullspace . In general, the Gel’fand -width is the
smallest value of obtainable by choice of

is an matrix

We will show for all large and the existence of by
matrices where

with dependent at most on and the ratio .

A. Conditions CS1–CS3

In the following, with let denote a sub-
matrix of obtained by selecting just the indicated columns of

. We let denote the range of in . Finally, we consider
a family of quotient norms on ; with denoting the
norm on vectors indexed by

subject to

These describe the minimal -norm representation of achiev-
able using only specified subsets of columns of .

We define three conditions to impose on an matrix ,
indexed by strictly positive parameters , , and .

CS1: The minimal singular value of exceeds
uniformly in .

CS2: On each subspace we have the inequality

uniformly in .
CS3: On each subspace

uniformly in .
CS1 demands a certain quantitative degree of linear indepen-

dence among all small groups of columns. CS2 says that linear
combinations of small groups of columns give vectors that look
much like random noise, at least as far as the comparison of
and norms is concerned. It will be implied by a geometric
fact: every slices through the ball in such a way that
the resulting convex section is actually close to spherical. CS3
says that for every vector in some , the associated quotient
norm is never dramatically smaller than the simple norm
on .

It turns out that matrices satisfying these conditions are ubiq-
uitous for large and when we choose the and properly.
Of course, for any finite and , all norms are equivalent and
almost any arbitrary matrix can trivially satisfy these conditions
simply by taking very small and , very large. However,
the definition of “very small” and “very large” would have to
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depend on for this trivial argument to work. We claim some-
thing deeper is true: it is possible to choose and independent
of and of .

Consider the set

of all matrices having unit-normalized columns. On this
set, measure frequency of occurrence with the natural uniform
measure (the product measure, uniform on each factor ).

Theorem 6: Let be a sequence of problem sizes with
, , and , , and . There

exist and depending only on and so that, for
each the proportion of all matrices satisfying
CS1–CS3 with parameters and eventually exceeds .

We will discuss and prove this in Section VII. The proof will
show that the proportion of matrices not satisfying the condition
decays exponentially fast in .

For later use, we will leave the constants and implicit and
speak simply of CS matrices, meaning matrices that satisfy the
given conditions with values of parameters of the type described
by this theorem, namely, with and not depending on and
permitting the above ubiquity.

B. Near-Optimality of CS Matrices

We now show that the CS conditions imply near-optimality
of widths induced by CS matrices.

Theorem 7: Let be a sequence of problem sizes with
and . Consider a sequence of by

matrices obeying the conditions CS1–CS3 with and
positive and independent of . Then for each , there is

so that for

Proof: Consider the optimization problem

subject to

Our goal is to bound the value of

Choose so that . Let denote the indices of the
largest values in . Without loss of generality,

suppose coordinates are ordered so that comes first among
the entries, and partition . Clearly

(II.2)

while, because each entry in is at least as big as any entry in
, (I.2) gives

(II.3)

A similar argument for approximation gives, in case

(II.4)

Now . Hence, with , we have
. As and , we can

invoke CS3, getting

On the other hand, again using and
, invoke CS2, getting

Combining these with the above

with . Recalling ,
and invoking CS1 we have

In short, with

The theorem follows with

III. ALGORITHMS

Given an information operator , we must design a recon-
struction algorithm which delivers reconstructions compat-
ible in quality with the estimates for the Gel’fand -widths. As
discussed in the Introduction, the optimal method in the OR/IBC
framework is the so-called central algorithm, which unfortu-
nately, is typically not efficiently computable in our setting.
We now describe an alternate abstract approach, allowing us to
prove Theorem 1.

A. Feasible-Point Methods

Another general abstract algorithm from the OR/IBC litera-
ture is the so-called feasible-point method, which aims simply
to find any reconstruction compatible with the observed infor-
mation and constraints.

As in the case of the central algorithm, we consider, for given
information , the collection of all objects

which could have given rise to the information
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In the feasible-point method, we simply select any member of
, by whatever means. One can show, adapting standard

OR/IBC arguments in [15], [6], [8] the following.

