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Abstract – This paper investigates the use of wavelet 
decomposition of the electroencephalogram (EEG) to assess the 
hypnotic state of anesthetized patients undergoing surgery. A 
single case study and a comparison with an existing monitor of 
hypnosis are presented. The proposed technique can 
differentiate clearly between the anesthetized state and the 
awake “baseline” state. 

I.  INTRODUCTION 

Prys-Roberts has defined the state of anesthesia as “the 
state in which, as a result of drug-induced unconsciousness, 
the patient neither perceives nor recalls noxious stimuli” [1]. 
Loss of cognition and awareness characterizes the sleep-like 
state of unconsciousness. Although the mechanisms of 
hypnosis and anesthesia are different [2], hypnosis is a major 
component of anesthesia. The need for a monitor of 
anesthesia has arisen with the use of neuromuscular blocking 
agents and vasoactive drugs. Such a monitor may provide 
anesthetists with a guide for titration of anesthetic drugs, 
avoiding overdosing and intraoperative awareness. Numerous 
studies have explored this field (refer to [3] for a complete 
review) since the first observation in the late 1930’s of the 
effect of “narcotics” or general depressant drugs on the EEG 
[4]. EEG-based indices that correlate with the anesthetic state 
have received a great deal of attention [5].  

In the early 1990’s, a research team observed that the 
phase information usually discarded in classical power 
spectral analysis, might contain relevant information 
concerning the patient’s hypnotic state. Using bispectral 
analysis to quantify the phase coupling of specific frequency 
components, they accurately characterize the hypnotic depth 
[6]. The Bispectral Index Scale (BIS, Aspect Medical Inc.) 
is a commercially available monitor used for assessing 
anesthesia since 1996. This monitor measures the patient’s 
EEG and displays a number scaled from 100 to 0 
representing the hypnotic state. A value of 100 represents the 
awake state, whereas an index between 40 and 60 signifies 
general anesthesia [7].  

While bispectral analysis provides the most accurate and 
reliable index, clinical practice has shown that some lag 
exists between the change of the anesthetic state and the 

changes in the BIS. Although the BIS monitor is already 
being used with success in the operating room, an index 
reacting faster to clinical changes is desirable.  

Wavelets have generated great interest in the biomedical 
field [8]. Their very low computational complexity [9] 
associated with time-frequency localization properties, make 
them particularly well suited for the analysis of non-
stationary signals such as the EEG. Also, they have been 
successfully used as a diagnostic tool to discriminate between 
different states [10] and for the detection of particular 
patterns in a given signal [11]. Hence, it appears that 
wavelets can provide a suitable instrument in deriving an 
index of hypnosis from EEG signals.  

In the following section, we present a brief account of 
standard dyadic wavelet decomposition and wavelet packets. 
We refer interested readers to [12-14] for a thorough 
introduction to wavelet theory and filter banks. The third 
section focuses on the methodology used to analyze and 
classify EEG epochs. Based on this analysis, we have derived 
an index – referred to as WAV index. Finally, we present a 
single case study and compare the proposed wavelet index to 
the BIS, emphasizing the faster response of the WAV 
index.  

II.  OVERVIEW OF WAVELET DECOMPOSITION 

Wavelets are classes of functions with properties suitable 
for the analysis of a wide spectrum of signals often found in 
engineering and biomedical applications. They can be viewed 
as a generalization of Fourier analysis that introduces time 
localization in addition to frequency properties of a signal. 
Thus, wavelets are capable of capturing signal features like 
breakpoints, discontinuities as well as general trends and self-
similarity, unmeasured by other techniques.  

Non-stationary or transitory features characterize most 
signals of interest. Fourier analysis is not suitable for 
capturing these features because it discards all time 
information. To alleviate this problem, Gabor (1946) 
introduced Fourier signal analysis through a time window of 
fixed size (Short-Time Fourier Transform - STFT). Wavelet 
analysis goes further and uses a variable-sized windowing, 
hence achieving time-frequency localization. Wavelets are 



 

 

classes of wave-like functions with a finite number of 
oscillations, an effective length of finite duration and no DC 
component. They tend to be irregular and asymmetric, and 
facilitate better analysis of signals composed of fast changes.   

A. Standard Wavelet Dyadic Decomposition 

Wavelet analysis represents a signal as a weighted sum of 
shifted and scaled versions of the original wavelet, without 
any loss of information. For efficient analysis, scales and 
shifts take discrete values based on powers of two (dyadic 
decomposition). This leads to octave band signal 
decomposition (Fig. 3a). For implementation, filter bank and 
quadrature mirror filters are utilized for a hierarchical signal 
decomposition, in which a given signal is decomposed by a 
series of low- and high-pass filters followed by 
downsampling at each stage (Fig. 1). This analysis is referred 
to as discrete wavelet transform (DWT).  

