Multiple-Antenna Systems
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1. Introduction

« How is it possible to build (digital) wireless communicatioystems
offering high data ratesandsmall error rates ?

« Trade-off between spectral efficiency (high data rates) and power effi-
ciency (small error rates), given fixed bandwidth & transmissiongyo

« Example:
Increase cardinality of modulation scheme Data ratef, error rate]
Decrease rate of channel code Error rate|, data rate|

« Conventional transmitter & receiver techniques operatanie domain
and/ or infrequency domain

« Idea:
Utilize multiple antennasat the transmitter and/ or the receiver
— Multiple-input multiple-output (MIMO) system
— Single-input multiple-output (SIMO) system
— Multiple-input single-output (MISO) system
= Exploit spatial domain (in addition to time/ frequency domain)
= Better trade-off between spectral efficiency and power efficiency

« Benefits of multiple antennas:
— Increased data rates by meanspétial multiplexing techniques
— Decreased error rates by meanspétial diversity techniques
— Improved signal-to-noise ratios (SNRs)/ signal-to-interference-plus-
noise ratios (SINRs) by meanslaéamforming techniques
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2. Basic Principles

2.1 Beamforming Techniques
« Goal: Improved SNRs or SINRs in multiuser scenarios
. Beamforming can be interpretedlagear filtering in the spatial domain

« Considerantenna array with N elements and directional antenna pat-
tern receiving a radio-frequency (RF) signal from a certain direction

« Due to antenna array geometry, impinging RF signal reachesrann
ements atlifferent times (underlying baseband signal does not change)
= Adjustphasesof RF signals to achieve constructive superposition
=- Corresponds teteeringof antenna pattern towards desired direction
=- Additionalweighting of RF signals can shape antenna pattern

(IV—1 degrees of freedom for placing maxima or nulls)

« Principle can also be utilized at tii@nsmitter (reciprocity)
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« Improved SNRs:
Focus antenna patterns on desired angles of reception/ tramsmis.g.,
towards line-of-sight (LoS) or significant scatteressAntenna gain

« Improved SINRs:
Steer nulls towards co-channel userdnterference suppression

« Beamforming/ smart antenna techniques thus ergidee-division
multiple access (SDMA) as an alternative to time-division or
frequency-division multiple access (TDMA/ FDMA)

« SNR/ SINR gains can be utilized tiecrease error ratesor to
increase data rategby switching to a higher-order modulation scheme)

« In practical systems directions of significant scatterers musstiemated
(e.g., MUSIC or ESPRIT algorithm); SINR can also be optiminith-
out knowing the directions of all co-channel users (Capon beamformer)

« Beamforming techniques areell establishedsince the 1960’s (origins
are in the field of radar technology); however, intensive resefoch
wireless communicationsystems started only in the 1990'’s

« Literature: An exhaustiveoverview on smart antenna techniques for
wireless communications can be found in [Godara’97]

« Final remark:
Beamforming can also be performed in baseband domain, if chaginel i
known at transmitter and receivesigen-beamforming



2.2 Spatial Multiplexing Techniques
« Goal: Increased data rates compared to single-antenna system
« Capacity of MIMO systems growisearly with min{M, N}

« At thetransmitter, the data sequence is split ilté sub-sequences that
are transmitted simultaneously using the same frequency band
= Data rate increased by factdf (multiplexing gain)

« Atthereceiver, the sub-sequences are separated by meantederence-
cancellation algorithm, e.g., linear zero-forcing (ZF)/ minimum-mean-
squared-error (MMSE) detector, maximum-likelihood (ML) detectac-
cessive interference cancellation (SIC) detector, ...