Lemma 3.1: Let where and
is an optimal information operator, and let be any element of

. Then for

(III.1)

In short, any feasible point is within a factor two of optimal.
Proof: We first justify our claims for optimality of the cen-

tral algorithm, and then show that a feasible point is near to the
central algorithm. Let again denote the result of the central
algorithm. Now

radius

Now clearly, in the special case when is only known to lie in
and is measured, the minimax error is

exactly radius . Since this error is achieved by the
central algorithm for each such , the minimax error over all
is achieved by the central algorithm. This minimax error is

radius

Now the feasible point obeys ; hence,

radius

But the triangle inequality gives

hence, as

radius

radius

More generally, if the information operator is only near-
optimal, then the same argument gives

(III.2)

A popular choice of feasible point is to take an element of
least norm, i.e., a solution of the problem

subject to

where here is the vector of transform coefficients,
. A nice feature of this approach is that it is not necessary

to know the radius of the ball ; the element of least
norm will always lie inside it. For later use, call the solution

. By the preceding lemma, this procedure is near-minimax:

with where for given
and

B. Proof of Theorem 3

Before proceeding, it is convenient to prove Theorem 3. Note
that the case is well known in OR/IBC so we only need to
give an argument for (though it happens that our argument
works for as well). The key point will be to apply the

-triangle inequality

valid for ; this inequality is well known in interpola-
tion theory [17] through Peetre and Sparr’s work, and is easy to
verify directly.

Suppose without loss of generality that there is an optimal
subspace , which is fixed and given in this proof. As we just
saw

radius

Now

radius

so clearly . Now suppose without loss of generality that
and attain the radius bound, i.e., they satisfy
and, for center they satisfy

Then define . Set and
. By the -triangle inequality

and so

Hence . However,

so belongs to . Hence,
and

C. Proof of Theorem 1

We are now in a position to prove Theorem 1 of the
Introduction.

First, in the case , we have already explained in the
Introduction that the theorem of Garnaev and Gluskin implies
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the result by duality. In the case , we need only to
show a lower bound and an upper bound of the same order.

For the lower bound, we consider the entropy numbers, de-
fined as follows. Let be a set and let be the smallest
number such that an -net for can be built using a net of
cardinality at most . From Carl’s theorem [18]—see the ex-
position in Pisier’s book [19]—there is a constant so that
the Gel’fand -widths dominate the entropy numbers.

Secondly, the entropy numbers obey [20], [21]

At the same time, the combination of Theorems 7 and 6 shows
that

Applying now the Feasible Point method, we have

with immediate extensions to for all .
We conclude that

as was to be proven.

D. Proof of Theorem 2

Now is an opportune time to prove Theorem 2. We note that
in the case of , this is known [22]–[25]. The argument is
the same for , and we simply repeat it. Suppose that

, and consider the adaptively constructed subspace ac-
cording to whatever algorithm is in force. When the algorithm
terminates, we have an -dimensional information vector and
a subspace consisting of objects which would all give that
information vector. For all objects in , the adaptive informa-
tion therefore turns out the same. Now the minimax error asso-
ciated with that information is exactly radius ;
but this cannot be smaller than

radius

The result follows by comparing with .

IV. BASIS PURSUIT

The least-norm method of the previous section has two draw-
backs. First, it requires that one know ; we prefer an algo-
rithm which works for . Second, if , the
least-norm problem invokes a nonconvex optimization proce-
dure, and would be considered intractable. In this section, we
correct both drawbacks.

A. The Case

In the case , is a convex optimization problem.
Written in an equivalent form, with being the optimization
variable, gives

subject to

This can be formulated as a linear programming problem: let
be the by matrix . The linear program

LP subject to (IV.1)

has a solution , say, a vector in which can be partitioned
as ; then solves . The recon-
struction is . This linear program is typically consid-
ered computationally tractable. In fact, this problem has been
studied in the signal analysis literature under the name Basis
Pursuit [26]; in that work, very large-scale underdetermined
problems—e.g., with and —were solved
successfully using interior-point optimization methods.

As far as performance goes, we already know that this pro-
cedure is near-optimal in case ; from (III.2) we have the
following.

