
Achieving Attestation with Less Effort: An Indirect and
Configurable Approach to Integrity Reporting

Jun Ho Huh
Information Trust Institute

University of Illinois at
Urbana-Champaign

Urbana, IL, USA
jhhuh@illinois.edu

Hyoungshick Kim
Computer Laboratory

University of Cambridge
Cambridge, UK

hk331@cl.cam.ac.uk

John Lyle
Oxford University Computing

Laboratory
Oxford, UK

john.lyle@comlab.ox.ac.uk

Andrew Martin
Oxford University Computing

Laboratory
Oxford, UK

andrew.martin@comlab.ox.ac.uk

ABSTRACT
This paper proposes an indirect attestation paradigm for
verifying the trustworthiness of end user platforms. This ap-
proach overcomes several criticisms of attestation by main-
taining the user’s freedom to choose their own software con-
figurations and minimising the whitelist management over-
head for the relying party. Each user platform defines its
own acceptable software combination in terms of reference
integrity measurements, and reports the local verification
results to the relying party through a late-launched, trusted
Platform Trust Service. The relying party simply checks this
verification result and a security meta-policy that has been
used to ensure the quality of the security checks performed
locally. The Platform Trust Service is also responsible for
reporting whether this meta-policy is satisfied. By config-
uring the meta-policy, the relying party selects an indirect
attestation paradigm that best meets their high-level secu-
rity requirements.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; K.6.5
[Management of Computing and Information Sys-
tems]: Security and Protection

General Terms
Design, Security

Keywords
indirect attestation, whitelist management, security meta-
policy

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STC’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1001-7/11/10 ...$10.00.

1. INTRODUCTION
Trusted Computing (TC) provides a means to reliably re-

port the integrity of platform configurations to a remote
party – this capability is referred to as ‘remote attestation’
by the Trusted Computing Group (TCG) [2]. Remote at-
testation has often been suggested as a mechanism suitable
for authenticating user platforms: an obvious application is
a web server that verifies the user’s platform integrity and
grants access to only those running with trustworthy config-
urations. Such an attestation system can be used together
with protected key storage to build a strong two-factor au-
thentication mechanism – the user’s private signature key
can be strongly protected through a Trusted Platform Mod-
ule (TPM), which is normally a hardware chip embedded in
the motherboard.

Despite the potential security benefits, there are some in-
herent practicality and usability issues associated with attes-
tation which can be overlooked – these issues often impede
further advances in attesting/verifying user platform config-
urations in systems that manage large number of users. For
instance, one challenge of implementing attestation for an
online system such as Internet banking is the management of
application whitelists [8]. Pre-defining and validating which
configurations/combinations are acceptable and keeping the
whitelists up to date would be very costly tasks for the ser-
vice providers. Agility is another potential problem: if the
user configurations are patched, the service provider must
accept those patched systems immediately, which may be
hard to do in practice. With enforcement of these whitelists,
there is also the danger of locking the user into a particular
platform configuration – this would severely affect usabil-
ity and privacy. Moreover, the process of maintaining and
distributing Trusted Computing software (required for attes-
tation) would have to be managed efficiently and be trans-
parent to the end users. Perhaps it is these overwhelming
challenges that discourage researchers and service providers
from further exploring the idea of attesting user platform
configurations. Without further investigation, attestation in
large user-base systems may remain as a theoretical concept
forever.

It is in this spirit that we propose a configurable approach
for selecting an indirect attestation paradigm that is suitable

31

for the security needs of the service provider. Our approach
would give more freedom and privacy to the users in terms
of choosing their own acceptable platform configurations.
The costs associated with maintaining the whitelists and
performing attestation are spread to the end users, software
vendors, and security companies. We also evaluate security
and usability of the proposed indirect attestation system,
and discuss the implications of using it.

The following section explains the Trusted Computing
concepts. Section 3 explains the challenges of making attes-
tation work, and Section 4 proposes our indirect attestation
system. We then explain to what extent the whitelist man-
agement and platform locking (software freedom) issues can
be resolved in Section 5. Our conclusions are at Section 7.