« Typically, channel knowledge requiradlelyat the receiver
« For a good erroperformance, typically N > M required
« Intensiveresearchstarted at the end of the 1990’s
« Literature: [Foschini’96]
(Tutorials can be found in [Gesbert et al.’03], [Paulraj et al.’04])
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2.3 Spatial Diversity Techniques
« Goal: Decreased error rates compared to single-antenna system

« Send/ receive multipleedundant versions of the same data sequence
and perform appropriambining (in baseband domain)
= If the redundant signals undergo statisticatiggependentfading,
it is unlikely that all signals simultaneously experienceselfade
= Spatialdiversity gain (typically, small antenna spacings sufficient)

« Receive diversity: SIMO system with/V receive antennas and linear
combining of the received signals
— Variouscombining strategies e.g., equal-gain combining (EGC),
selection combining (SC), maximum-ratio combining (MRC), ...
— Well-established since the 1950’s, see [Brennan’59]

« Transmit diversity: MISO system with)\/ transmit antennas

— Appropriatepre-processingof transmitted redundant signals to en-
ablecoherentcombining at receiver (space-time encoder/ decoder)

— Optionally, V> 1 receive antennas for enhanced performance

— Typically, channel knowledge requirasdlelyat the receiver

— Intensiveresearchstarted at the end of the 1990’s

— Well-known techniques arBlamouti’'s schemefor M = 2 transmit
antennas [Alamouti'98Jspace-time trellis codegTarokh et al.’98],
andorthogonal space-time block codeBTarokh et al.'99]

— An abundanceof transmitter/ receiver structures has been proposed
(some offer additionatoding gain)

« Literature: An exhaustiveoverview of the benefits of spatial diversity
in wireless communication systems can be found in [Diggavi.©43l
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3. Mathematical Details

3.1 System Model
« Consider avMIMO system with M transmit andV receive antennas

« Assumptions:
— Frequency non-selective fading square-root Nyquist filters at
transmitter and receiver (pulse enetgy:=1)
=- No intersymbol interference (1SI)
— Rayleigh fading(no LoS component), i.e., channel gains are
zero-mean complex Gaussian random variables

— Block fading, i.e., channel gains are invariant over complete data

block and change randomly from one block to the next

« Discrete-time channel model:
— k: Discrete time indexi(< k < N, Np block length)
— w: Transmit antenna index € < M)
— v: Receive antenna index v <N)

« Discrete-time channel model (cont'd):
— x,[k]: Transmitted symbol of transmit antenpatime indexk,

E{z,[k]} =0, E{|z,[K]|*} =07,
(Underlying information symbols are denoted:a])
— h,,: Channel gain betweemnth transmit &vth receive antenna,

By, ~CN(0,07) (iid)
(Amplitude |h,,,| is Rayleigh distributed)
— n,[k]: Additive white Gaussian noise (AWGN) sample at receive
antennav, time indexk,
n,[k] ~ CN(0,02) (ii.d)

— y,[k]: Received symbol at receive antenndime indexk

« Matrix-vector model
— Transmitted vector:x[k]:=[zy[k], ..., zas[k] ]
— Noise vector: n[k]:=[ny[k], ..., ny[k]]*
— Received vector:y|[k]:=[y1[k], ..., yn[K]]*
— Channel matrix:

hix -+ hiy
H = . . .
hyi -+ hya
= System model:
ylk] = Hx[k] + n[k] (1)



3.2 Eigen-Beamforming
« Consider aqjuadratic MIMO system withM = NV > 1 antennas

« Assume that the instantaneous realization of the channeist
perfectly known both at the transmitteand at the receiver

« Eigenvalue decompositiorof H:
H = UAU! (2)

U: Unitary (NxN)-matrix, i.e., UMU=1y

A: Diagonal (NxN)-matrix containing eigenvalues, ..., Ay of H:
AN - 0
A =diag(Ay, ..., An) = | ¢ -
0 - Ay
« SinceH is perfectly known, transmitter and receiver aaliculate the

matrix U (e.g., using the Jacobian algorithm [Golub et al.'96, Ch. 8.4])

« Eigen-beamforming:
— Instead ofk[k], transmitter sendsre-processedrectorx’[k] .= Ux[k]
— The received vectoy'[k] is post-processedis Ully’[k] =y K]

= y[k] = Ully/[k] = UNHX/[E] + n[k]) = UTHUx[k] + U'ln[k]