Corollary 4.1: Suppose that is an information operator
achieving, for some

then the Basis Pursuit algorithm achieves, for
all

In particular, we have a universal algorithm for dealing with
any class —i.e., any , any , any . First, apply a
near-optimal information operator; second, reconstruct by Basis
Pursuit. The result obeys

for a constant depending at most on . The
inequality can be put to use as follows. Fix . Suppose
the unknown object is known to be highly compressible,
say obeying the a priori bound , . Let

. For any such object, rather than making
measurements, we only need to make
measurements, and our reconstruction obeys

While the case is already significant and interesting, the
case is of interest because it corresponds to data
which are more highly compressible, offering more impressive
performance in Theorem 1, because the exponent
is even stronger than in the case. Later in this section,
we extend the same interpretation of to performance over

throughout .
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B. Relation Between and Minimization

The general OR/IBC theory would suggest that to handle
cases where , we would need to solve the nonconvex
optimization problem , which seems intractable. However,
in the current situation at least, a small miracle happens: solving

is again near-optimal. To understand this, we first take a
small detour, examining the relation between and the extreme
case of the spaces. Let us define

subject to

where is just the number of nonzeros in . Again, since
the work of Peetre and Sparr [16], the importance of and the
relation with for is well understood; see [17] for
more detail.

Ordinarily, solving such a problem involving the norm re-
quires combinatorial optimization; one enumerates all sparse
subsets of searching for one which allows a solu-
tion . However, when has a sparse solution,
will find it.

Theorem 8: Suppose that satisfies CS1–CS3 with given
positive constants , . There is a constant depending
only on and and not on or so that, if some solution to

has at most nonzeros, then and
both have the same unique solution.

In words, although the system of equations is massively
underdetermined, minimization and sparse solution coin-
cide—when the result is sufficiently sparse.

There is by now an extensive literature exhibiting results on
equivalence of and minimization [27]–[34]. In the early
literature on this subject, equivalence was found under condi-
tions involving sparsity constraints allowing nonzeros.
While it may seem surprising that any results of this kind are
possible, the sparsity constraint is, ultimately,
disappointingly small. A major breakthrough was the contribu-
tion of Candès, Romberg, and Tao [13] which studied the ma-
trices built by taking rows at random from an by Fourier
matrix and gave an order bound, showing that
dramatically weaker sparsity conditions were needed than the

results known previously. In [11], it was shown that
for ’nearly all’ by matrices with , equiv-
alence held for nonzeros, . The above re-
sult says effectively that for ’nearly all’ by matrices with

, equivalence held up to nonzeros,
where .

Our argument, in parallel with [11], shows that the nullspace
has a very special structure for obeying the conditions

in question. When is sparse, the only element in a given affine
subspace which can have small norm is itself.

To prove Theorem 8, we first need a lemma about the non-
sparsity of elements in the nullspace of . Let
and, for a given vector , let denote the mutilated
vector with entries . Define the concentration

This measures the fraction of norm which can be concen-
trated on a certain subset for a vector in the nullspace of . This
concentration cannot be large if is small.

Lemma 4.1: Suppose that satisfies CS1–CS3, with con-
stants and . There is a constant depending on the so
that if satisfies

then

Proof: This is a variation on the argument for Theorem 7.
Let . Assume without loss of generality that is the
most concentrated subset of cardinality , and
that the columns of are numbered so that ;
partition . We again consider , and have

. We again invoke CS2–CS3, getting

We invoke CS1, getting

Now, of course, . Combining all these

The lemma follows, setting .

Proof of Theorem 8: Suppose that and is sup-
ported on a subset .

We first show that if , is the only minimizer
of . Suppose that is a solution to , obeying

Then where . We have

Invoking the definition of twice

Now gives and we have

i.e., .
Now recall the constant of Lemma 4.1. Define so

that and . Lemma 4.1 shows that
implies .

C. Near-Optimality of Basis Pursuit for

We now return to the claimed near-optimality of Basis Pursuit
throughout the range .

Theorem 9: Suppose that satisifies CS1–CS3 with con-
stants and . There is so that a solu-
tion to a problem instance of with obeys

The proof requires an stability lemma, showing the sta-
bility of minimization under small perturbations as measured
in norm. For and stability lemmas, see [33]–[35]; how-
ever, note that those lemmas do not suffice for our needs in this
proof.
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Lemma 4.2: Let be a vector in and be the corre-
sponding mutilated vector with entries . Suppose that

where . Consider the instance of
defined by ; the solution of this instance of
obeys

(IV.2)

Proof of Lemma 4.2: Put for short , and set
. By definition of

while

As solves

and of course

Hence,

Finally

Combining the above, setting , and ,
we get

and (IV.2) follows.