2. TRUSTED COMPUTING CONCEPTS
Trusted Computing provides a means to measure the soft-

ware loaded during the platform’s boot process. Measure-
ments are taken by calculating a cryptographic hash of bina-
ries before they are executed. Hashes are stored in Platform
Configuration Registers (PCRs) in the TPM. They can only
be modified through special TPM ordinals, and the PCRs
are never directly written to; rather, measurements can only
be extended by an entity. This is to ensure that no other en-
tity can just modify or overwrite the measure value. As a re-
sult, every executable piece of code in this authenticated boot
process will be measured and PCRs extended sequentially
(transitive trust). Any malicious piece of code (e.g. rootkit)
executed during the boot process will also be recorded and
identified. A ‘PCR event log’ is created during the boot pro-
cess and stores all of the measured values (and a description
for each) externally to the TPM. These values can be ex-
tended in software to validate the contents of the event log.
The resulting hash can be compared against the reported,
signed PCR values to see if the event log is correct.

2.1 Remote attestation
Remote attestation involves the TPM reporting PCR value(s)

that are digitally signed with TPM-generated ‘Attestation
Identity Keys’ (AIKs), and allowing others to validate the
signature and the PCR contents [6]. The relying party val-
idates the signature by using the public part of the AIK
and validates the AIK with the AIK credential. The PCR
log entries are then compared against a list of ‘known-good’
reference values to check if the reported PCRs represent an
acceptable configuration. This list is often referred to as an
‘application whitelist’. Attestation can be used on a plat-
form that supports authenticated boot to verify that only
known pieces of software are running on it.

2.2 Late launch
CPUs from both Intel and AMD now allow an arbitrary

piece of code to be ‘late-launched’ [6] on an untrusted plat-
form. Starting from a dynamic root of trust (which can
be initiated anytime after platform boot), this code is exe-
cuted in a protected environment and measured without any
interference from the software currently running. On an In-
tel platform, PCRs 17-20 are reset and used to store the
measurements of the secure initiliasation (SINIT) module
and the trustworthy code to be late-launched. The SINIT
module is responsible for measuring and launching the trust-
worthy code. This enables attestation of the SINIT module
and trustworthy code. Attestation of the two components

typically involves sending a TPM Quote of PCRs 17 and 18
for an Intel platform or PCR 17 for an AMD platform. A
remote verifier checks that these PCRs were reset properly
and the hashes of the SINIT module and trustworthy code.
In Section 4.2 we discuss how a late-launched Platform Trust
Service can be used to report local security checks reliably
to the service provider.

3. WHY IS ATTESTATION DIFFICULT IN
PRACTICE?

3.1 Whitelist management issues
The reality is that people have not been able to make re-

mote attestation work properly: modern operating systems
and software are too complex and change too much. Al-
though Microsoft Windows is still the dominant operating
system, other operating systems like Linux and Mac OS X
are also widely used. Furthermore, there are hundreds and
thousands of different proprietary security software available
(e.g. anti-virus and firewall) and a service provider might
want to verify that the user is running some combination of
these. We argue that it is infeasible for the service provider
(such as the bank) to know about all different acceptable
user platform configurations (operating systems, versions,
and security software) and maintain the whitelist efficiently.

To make matters worse, this service provider would have
to additionally manage old versions of operating systems
and applications, since not all users update their systems in
a timely manner. On top of this, the service provider might
also want to verify the integrity of important configuration
files. It is not just about the size of whitelists, but also the
huge effort that needs to go into discovering new acceptable
configurations and combinations, and keeping them up to
date.

This is the first problem: no service provider
would pay the cost of managing such activities
and maintaining huge whitelists for enhancing se-
curity.