The particular structure of the filters is determined by the 
wavelet used for data analysis and by the conditions imposed 
for a perfect reconstruction of the original signal. The 
approximation is the output of the low-pass filter, while the 
detail is the output of the high-pass filter. In a dyadic 
multiresolution analysis, the decomposition process is 
iterated such that the approximations are successively 
decomposed. The original signal can be reconstructed from 
its details and approximation at each stage, e.g., for a 3-level 
signal decomposition, a signal S can be written as 
S=A3+D3+D2+D1 (Fig. 2a). The decomposition proceeds until 
the individual details consist of a single sample.  

The nature of the process generates a set of vectors a3, d3, 
d2, and d1, containing the corresponding coefficients. These 
vectors are of different lengths, based on powers of two (see 
Fig. 1). These coefficients are the projection of the signal 
onto the wavelet at a given scale; they contain signal 
information at different frequency bands (a3, d3, d2, and d1) 
determined by the filter bank frequency response. As 
expected, these bands are of unequal widths (see Figs. 1 and 
3.a).  

B.  Wavelet packet analysis 

Despite its high efficiency for signal analysis, standard 
discrete wavelet decomposition does not provide sufficient 
flexibility for a narrow frequency bandwidth data analysis 
(Fig. 3a). Wavelet packets, as a generalization of standard 

DWT, alleviate this problem. At each stage, details as well as 
approximations are further decomposed into low and high 
frequency signal components. Figure 2.b shows the wavelet 
packet decomposition tree. Accordingly, a given signal can 
be written in a more flexible way than provided by the 
standard dyadic decomposition; e.g., at level 3 we have 
S=A1+AD2+ADD3+DDD3, where DDD3 is the signal 
component of the narrow high frequency band ddd3. Wavelet 
packet analysis results in signal decomposition with equal 
frequency bandwidths at each level of decomposition. This 
also leads to an equal number of the approximation and 
details coefficients, a desirable feature for data analysis and 
information extraction. Figure 3.b illustrates frequency bands 
for the 3-level wavelet packet decomposition. 

III.  METHODOLOGY 

This section presents the methodology used to classify the 
EEG according to the hypnotic state of the patient. The 
proposed technique is based on the wavelet decomposition of 
the EEG. Statistical information correlated to the hypnotic 
state is derived from the wavelet coefficients and integrated 
into an index of hypnosis. We first discuss the selection of 
the wavelet filter, which brings the highest degree of 
discrimination between the awake baseline state and the 
anesthetized state. 

In order to focus more exactly on the phase and frequency 
content of the EEG, rather than its amplitude, each EEG 
epoch is normalized prior to analysis. 
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A. A Mathematical Approach to Feature Extraction 

Our feature extraction technique is based on the analysis 
of two distinct EEG signals. The first signal was obtained 
from a healthy awake subject, while the second signal was 
recorded after induction and during surgery from a different 
subject. The signals were sampled at 128 Hz and low-pass 
filtered. They both contained 60=M  epochs of 128 samples 
with no apparent artifacts. These two signals form two 
training data sets that have sufficient information allowing us 
to discriminate the awake baseline state from the anesthetized 
state. These data sets can be written as: 
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where the vectors ,k•x  contain 128=N  samples 
representing the kth epoch of either the awake or anesthetized 
data set.  

To characterize the data sets, we then can extract a 
particular feature from each epoch. Let us define the feature 
extraction function, f  as: 
 kkk ff ,,, )(: ••• =→ fxx  (2) 

For each epoch k,•x  we associate a feature k,•f , which can 
be either a scalar or a vector. We then characterize a 
particular state by averaging the set }{ ,k•f  over the 
corresponding training data set. This sires two averaged 
features wf  and af  defined as: 
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These are representatives of the awake and the anesthetized 
state. In order to assess the hypnotic state of a patient, it is 
sufficient to record the patient’s EEG and calculate the 
feature f for each epoch. Comparing this value to wf  and af , 
we can then determine the likelihood for the patient to be 
either awake or anesthetized. Hence, we define two indexes 

wi  (awake) and ai  (anesthetized) such that: 
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where the norm 1 .  is defined as: 
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The norm 
1 .  accurately quantifies the difference between f 

and •f  by integrating the distance between the two vectors. 
Higher degree norms can be used for this analysis. However, 
they would emphasize large differences and lead to a noisier 

index. Note that due to the definition of the norm, wi  and ai  
are not complementary. 

B. Selected Feature 

The main difficulty is obviously the selection of an 
appropriate function f. As mentioned in the previous section, 
each EEG epoch can be decomposed using dyadic DWT into 
a set of coefficients a  and dj: 

 { }Ljj L2,1  ,};{ =→ dax  (6) 

where L is the level of decomposition. Each vector dj  
represents the detail of the signal in a specific frequency 
band, dj, and a  is the signal approximation at the highest 
level of decomposition. As for the feature used to 
characterize each EEG epoch, we selected the Probability 
Density Function (PDF) of a chosen wavelet detail band  dj: 

 )PDF()(: jff dfxx ==→  (7) 

This choice is motivated by the fact that PDF does not 
emphasize large nor small coefficients and, conversely, tends 
to focus more on the general content of each wavelet 
decomposition band. This property is indeed interesting when 
dealing with noise-like signals such as EEG. Other statistical 
functions, such as the variance or standard deviation of the 
wavelet coefficients, can also be considered.  