Proof of Theorem 9: We use the same general framework
as in Theorem 7. Let where . Let be the
solution to , and set .

Let as in Lemma 4.1 and set . Let
index the largest amplitude entries in . From

and (II.4) we have

and Lemma 4.1 provides

Applying Lemma 4.2

(IV.3)

The vector lies in and has .
Hence,

We conclude by homogeneity that

Combining this with (IV.3),

V. IMMEDIATE EXTENSIONS

Before continuing, we mention two immediate extensions to
the results so far; they are of interest below and elsewhere.

A. Tight Frames

Our main results so far have been stated in the context of
making an orthonormal basis. In fact, the results hold for tight
frames. These are collections of vectors which, when joined to-
gether as columns in an matrix have

. It follows that, if , then we have the
Parseval relation

and the reconstruction formula . In fact, Theorems
7 and 9 only need the Parseval relation in the proof. Hence, the
same results hold without change when the relation between
and involves a tight frame. In particular, if is an matrix
satisfying CS1–CS3, then defines a near-optimal
information operator on , and solution of the optimization
problem

defines a near-optimal reconstruction algorithm .
A referee remarked that there is no need to restrict attention

to tight frames here; if we have a general frame the same results
go through, with constants involving the frame bounds. This is
true and potentially very useful, although we will not use it in
what follows.

B. Weak Balls

Our main results so far have been stated for spaces, but the
proofs hold for weak balls as well . The weak ball
of radius consists of vectors whose decreasing rearrange-
ments obey

Conversely, for a given , the smallest for which these in-
equalities all hold is defined to be the norm: . The
“weak” moniker derives from . Weak con-
straints have the following key property: if denotes a muti-
lated version of the vector with all except the largest items
set to zero, then the inequality

(V.1)

is valid for and , with . In fact,
Theorems 7 and 9 only needed (V.1) in the proof, together with
(implicitly) . Hence, we can state results for
spaces defined using only weak- norms, and the
proofs apply without change.

VI. STYLIZED APPLICATIONS

We sketch three potential applications of the above abstract
theory. In each case, we exhibit that a certain class of functions
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has expansion coefficients in a basis or frame that obey a partic-
ular or weak embedding, and then apply the above abstract
theory.

A. Bump Algebra

Consider the class of functions which
are restrictions to the unit interval of functions belonging to the
Bump Algebra [2], with bump norm . This was
mentioned in the Introduction, which observed that the wavelet
coefficients at level obey where de-
pends only on the wavelet used. Here and later we use standard
wavelet analysis notations as in [36], [37], [2].

We consider two ways of approximating functions in . In
the classic linear scheme, we fix a “finest scale” and mea-
sure the resumé coefficients where

, with a smooth function integrating to .
Think of these as point samples at scale after applying
an antialiasing filter. We reconstruct by
giving an approximation error

with depending only on the chosen wavelet. There are
coefficients associated with the unit interval, and

so the approximation error obeys

In the compressed sensing scheme, we need also wavelets
where is an oscillating function with

mean zero. We pick a coarsest scale . We measure the
resumé coefficients —there are of these—and then let

denote an enumeration of the detail wavelet coeffi-
cients . The dimension
of is . The norm satisfies

This establishes the constraint on norm needed for our theory.
We take and apply a near-optimal informa-
tion operator for this and (described in more detail later).
We apply the near-optimal algorithm of minimization, getting
the error estimate

with independent of . The overall reconstruction

has error

again with independent of . This is of the same
order of magnitude as the error of linear sampling.

The compressed sensing scheme takes a total of samples
of resumé coefficients and samples associ-
ated with detail coefficients, for a total pieces of
information. It achieves error comparable to classical sampling
based on samples. Thus, it needs dramatically fewer sam-
ples for comparable accuracy: roughly speaking, only the cube
root of the number of samples of linear sampling.

To achieve this dramatic reduction in sampling, we need an
information operator based on some satisfying CS1–CS3. The
underlying measurement kernels will be of the form

(VI.1)

where the collection is simply an enumeration of the
wavelets , with and .