3.2 Platform locking issues
At first glance, mandating certain security configurations

might seem like a practical solution to the whitelist manage-
ment problems: the service provider would select a number
of configurations that they consider trustworthy and force
the users to use them to access their service. However, man-
dating the use of proprietary security software can impose
severe usability and compatibility penalties, and must be
treated with caution. There is the danger of locking peo-
ple into a particular platform, depriving them of the option
of using an online service via their choice of browser, op-
erating system, and security software. A good example of
this is the South Korean Internet banking system [7]: in or-
der to use Internet banking, the users are obliged to install
some number of proprietary security software such as anti-
virus, firewall, and keystroke encryption software that are
provided by the bank. These are typically installed on the
user’s machine in the form of ActiveX plugins. As a result,
the users can only use Microsoft Internet Explorer to do In-
ternet banking and have no option but to use Windows as
their main operating system.

Likewise, mandating certain security configurations to fa-
cilitate meaningful attestation will have similar implications.

32

To most users, this concept of being obliged to use certain
platform configurations, on their own PCs, is likely to be un-
acceptable. Due to poor usability and compatibility, some
users may even move away to other banks that provide more
compatible and open Internet banking services. Hence, no
bank – unless required by some state law – would take this
kind of risk just to improve security.

This is the second problem: most users will not
tolerate the inconvenience of being obliged to use
a certain configuration, and the service providers
would be reluctant to frustrate their users to the
extent that they might decide to use another ser-
vice.

Moreover, insisting on certain platform configurations means
that attackers know exactly what to look for vulnerabilities
in, potentially making them less secure than they would
otherwise be. With these issues in mind, the next sec-
tion proposes a compromise solution for attestation that
allows the users to select their own acceptable security soft-
ware/configuration to use.

4. INDIRECT ATTESTATION PARADIGM
SELECTION

We propose an indirect attestation system which allows
users to set their own security policy and attest their confor-
mance to relying service providers. Service providers are also
able to configure and check certain high-level meta-policies
about the user’s security policy, without finding out exactly
what it contains. By configuring the meta-policies, service
providers select an indirect attestation paradigm that best
meets their security needs as well as their clients’ usability
expectations.

4.1 User security policies
User security policies take the form of program execution

rules and govern the identity of software trusted to run on
the user’s platform. For example, one form of policy would
be a whitelist of programs trusted by the user. Another
policy would be to specify which vendors of software are
trusted, and then allow the platform to run any program
which has a Reference Integrity Measurement (RIM) signed
by them. A combination of these would allow the user to
create a policy approving only a subset of the software signed
by a certain vendor.

More complicated policies are also possible. A whitelist
could be specified only up to a certain stage in the boot
process – for example, until after the operating system is
loaded – and then any software may be used. Alternatively,
all applications running with super-user privilege might need
to be whitelisted after the kernel, but all normal software
may be unrestricted. There are numerous possibilities which
could be explored as future work.

Perhaps a more important issue is how and by whom the
security policies are created. The system we propose allows
for the user to have complete control over their security pol-
icy. However, some users may prefer delegating the manage-
ment to a trusted authority, such as an anti-virus company
or ISP. In this case we imagine the trusted authorities reg-
ularly providing a signed whitelist of trusted software to be
used as the security policy. Another alternative might be
the provision of security policy templates, which allow the
user to select the specific programs they trust.

4.2 Basic Attestation System
An overview of the proposed attestation system is shown

in Figure 1. The key principle behind this system is that
the relying service provider does not check the vast major-
ity of the user’s platform integrity measurements or nec-
essarily insist on a specific operating system and software.
Instead, the service provider checks that a known ‘Platform
Trust Service’ (PTS) [1] component has been late-launched
(see Section 2.2). The PTS is given the responsibility for
checking the platform’s other PCR values against the user-
selected RIMs contained in the security policy. The service
provider checks that the PTS has been run, that it has re-
ported a ‘PCR values OK’ type of response, and that it
is using an acceptable security meta-policy (see Section 4.3
for more details). The following protocol shows how the
user and service provider interact. The AIK certificate is
labelled as {cert(AIK)}PCA, noncesp is a nonce generated
by the service provider (SP), PCR17−20 is the attestation
of the value of PCRs 17 to 20, PCR Log17−20 is the integrity
measurement log for PCRs 17-20, and meta-policy is the
meta-policy description. The basic attestation protocol is
taken from Sailer et al. [10] and we assume that all commu-
nication takes place using transport-layer security:

1. User −→ SP : Login Request , {cert(AIK)}PCA

2. SP −→ User : noncesp
3. User −→ SP : {PCR17−20 , noncesp}AIK ,

PCRLog17−20 , meta-policy

At this stage, the service provider does all the usual checks
including verifying the signatures on the AIK certificate,
nonce and PCR values. Then the integrity measurement
log for PCRs 17-20 is checked to make sure that a trusted
PTS was properly late-launched – this log is checked against
a fairly static and small list of known-good measurements for
the PTS and SINIT module (see Section 2.2) that are man-
aged by the service provider. The integrity of the PTS indi-
cates the correctness of the reported security check/result.
To minimise the chances of being compromised at runtime,
the PTS should be designed as a small and simple piece soft-
ware that only manges the following functions. First, it will
check the user platform’s PCRs against the user’s security
policy. Then it will extend into the PCRs the hash of any as-
sertions made in the meta-policy, such as ‘policy updated in
the last month’ or ‘policy signed by authority X’1 and check
that the security policy satisfies the meta policy. It will then
extend the result of this check: either a ‘PCR values OK’ or
a ‘PCR invalid’ string. When the service provider receives
the verified PCR log, it needs to check that it just consists
of a ‘PCR values OK’ result and an acceptable meta-policy.
This check would ensure the integrity of the user platform
configuration to the extent specified in the security policy as
well as the conformance with the meta-policy. Following a
successful platform authentication, the service provider can
go on to request authentication of the user as per normal.

4.3 Platform Trust Service and security meta-
policies

As mentioned in the previous section, the Platform Trust
Service is late-launched in this scenario to check the plat-
form’s PCRs against a user-defined security policy. It can

1The precise vocabulary of the security policies and meta-
policies is left as future work.

33

Figure 1: Indirect attestation overview. The late-launched Platform Trust Service is responsible for perform-
ing local configuration verification and reliably reporting the results to the service provider.

also check that the user’s policy conforms with certain se-
curity meta-policies. These are designed to give the relying
service provider more information about the user’s platform
without requiring them to use only software trusted by the
service provider or compromising the user’s privacy. We sug-
gest the following meta-policies (listed in order of specificity)
which provide useful security information.

P1. Non-trivial whitelisting
A whitelist is being checked by the PTS and this whitelist
is non-trivially satisfied – i.e. the whitelist does not allow
all software to be run and is of a reasonable size; this policy
may also indicate that everything up to the OS kernel must
be whitelisted.

P2. Whitelist signed by trusted authorities
A whitelist is being used by the platform and either this
whitelist is signed by a trusted authority (the meta policy
could state the authority) or each reference measurement in
the whitelist is signed by a number of trusted authorities
(again, stated in the meta policy). The service provider
might be interested in knowing who the authority is, or
whether it is one of the authorities on their list of trusted
authorities.

P3. Recently updated security policy
The user has a security policy which has been updated after
a given date. This could be implemented in a number of
ways, but the easiest would be if the policy was signed by
a trusted authority who also includes a timestamp. User-
defined policies can also be timestamped (see ‘policy prove-
nance’ below).

P4. Policy provenance
The meta-policy could also refer to the provenance of the
user’s security policy. This is required when the user does
not use a whitelist signed by a trusted authority, but chooses
his or her own selection of trusted software. How can the
service provider know that the user created the whitelist,
rather than a piece of malware running on the user’s plat-
form?

Clearly the solution is not to check the policy itself: the
user must remain free to choose any security policy, even one

that some might consider to be insecure. Instead, we pro-
pose that the policy is demonstrated to have been updated
only through trusted software, the RIM Manager (see Fig-
ure 1). This can be late-launched like the Platform Trust
Service and provide an interface for users to change the list
of parties who are trusted to sign RIMs.

The RIM Manager would finish by creating a TPM Quote
containing the platform’s PCR values and the hash of the
created policy. If a timestamp is required, this could also be
included by contacting a trusted external time server and
using the TPM’s tick counter.