C. Best Wavelet Selection 

Another difficulty arises when selecting an appropriate 
wavelet filter and choosing the best detail coefficient vector 
dj for carrying out the analysis. To compare the effectiveness 
of different wavelets, we then introduce the discrimination 
parameter D: 

 
1waD ff −=  (8) 

The discrimination parameter, D, quantifies the difference 
between wf  and af . Obviously, to better distinguish between 
the awake and anesthetized states, we need to maximize D, 
i.e., select the wavelet filter and coefficient band that gives 
the highest value for D. 

D. Application and Results 

The best wavelet selection method has been applied to the 
training data sets. The sets have been processed to derive the 
averaged features wf  and af  and D . The search spanned 
different wavelet filters, wavelet families (Daubechies, 
Coiflets, Symmlets, biorthogonal and reverse biorthogonal), 
and levels of decomposition.  

This analysis using standard dyadic decomposition and 
the Daubechies wavelet family has clearly singled out the 
PDF of the band d1 as the most discriminating. This result is 
interesting since the d1 band corresponds to the detail in the 
32-64 Hz frequency range.  

In neurophysiology, this particular frequency band, 
referred to as the γ-band, often is discarded in classical power 



 

 

spectral analysis since it carries a very small amount of the 
EEG energy. However, recent findings in brain research 
imply that sensory information transits mostly in this 
particular band [15]. Our results tend to confirm this 
observation. Figure 4 illustrates the probability density 
functions characterizing the awake and anesthetized states. 

We have reached a similar conclusion from results using 
wavelet packets. Using a 3-level decomposition, the best 
wavelet selection algorithm selected the band dda3 (48-
56 Hz) as the most discriminating, in conjunction with the 
wavelet filter Daubechies #8. 

IV – CASE STUDY 

This section illustrates the BIS (version 3.4) and the 
EEG-based wavelet monitoring of a single case study of a 
patient subjected to anesthetic procedures. Anesthesia was 

induced using an intravenous anesthetic and maintained using 
inhalational anesthetics. The proposed wavelet-based 
technique for assessing the hypnotic depth was applied using 
the wavelet filters selected in the previous section. 

A.  Dyadic Wavelet Decomposition 

Each epoch extracted from the EEG was first filtered 
through the high-pass wavelet filter. Once the coefficients 
were obtained, the probability density function was 
calculated and compared to the average PDFs of the awake 
and anesthetized state, obtained in the previous section. The 
comparison yielded the indices wi  and ai , which were 
smoothed by averaging over a period of 15s and further 
combined to derive the wavelet index as follows: 
 ( ) biia wa +−⋅=WAV  (9) 

where a and b are scaling and stretching factors calculated so 
that 1WAV =  represents the awake baseline state, and 

5.0WAV =  represents the anesthetized state.  
Results using standard dyadic decomposition are 

presented in Fig. 5. The wavelet filter Daubechies #14 and 
the detail band d1 were selected for the analysis. There is a 
strong correlation between the bispectral and the wavelet 
index. However, some deviation between the indices is also 
evident. For instance, the deep hypnotic state induced prior to 
intubation and surgery is poorly estimated by the wavelet 
analysis. Furthermore, the WAV index is noisier, compared 
to the BIS. 

As shown in Fig. 6, the main advantage of the WAV 
index is an ability to better predict large hypnotic changes 
such as the emergence from the anesthetized state. With 
dyadic wavelet decomposition, the WAV index detected 
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Fig.  4.   Probability Density Function of wavelet coefficients 
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events that were approximately 30s ahead of the BIS. 
Another advantage of using wavelet analysis lies in the very 
low computational complexity of the wavelet decomposition 
algorithm [9]; the processing of one EEG epoch of 1s takes 
about 0.03 seconds using Matlab (Mathworks Inc.) 
programming and a modern computer (Pentium III – 850 
MHz). 

B.  Wavelet Packets 

Using wavelet packet analysis, we selected the wavelet 
filter Daubechies #8 as well as the detail band dda3. The 
results presented in Fig. 5 show that wavelet packets seem to 
have better potential for representing the intermediate states, 
as well as the deep hypnotic state. There is also a large lead 
of 25s (see Fig. 6). 

CONCLUSION 

In this work, we have clearly demonstrated the usefulness 
of wavelet decomposition of EEG for estimating the hypnotic 
depth. Results have shown that the WAV index correlates 
closely to the BIS index while providing a lead time of 
approximately 30s. Also, the WAV index requires a very low 
algorithmic complexity. Further, neither large subject pool 
nor extensive training data sets were needed for its tuning. 

However, the wavelet index was designed as an on/off 
index, and as such failed to capture precisely intermediate 
states of sedation and deeper hypnotic states. The wavelet 
index obtained using wavelet packets seems to be more 
promising but at the cost of a slight increase in computational 
complexity. 

Obviously, these results need to be verified by extensive 
clinical studies (currently underway). We are currently 
developing a wavelet-based index that exhibits graded 
changes with different concentrations of general anesthetics. 
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