— UMUAURUxK + afk] = Ax[k] + nfk] = ik
= yylk] = N, [k) +ny k] forall p,v=1,..,N (3)

— Thus, assuming full rank\; #£0, ..., Ay #0) we havelN parallel
scalar channelwithout spatial interference (i.e., data rate enhanced
by factor N compared to single-antenna system)

— Noise samples, [k] arestill i.i.d. ~CN(0, o2), due to unitarity ofU
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« Transmit power allocation:
In addition, the transmit power allocated to the parallel cledsroan be
optimized, based on the instantaneous SN—T%@ (v=1,...,N)and a
certain optimization criterion

3.3 Spatial Multiplexing

« Consider aMIMO system with N > M > 1 antennas
(For N < M, the system is inherently rank-deficient)

« Assume that the instantaneous realization of the channeixmst
known solelyat the receiver

« Linear ZF detection: Received vectoy|k| is post-processeds
zzp[k] == (H'H)"H"y[k] = H'y[k] (4)
(H': Left-hand pseudo-inverse B; for M/ = N and full rank usé ')
= zyplk] = Hy[k] = H"(Hx[k] + n[k]) = x[k] + H"n[k],

i.e., spatial interferenceompletely removed however, variance of the
resulting noise samples may be significamthhanced

« Linear MMSE detection: (assume? =..=02 =:07)
Received vectoy[k] is post-processeds
Z)\IMSE Uf] = (HHH + U,QL/O':% . IJ[)ilHHy[]f] (5)

— Usuallybetter performance than ZF detection, since betitade-off
between spatial interference mitigation & noise enhancement
— For high SNR valueso¢ — 0), both detectors becongguivalent

« Performance of ZF/ MMSE detection often quiteor, unlessN > M
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« ML detection:

(] = argmingg [[y[k] — Fx[]|* (6)
— For examplebrute-force search over all possible hypothesés]
for the transmitted vectox|[]

= For Q-ary modulation scheme, there &pé’ possibilities
= Optimal detection strategy (w.r.t. ML criterion), but vecpmplex

« SIC detection:

— Good trade-off between complexity and performance
— Originally proposed in [Foschini'96] for the well-knowBLAST

scheme('Bell-Labs Larered $ace-Tme Architecture’)
— QR decompositionof H: (assumeV = M)

H:=QR (7)
Q: Unitary (NxN)-matrix, i.e., Q'Q=1Iy
R: Uppertriangular (NxN)-matrix:
T o0 TN
R =
0 - ryn

(There are various algorithms for calculating the QR decompagsitio

— Received vectoy|[k] is first post-processeds zgic[k] == Q'ly k]

= zsic[k] .= Qlly[k] = Q" (Hx[k]+n[k]) = Rx[k]+n[k] (8)

— Symbolz y[£] is not affected by spatial interference and déaectly
be detected

— Assuming that the detection ofy[k] was correct, the influence of
zx[k] can besubtracted from the(N —1)th row of (8); then symbol
xn-1[k] candirectly be detected, and soon ...
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3.4 Receive Diversity
« Consider &8IMO systemwith N receive antennas

« Assume that the instantaneous realization of thig{)-channel matrix

is perfectly known at the receiver

« Received samplet receive antenna, time indexk:

yolk] = Ry 21 [k] + n, [K]
~ hy1 ~ CN(0,07) = Amplitude|h,,|=:a, Rayleighdistributed

200, a?
v) = —— v 2 0 5 9
v =2 oo (%) @z0. O
— Instantaneous SN%::% Chi-square (x?) distributed
1 Yo
p(v) = —exp (*T) (v = 0), (10)
(1) 5 5

0202 e .
wherey := =7+ = Large probability ofsmall instantaneous SNRs

. ldea: Combine received sampleglk], ..., yx[k] to obtain more

favorable SNR distribution at combiner outpuit{.n)
— Equal-gain combining (EGC): Add up all samples