P5. Trusted kernel and pre-kernel boot sequence
The meta-policy contains the identity of all the software
which is used in the boot sequence up to and including the
kernel. Following this, a whitelist is used but the content of
it remains confidential. This works if the service provider
believes that the operating system and boot sequence con-
tains the full TCB of the platform. As a further elaboration,
the meta-policy could state that all applications run with
super-user privilege are also on a disclosed whitelist.

P6. Enforcing certain type of applications
This meta-policy states the type of security-critical applica-
tions that needs to be installed and loaded during the initial
boot. For instance, a service provider might require that an
anti-virus software and firewall are loaded on the user plat-
form, without specifying the exact software. The integrity
measurement log can be used to capture the type of soft-
ware that has been loaded/measured – this information can
be used by the PTS to check whether all of the required type
of software has been loaded properly.

P7. Enforcing certain security configurations
Certain security configurations may also be stated as part
of the meta-policy. For instance, a service provider might
want to check that the automatic update feature is enabled
on the user’s OS and anti-virus software. This would be
useful for specifying a more fine-grained set of security re-
quirements. To satisfy this policy, the PTS would have to
be equipped with a mechanism to scrutinize certain parts of
the configuration files (or registries in Windows).

We imagine that some combination of these policies would

34

be used to build up and enforce different levels of security
requirements. For instance, policies like P5 and P6 can be
used together to ensure that a trusted kernel as well as anti-
virus software and firewall are loaded on the user platform.

5. OBSERVATIONS

5.1 How the costs are spread
The usefulness of the proposed attestation system lies in

the benefit each party gains from using it versus the as-
sociated costs. The user gains the ability to have a third
party assess their system and report on whether their secu-
rity policies are being implemented. This is possible, but
difficult for users to do for themselves without a trusted ex-
ternal hardware token [5]. The costs to the user involve
having a platform capable of late launch, and the overhead
of managing a security policy. This may be negligible if the
policy is provided by a trusted authority, but might be oner-
ous otherwise. The service provider gains additional infor-
mation about the user’s platform state, and provides extra
value (or a better service) for the user who may be willing
to pay for the benefit. Moreover, the service provider can
also check the security policy for conformance with meta-
policies of varying levels of granularity. The cost to the ser-
vice provider is minimal: they require knowledge of a small
amount of trusted software, plus any trusted parties involved
in the process. They may also need to provide support to
the user if their platform fails the attestation verification.

5.2 What indirect attestation achieves
In Section 3 we identified whitelist management and plat-

form locking as the two key problems of attestation. Based
on the meta-policies suggested in Section 4.3, Table 1 eval-
uates to what extent these problems can be resolved using
the proposed attestation system and what security proper-
ties can be ensured.

5.3 Security evaluation
As Table 1 shows, enforcing different level of meta-policies

will have different security implications. A service provider
might only enforce P1, indicating that everything up to the
OS kernel level as well as all applications running with super-
user privilege must be measured and verified. Conforming to
this meta-policy, the attestation result will guarantee that
the user’s choice of platform configuration, up to the OS
kernel level, is integrity protected. Moreover, it will show
that all privileged applications are integrity protected. Such
a result, however, does not give much indication as to how
secure and up to date the platform configuration is. For
instance, a user might decide to miss a few security-critical
updates on the OS. As long as the integrity of this old version
of OS is verified, the PTS will report a ‘PCR values OK’
response to the service provider. In consequence, the user is
never locked into a particular platform configuration.

Meta-policies like P6 and P7 can be enforced in addition to
P1 to provide more security assurance of the user platform.
For instance, P6may indicate that an anti-virus software and
firewall must be loaded during boot time, and P7 might state
that the automatic-update feature must be enabled on both
the OS and anti-virus software. These extra policies would
provide much more security assurance of the user platform
than merely using P1, but may require the user to install
new pieces of software and change settings. Alternatively,

enforcing P2 would allow the service provider to rely on the
trusted third parties to correctly verify the user’s security
policy and essential security properties that must be met.