B. Images of Bounded Variation

We consider now the model with images of Bounded Varia-
tion from the Introduction. Let denote the class of func-
tions with domain , having total variation at
most [38], and bounded in absolute value by as
well. In the Introduction, it was mentioned that the wavelet co-
efficients at level obey where depends only
on the wavelet used. It is also true that .

We again consider two ways of approximating functions in .
The classic linear scheme uses a 2-D version of the scheme we
have already discussed. We again fix a “finest scale” and
measure the resumé coefficients where now

is a pair of integers , . indexing
position. We use the Haar scaling function

We reconstruct by giving an approxima-
tion error

There are coefficients associated with the unit
square, and so the approximation error obeys

In the compressed sensing scheme, we need also Haar
wavelets where is an oscillating
function with mean zero which is either horizontally oriented

, vertically oriented , or diagonally oriented
. We pick a “coarsest scale” , and measure

the resumé coefficients —there are of these. Then let
be the concatenation of the detail wavelet coeffi-

cients .
The dimension of is . The norm obeys

This establishes the constraint on norm needed for applying
our theory. We take and apply a near-op-
timal information operator for this and . We apply the near-
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optimal algorithm of minimization to the resulting informa-
tion, getting the error estimate

with independent of . The overall reconstruction

has error

again with independent of . This is of the same
order of magnitude as the error of linear sampling.

The compressed sensing scheme takes a total of samples
of resumé coefficients and samples associ-
ated with detail coefficients, for a total pieces
of measured information. It achieves error comparable to clas-
sical sampling with samples. Thus, just as we have seen in
the Bump Algebra case, we need dramatically fewer samples for
comparable accuracy: roughly speaking, only the square root of
the number of samples of linear sampling.

C. Piecewise Images With Edges

We now consider an example where , and we can apply
the extensions to tight frames and to weak- mentioned earlier.
Again in the image processing setting, we use the - model
discussed in Candès and Donoho [39], [40]. Consider the col-
lection of piecewise smooth , with
values, first and second partial derivatives bounded by , away
from an exceptional set which is a union of curves having
first and second derivatives in an appropriate parametriza-
tion; the curves have total length . More colorfully, such
images are cartoons—patches of uniform smooth behavior
separated by piecewise-smooth curvilinear boundaries. They
might be reasonable models for certain kinds of technical
imagery—e.g., in radiology.

The curvelets tight frame [40] is a collection of smooth frame
elements offering a Parseval relation

and reconstruction formula

The frame elements have a multiscale organization, and frame
coefficients grouped by scale obey the weak constraint

compare [40]. For such objects, classical linear sampling at
scale by smooth 2-D scaling functions gives

This is no better than the performance of linear sampling for
the Bounded Variation case, despite the piecewise character
of ; the possible discontinuities in are responsible for the
inability of linear sampling to improve its performance over

compared to Bounded Variation.
In the compressed sensing scheme, we pick a coarsest scale

. We measure the resumé coefficients in a
smooth wavelet expansion—there are of these—and then
let denote a concatentation of the finer scale
curvelet coefficients . The dimension of

is , with due to overcompleteness of
curvelets. The weak “norm” obeys

with depending on and . This establishes the constraint on
weak norm needed for our theory. We take

and apply a near-optimal information operator for this and .
We apply the near-optimal algorithm of minimization to the
resulting information, getting the error estimate

with absolute. The overall reconstruction

has error

again with independent of . This is of the same
order of magnitude as the error of linear sampling.

The compressed sensing scheme takes a total of samples
of resumé coefficients and samples associ-
ated with detail coefficients, for a total pieces of
information. It achieves error comparable to classical sampling
based on samples. Thus, even more so than in the Bump Al-
gebra case, we need dramatically fewer samples for comparable
accuracy: roughly speaking, only the fourth root of the number
of samples of linear sampling.

VII. NEARLY ALL MATRICES ARE CS MATRICES

We may reformulate Theorem 6 as follows.

Theorem 10: Let , be a sequence of problem sizes with
, , for and . Let

be a matrix with columns drawn independently and
uniformly at random from . Then for some and

, conditions CS1–CS3 hold for with overwhelming
probability for all large .
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Indeed, note that the probability measure on induced by
sampling columns i.i.d. uniform on is exactly the natural
uniform measure on . Hence, Theorem 6 follows immedi-
ately from Theorem 10.