N N S
zeomp[H] = > k] = (; hy,l) 1 [k] + ) n, k]
=: Neomb = ’”’L‘Olllb[k]

= heomb~CN (0, No?), neomn|[k] ~CN (0, No?), i.e.,no gain!
= Do it coherently (h,;:=a,e%)

/ S oo S ST
Zcomb[k] = 1/2::1 € Vyl/[k} = <V2::1 aV) xl[k] + Z € an/[k]

=1 — g ]

comb

Combiner-output SNR: Yoo, = (y a)?02 /(No2)
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— Selection combining (SC): Select branch with largest instant. SNR Example: BPSK,N = 1, ...,4 receive branches
Combiner-output SNR: ~eomn = maxl,{ocg}azl/a,% = max, {7, } 1 I
—e—N=1 receive branches
— Maximum-ratio combining (MRC): o N recamve branche

—%— N=4 receive branches

N ‘ N * E - + - Alamouti's scheme (M=2, N=1) B
ceontlk] = 3 15 0K = (& 1hoal?) K]+ 5 3 '
v=1 v=1
=1 hcomb = Hmmb[k‘]

Combiner-output SNR: Yo, = (S |hw1]?)02 for = S0 7

SER

=- Maximizes combiner-output SNRpptimal w.r.t. ML criterion

« Symbol error rates (SERs) with MRC: (without derivation;-) )
~: Average SNRper receive branch

— Binary Phase-Shift Keying (BPSK) [Proakis’01, Ch. 14]

I I I I I I I I
0 2 4 6 8 10 12 14 16 18 20

Average SNR per branch (in dB)
) N—-1 1 Y
SER(7) N( - |2 ) ( ,“)i( 7) (11)
2 I+7) =0 i 2t 1+75 Asymptotic slope(i.e.,7 — co) of the curvesis-N (‘diversity orderN’)
— @Q-ary Phase-Shift KeyingiJ-PSK) [Simon et al.’00]
(Q-m 7

17 sin%p v 3.5 Transmit Diversity

SER(% — d 12
s 0/ sin?p + 7 SiHZ(TF/Q)) v (12)

« Consider aMISO systemwith M transmit antennas
— @-ary Amplitude-Shift Keying @©-ASK) [Simon et al.’00]
7 « Assume that the instantaneous realization of thé\()-channel matrix

SER(v) = 2A0-1) f( (@ d (13) is perfectly known at the receiver, butot at the transmitter
Qr ) \(Q2—1)sin’p + 37 v ISP y W Ver, :
_ Q-ary Quadrature-Amplitude Modulatio¢QAM) [Simon et al. 0] « Transmit Dlvers_ity: Su|tablepre—proce55|ng(.)fltransmltted daita
4 B Q-1) 7 sequence required to allow fooherentcombining at the receiver
2 sin
SER(Y) = = [1-—= / 5 2 dp — Example: Sendidentical signals over all transmit antennas
VR 2Q-1)sin’e + 3 >+ sendde _ |
| T Q1) sin? = No diversity gain! (corresponds to EGC without co-phasing)
1 —1)sm7p . . . . . .
— 1—— d 14 — Instead: Perform appropriate two-dimensional mapping/ encodin
w( V@) J(?(Q—l)sm%mv) oo Pprop PPIng )

in time andspace(i.e., over the transmit antennas)



15 16

« Example: Alamouti's scheme fofl/ =2 transmit antennas = Two parallel scalar channels for the symbalg:| anda[k+1]

(N =1receive antennas considered; can be extenddd+ad) (no spatial interference)
— Space-time mapping:Information symbols to be transmitted are = Corresponds tMRC with M/ =1 transmit andV =2 receive antennas;
processed in pairfa[k], a[k +1]]; at time indexk, symbola[k] is however, using the same average transmit power, Alamoutisrse
transmitted via the first antenna and symbfdl+ 1] via the second exhibits a3 dB losscompared to MRC

antenna; attime indek+1, symbol—a*[k-+1] is transmitted via the

first antenna and symbat 4] via the second antenna 4. Literature
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