Some service providers, that operate in a more controlled
user environment, may feel the need to enforce P5, publish-
ing a list of trusted OS measurements that the user may
choose from. The user would end up installing an OS ver-
sion that has been listed by the service provider, but would
still be able to use their choice of applications from the OS
level up. Combining P5 with policies like P6 and P7 can give
chain of trust as far as to the browser, ignoring all other soft-
ware running. Such a combined meta-policy would ensure
a highly secure environment on the user platform, but only
with some level of platform locking as discussed in Table 1.

5.4 Integration with mobile reference archi-
tecture

Our system and the mobile reference architecture [3] share
some similarities in distributing the signed RIMs through
trusted authorities. What is missing in the mobile archi-
tecture is a trusted reporting component, the late-launched
PTS in our model, that would report the local secure boot
results to relying parties in a trustworthy manner. Hence,
we believe the ideas for late launching the PTS – perhaps
after going through some generalisation – could be applied
to the mobile architecture, enabling high assurance mobile
services without placing any heavy burden on the service
providers.

6. RELATED WORK
Sadeghi and Christian Stüble [9] have proposed Property-

Based Attestation (PBA), which provides a level of indi-
rection between integrity reporting and the evaluation of a
platform’s trustworthiness so that properties are attested
rather than binary hashes. There are a range of imple-
mentation options, one of which is to have a trusted third
party provide property certificates linking reference integrity
measurements to properties [9]. PBA can be implemented
in our system by having meta-policies signed by a trusted
party which specify certain property to integrity measure-
ment mappings, and then having the PTS locally check for
this property. PBA, however, cannot support many of our
meta-policies, including P1 and P4, and does not allow the
user to specify their own security-policy (i.e. the whitelist).
Furthermore, our approach integrates the PTS which can
look at policies referring to fine-grained platform properties,
as described in P6 and P7.

Local verification of trusted computing platforms has been
proposed by Ali et al. [4]. Their local verification mecha-
nism records system calls to identify with a high probability
whether a runtime attack has occurred. However, this also
requires users to agree in advance on their software configu-
rations and so the problems that our approach attempts to
solve are quite different. Seshadri et al. [11] have proposed
SecVisor, which is a small hypervisor that is late-launched
to protect the code integrity of kernels and ensure that only
approved code can execute in kernel mode. The notion of
relying on a late-launched component to perform a set of
trusted operations locally runs commonly through SecVisor
and our solution; but the set of operations that are man-
aged by our PTS and SecVisor are, again, quite different
and designed based on different security requirements.

35

Policy Security properties Whitelist management Platform locking
P1 It may indicate that the user is only

running software from a whitelist of
a size below certain number.

The user manages one security policy that
includes a software whitelist; the service
provider does not manage any whitelist.

No platform locking issue.

P2 Ensures that the user’s security pol-
icy that represents the user’s plat-
form configuration is verified and
signed by one or more trusted author-
ities.

The user manages one software whitelist;
the service provider does not manage any
whitelist; each trusted authority manages
some portion of the RIMs.

No platform locking issue.

P3 Ensures that the user’s RIMs are up
to date.

The user manages one software whitelist;
the service provider does not manage any
whitelist.

No platform locking issue.

P4 Ensures that the user-defined
whitelist has not been tampered
with.

The user manages one software whitelist;
the service provider does not manage any
whitelist.

No platform locking issue.

P5 Trusted kernel can be loaded. The user manages one software whitelist ex-
cluding the OS kernel measurements; the
service provider manages the trusted OS
kernel measurements.

The user may be locked into cer-
tain OS trusted by the service
provider.

P6 The use of certain types of security-
critical applications (e.g. anti-virus
software) can be ensured.

The user manages one software whitelist;
the service provider does not manage any
whitelist.

Certain types of applications can
be mandated.

P7 Important security set-
tings/configurations can be ensured,
e.g. enabling automatic-update on
the OS.

The user manages one software whitelist;
the service provider does not manage any
whitelist.

Certain software configurations
can be mandated.