In effect matrices satisfying the CS conditions are so ubiq-
uitous that it is reasonable to generate them by sampling at
random from a uniform probability distribution.

The proof of Theorem 10 is conducted over Sections VII-
A–C; it proceeds by studying events , , where

CS1 Holds , etc. It will be shown that for parameters
and

then defining and , we have

Since, when occurs, our random draw has produced a ma-
trix obeying CS1–CS3 with parameters and , this proves
Theorem 10. The proof actually shows that for some ,

, ; the convergence is exponen-
tially fast.

A. Control of Minimal Eigenvalue

The following lemma allows us to choose positive constants
and so that condition CS1 holds with overwhelming

probability.

Lemma 7.1: Consider sequences of with
. Define the event

Then, for each , for sufficiently small

The proof involves three ideas. The first idea is that the event
of interest for Lemma 7.1 is representable in terms of events
indexed by individual subsets

Our plan is to bound the probability of occurrence of every .
The second idea is that for a specific subset , we get large de-

viations bounds on the minimum eigenvalue; this can be stated
as follows.

Lemma 7.2: For , let denote the event
that the minimum eigenvalue exceeds .
Then there is so that for sufficiently small and
all

uniformly in .

This was derived in [11] and in [35], using the concentration
of measure property of singular values of random matrices, e.g.,
see Szarek’s work [41], [42].

The third and final idea is that bounds for individual subsets
can control simultaneous behavior over all . This is expressed
as follows.

Lemma 7.3: Suppose we have events all obeying, for
some fixed and

for each with . Pick with
and with . Then for all

sufficiently large

for some

with

Our main goal of this subsection, Lemma 7.1, now follows
by combining these three ideas.

It remains only to prove Lemma 7.3. Let

with

We note that, by Boole’s inequality

the last inequality following because each member is of
cardinality , since , as soon as

. Also, of course

so we get . Taking as given, we get the
desired conclusion.

B. Spherical Sections Property

We now show that condition CS2 can be made overwhelm-
ingly likely for large by choice of and sufficiently small
but still positive. Our approach derives from [11], which applied
an important result from Banach space theory, the almost spher-
ical sections phenomenon. This says that slicing the unit ball in a
Banach space by intersection with an appropriate finite-dimen-
sional linear subspace will result in a slice that is effectively
spherical [43], [44]. We develop a quantitative refinement of
this principle for the norm in , showing that, with over-
whelming probability, every operator for
affords a spherical section of the ball. The basic argument we
use originates from work of Milman, Kashin, and others [44],
[10], [45]; we refine an argument in Pisier [19] and, as in [11],
draw inferences that may be novel. We conclude that not only do
almost-spherical sections exist, but they are so ubiquitous that
every with will generate them.

Definition 7.1: Let . We say that offers an -isom-
etry between and if

(VII.1)
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The following lemma shows that condition CS2 is a generic
property of matrices.

Lemma 7.4: Consider the event that every
with offers an -isometry between

and . For each , there is so that

To prove this, we first need a lemma about individual subsets
proven in [11].

Lemma 7.5: Fix . Choose so that

(VII.2)

and

(VII.3)

Choose so that

and let denote the difference between the two sides. For
a subset in , let denote the event that
furnishes an -isometry to . Then as

Now note that the event of interest for Lemma 7.4 is

to finish, apply the individual Lemma 7.5 together with the com-
bining principle in Lemma 7.3.

C. Quotient Norm Inequalities

We now show that, for , for sufficiently small
, nearly all large by matrices have property CS3. Our

argument borrows heavily from [11] which the reader may find
helpful. We here make no attempt to provide intuition or to com-
pare with closely related notions in the local theory of Banach
spaces (e.g., Milman’s Quotient of a Subspace Theorem [19]).

Let be any collection of indices in ;
is a linear subspace of , and on this subspace a subset of
possible sign patterns can be realized, i.e., sequences of ’s
generated by

CS3 will follow if we can show that for every ,
some approximation to satisfies
for .

Lemma 7.6: Uniform Sign-Pattern Embedding. Fix .
Then for , set

(VII.4)

For sufficiently small , there is an event
with , as . On this event, for each subset
with , for each sign pattern in , there
is a vector with

(VII.5)

and

(VII.6)

In words, a small multiple of any sign pattern almost
lives in the dual ball .