Table 1: Evaluation of whitelist management and platform locking problems

7. CONCLUSIONS
Attestation does not work well in large user-base systems

due to the associated whitelist management costs and the
danger of locking users into certain platform configurations.
We proposed an indirect attestation system that spreads
the whitelist management overheads – which would other-
wise all fall on the service provider – among the users, soft-
ware vendors and security companies (trusted third parties).
Each user defines their own acceptable platform configura-
tion in terms of the reference integrity measurements. Upon
attestation, a late-launched Platform Trust Service checks
whether the current platform configuration matches these
reference values, and reports this local verification result to
the service provider. Additionally, the Platform Trust Ser-
vice checks that the user’s local whitelist conforms with high-
level meta-policies defined by the service provider. Config-
uring the meta-policies allows the service provider to select
a suitable indirection attestation paradigm to be used. The
service provider merely examines the reported verification
result and conformance with its meta-policies in order to au-
thenticate the user platform. Instead of obliging the user to
configure their platform in one particular way and checking
whether they have, our system verifies whether the integrity
of the user’s choice of configuration has been maintained.

The proposed attestation system explores one suitable
compromise between the whitelist management overheads,
usability and security. We hope that our work would pro-
vide some initiatives for further discussion and investigation
of similar ideas for making attestation more manageable in
large user-base systems.

8. REFERENCES
[1] TCG Infrastructure Working Group Platform Trust

Services Interface Specification (IF-PTS). Specification
version 1.0, November 2006.

[2] Trusted computing group backgrounder.

https://www.trustedcomputinggroup.org/about/, October
2006.

[3] TCG Mobile Reference Architecture. Specification version
1.0, June 2007.

[4] T. Ali, M. Nauman, and X. Zhang. On leveraging
stochastic models for remote attestation. In INTRUST
2010: Proceedings of the 2nd International Conference on
Trusted Systems, 2010.

[5] E. Bangerter, M. Djackov, and A.-R. Sadeghi. A
Demonstrative Ad Hoc Attestation System. In V. R.
Tzong-Chen Wu, Chin-Laung Lei and D.-T. Lee, editors,
ISC ’08: Proceedings of the 11th International Conference
on Information Security, volume 5222 of Lecture Notes in
Computer Science, pages 17–30, Taipei, Taiwan, September
2008. Springer.

[6] D. Grawrock. Dynamics of a Trusted Platform. Intel Press,
February 2009.

[7] H. Kim, J. H. Huh, and R. Anderson. On the Security of
Internet Banking in South Korea. Technical Report
RR-10-01, OUCL, March 2010.

[8] A. Lee-Thorp. Attestation in Trusted Computing:
Challenges and Potential Solutions. Technical report, Royal
Holloway,2010.

[9] A.-R. Sadeghi and C. Stüble. Property-based Attestation
for Computing Platforms: Caring About Properties, Not
Mechanisms. In NSPW ’04: Proceedings of the 2004
Workshop on New Security Paradigms, pages 67–77, New
York, NY, USA, 2004. ACM.

[10] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design
and implementation of a TCG-based integrity measurement
architecture. In USENIX Security Symposium, volume 13,
pages 223–238. USENIX Association, 2004.

[11] A. Seshadri, M. Luk, N. Qu, and A. Perrig. SecVisor: a
tiny hypervisor to provide lifetime kernel code integrity for
commodity OSes. In Proceedings of twenty-first ACM
SIGOPS symposium on Operating systems principles,
pages 335–350, New York, NY, USA, 2007. ACM.

36

https://www.trustedcomputinggroup.org/about/

	Introduction
	Trusted Computing concepts
	Remote attestation
	Late launch

	Why is attestation difficult in practice?
	Whitelist management issues
	Platform locking issues

	Indirect attestation paradigm selection
	User security policies
	Basic Attestation System
	Platform Trust Service and security meta-policies

	Observations
	How the costs are spread
	What indirect attestation achieves
	Security evaluation
	Integration with mobile reference architecture

	Related work
	Conclusions
	References