Before proving this result, we indicate how it gives the prop-
erty CS3; namely, that , and
imply

(VII.7)

Consider the convex optimization problem

subject to (VII.8)

This can be written as a linear program, by the same sort of con-
struction as given for (IV.1). By the duality theorem for linear
programming, the value of the primal program is at least the
value of the dual

subject to

Lemma 7.6 gives us a supply of dual-feasible vectors and hence
a lower bound on the dual program. Take ; we can
find which is dual-feasible and obeys

picking appropriately and taking into account the spherical
sections theorem, for sufficiently large , we have

; (VII.7) follows with .
1) Proof of Uniform Sign-Pattern Embedding: The proof of

Lemma 7.6 follows closely a similar result in [11] that consid-
ered the case . Our idea here is to adapt the
argument for the case to the
case, with changes reflecting the different choice of , , and the
sparsity bound . We leave out large parts of the ar-
gument, as they are identical to the corresponding parts in [11].
The bulk of our effort goes to produce the following lemma,
which demonstrates approximate embedding of a single sign
pattern in the dual ball.

Lemma 7.7: Individual Sign-Pattern Embedding. Let
, let , with , , , as in the statement of

Lemma 7.6. Let . Given a collection
, there is an iterative algorithm, described below, producing a

vector as output which obeys

(VII.9)

Let be i.i.d. uniform on ; there is an event
described below, having probability controlled by

(VII.10)

for which can be explicitly given in terms of and . On
this event

(VII.11)

Lemma 7.7 will be proven in a section of its own. We now
show that it implies Lemma 7.6.
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We recall a standard implication of so-called Vapnik–
Cervonenkis theory [46]

Notice that if , then

while also

Hence, the total number of sign patterns generated by operators
obeys

Now furnished by Lemma 7.7 is positive, so pick
with . Define

where denotes the instance of the event (called in the
statement of Lemma 7.7) generated by a specific , combi-
nation. On the event , every sign pattern associated with any

obeying is almost dual feasible. Now

which tends to zero exponentially rapidly.

D. Proof of Individual Sign-Pattern Embedding

1) An Embedding Algorithm: The companion paper [11] in-
troduced an algorithm to create a dual feasible point starting
from a nearby almost-feasible point . It worked as follows.

Let be the collection of indices with

and then set

where denotes the least-squares projector
. In effect, identify the indices where

exceeds half the forbidden level , and “kill” those
indices.

Continue this process, producing , , etc., with stage-de-
pendent thresholds successively closer to . Set

and, putting ,

If is empty, then the process terminates, and set .
Termination must occur at stage . At termination

Hence, is definitely dual feasible. The only question is how
close to it is.

2) Analysis Framework: Also in [11] bounds were devel-
oped for two key descriptors of the algorithm trajectory

and

We adapt the arguments deployed there. We define bounds
and for and , of the form

here and , where will
be defined later. We define subevents

Now define

this event implies, because

We will show that, for chosen in conjunction with

(VII.12)

This implies

and the lemma follows.

3) Large Deviations: Define the events

so that

Put

and note that this depends quite weakly on . Recall that the
event is defined in terms of and . On the event ,

. Lemma 7.1 implicitly defined a quan-
tity lowerbounding the minimum eigenvalue of
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every where . Pick so that
. Pick so that

With this choice of , when the event occurs,

Also, on , (say) for .
In [11], an analysis framework was developed in which a

family of random variables i.i.d.
was introduced, and it was shown that

and

That paper also stated two simple large deviations bounds.

Lemma 7.8: Let be i.i.d. , ,

and

Applying this, we note that the event

stated in terms of variables, is equivalent to an event

stated in terms of standard random variables, where

and

We therefore have for the inequality

Now

and

Since , the term of most concern in is
at ; the other terms are always better. Also in fact does
not depend on . Focusing now on , we may write

Recalling that and putting

we get for , and

A similar analysis holds for the ’s.

VIII. CONCLUSION

A. Summary

We have described an abstract framework for compressed
sensing of objects which can be represented as vectors .
We assume the object of interest is a priori compressible so
that for a known basis or frame and .
Starting from an by matrix with satisfying condi-
tions CS1–CS3, and with the matrix of an orthonormal basis
or tight frame underlying , we define the information
operator . Starting from the -tuple of measured
information , we reconstruct an approximation to

by solving

subject to

The proposed reconstruction rule uses convex optimization and
is computationally tractable. Also, the needed matrices satis-
fying CS1–CS3 can be constructed by random sampling from a
uniform distribution on the columns of .

We give error bounds showing that despite the apparent un-
dersampling , good accuracy reconstruction is possible
for compressible objects, and we explain the near-optimality of
these bounds using ideas from Optimal Recovery and Informa-
tion-Based Complexity. We even show that the results are stable
under small measurement errors in the data (
small). Potential applications are sketched related to imaging
and spectroscopy.

B. Alternative Formulation

We remark that the CS1–CS3 conditions are not the only way
to obtain our results. Our proof of Theorem 9 really shows the
following.

Theorem 11: Suppose that an matrix obeys the
following conditions, with constants , and

.
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A1: The maximal concentration (defined in
Section IV-B) obeys

(VIII.1)

A2: The width (defined in Section II) obeys

(VIII.2)

Let . For some and all
, the solution of obeys the estimate

In short, a different approach might exhibit operators with
good widths over balls only, and low concentration on “thin”
sets. Another way to see that the conditions CS1–CS3 can no
doubt be approached differently is to compare the results in [11],
[35]; the second paper proves results which partially overlap
those in the first, by using a different technique.

C. The Partial Fourier Ensemble

We briefly discuss two recent articles which do not fit in the
-widths tradition followed here, and so were not easy to cite

earlier with due prominence.
First, and closest to our viewpoint, is the breakthrough paper

of Candès, Romberg, and Tao [13]. This was discussed in
Section IV-B; the result of [13] showed that minimization
can be used to exactly recover sparse sequences from the
Fourier transform at randomly chosen frequencies, whenever
the sequence has fewer than nonzeros, for some

. Second is the article of Gilbert et al. [12], which
showed that a different nonlinear reconstruction algorithm can
be used to recover approximations to a vector in which is
nearly as good as the best -term approximation in norm,
using about random but nonuniform
samples in the frequency domain; here is (it seems) an upper
bound on the norm of .

These papers both point to the partial Fourier ensemble, i.e.,
the collection of matrices made by sampling rows out
of the Fourier matrix, as concrete examples of working
within the CS framework; that is, generating near-optimal sub-
spaces for Gel’fand -widths, and allowing minimization to
reconstruct from such information for all .

Now [13] (in effect) proves that if , then in the
partial Fourier ensemble with uniform measure, the maximal
concentration condition A1 (VIII.1) holds with overwhelming
probability for large (for appropriate constants ,

). On the other hand, the results in [12] seem to show that
condition A2 (VIII.2) holds in the partial Fourier ensemble with
overwhelming probability for large , when it is sampled with a
certain nonuniform probability measure. Although the two pa-
pers [13], [12] refer to different random ensembles of partial
Fourier matrices, both reinforce the idea that interesting rela-
tively concrete families of operators can be developed for com-
pressed sensing applications. In fact, Candès has informed us of
some recent results he obtained with Tao [47] indicating that,
modulo polylog factors, A2 holds for the uniformly sampled
partial Fourier ensemble. This seems a very significant advance.

Note Added in Proof

In the months since the paper was written, several groups have
conducted numerical experiments on synthetic and real data for
the method described here and related methods. They have ex-
plored applicability to important sensor problems, and studied
applications issues such as stability in the presence of noise. The
reader may wish to consult the forthcoming Special Issue on
Sparse Representation of the EURASIP journal Applied Signal
Processing, or look for papers presented at a special session in
ICASSP 2005, or the workshop on sparse representation held
in May 2005 at the University of Maryland Center for Scien-
tific Computing and Applied Mathematics, or the workshop in
November 2005 at Spars05, Université de Rennes.

A referee has pointed out that Compressed Sensing is in some
respects similar to problems arising in data stream processing,
where one wants to learn basic properties [e.g., moments, his-
togram] of a datastream without storing the stream. In short,
one wants to make relatively few measurements while infer-
ring relatively much detail. The notions of “Iceberg queries” in
large databases and “heavy hitters” in data streams may provide
points of entry into that literature.
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