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Abstract

Temperature control of processes that involve the heating and cooling of a closed
batch reactor can be a real problem for conventional Proportional-Integral-Derivative
(PID) based loop controllers. This paper describes the application of a new indus-
trial advanced process controller. This controller is designed to handle integrating
type processes with long dead times and long time constants. The results demon-
strate that reactors that could previously only be operated manually can be easily
automated using an adaptive model predictive control technology. The barrier to au-
tomation of the reactor batch controls can be now removed resulting in tremendous
improvements in batch consistency, batch cycle times, and productivity.
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1 Introduction

Control of processes involving the heating and cooling of a closed batch reactor
are a real problem for conventional Proportional-Integral-Derivative (PID)
based loop controllers, due to the reduced stability margins typical for these
applications. These processes exhibit long dead times and time constants and
have an integrating response due to the circulation of the heating or cooling
medium through coils within the reactor or jackets on the outside of it.

The advanced controller described in this paper has the ability to model and
control marginally stable processes with long and time varying delays. This
controller exhibits the ability to incorporate and model the effect of known
and unknown disturbances. The field application results presented are demon-
strating that reactors which could previously only be operated manually can
now automated using model predictive control technology. The barrier to au-
tomation of the reactor batch controls is removed resulting in improvements
in batch consistency, batch cycle times and productivity.

A number of industrial applications of advanced control methods are reported
for batch processes. The limitations of these schemes are fundamentally con-
nected with the application. These schemes lack the generality required to
solve batch reactor industrial control in an unified manner. Schemes previ-
ously proposed for this application include conventional feedback control with
feed forward compensation [3], gain scheduling or multiple models [4,5], generic
internal model control [6] and adaptive regulators [7,8]. The typical batch pro-
cess variables evolve over a wide range therefore time linear invariant models
tend to fail in describing completely the process dynamics. Few authors are
looking into these challenges from the perspective of predictive control [9–12].
Some authors [13,14] are reporting applied adaptive control techniques. How-
ever, a potential problem of their approach can arise from the identification
scheme adopted (e.g. the use of ARMAX models limits the generality of the
approach). Also, in the case of grey box models used, as in [13], an intimate
knowledge of the plant is required.

The paper content is split in six sections. After the introduction containing
achievements to date in the second section the theory behind dynamic mod-
elling and control is addressed. The third section describes the process to be
controlled. In the fourth section the results concerning the controlled process
are provided. Other successful applications are encompassed in section five
followed by conclusions in section six.
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2 The adaptive predictive control strategy

Based on an original theoretical development by Dumont et al. [26,21] the
controller was first developed for self regulating systems. This controller was
credited by various users with features like reduced effort required to obtain
accurate process models, inclusion of adaptive feed forward compensation and
ability to cope with severe changes in the process etc.

These features together with a recognized need in process control industry
made the authors of this paper consider a further development of the control
strategy for a controller capable of dealing with integrating systems with delay
in the presence of unknown output disturbances. The result of these investiga-
tions was an indirect adaptive controller based on on-line identification using
an orthonormal series representation together with a model based predictive
controller.

2.1 Laguerre modelling for integrating time delay systems

Several indirect adaptive control schemes using black box models have been
applied on a batch reactor by a number of researchers. No information about
the detailed chemical or physical process occurring in the system has been
considered. This approach in process control was justified by the difficulty
associated with obtaining an analytical model. The common solution employed
ARMA models. This solution is associated with a number of problems at the
level of the estimation accuracy. Also, if the ARMA model has a smaller
order than the plant, the estimation of its parameters depends on the input
dynamics, hence in some cases the resulting model can be unstable. ARMA
modelling proved to be sensitive to plant model input and output scaling.

The discrete time Laguerre functions identification is avoiding most of the
above shortcomings. Continuous Laguerre functions have a history of engi-
neering applications of almost fifty years [19,20]. The motivation of using them
as a basis is generated by the simple Laplace representation. Also, we should
emphasize their orthogonality as a main advantage. Special care is applied
when digitizing the continuous Laguerre model, as in [21].

Choosing a modified sample and hold that suits our purpose:

Ghold(s) =
esT − 2 + e−sT

Ts2
(1)

where Ghold(s) approximates a continuous function signal by a line between
two sampling points for a given sampling time T .
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The result of using this hold in the discrete state space is: l(k + 1) = Al(k) +
Bu(k) where A and B are part of the Laguerre Network and are described by:
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τ1= e−pT (4)
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The system output y(k) = Cl(k) can be obtained as a weighted sum of the
Laguerre filters outputs, see Fig. 1. As a result a simple recursive least squares
(RLS) identification can be used to solve the optimization problem of choosing
the best fit of the Laguerre network to match the process dynamic response.
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Fig. 1. The Discrete Time Laguerre Network of a Self-Regulating System

An essential issue is that this state space, reflecting the self regulating dynamic
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system response, is stable, observable and controllable for a given pole a. This
is a significant advantage if such a model is to be obtained on-line also in the
case of a stability proof. The natural downside of this approach is that we can
estimate only self-regulating systems. A further derivation of this algorithm is
needed to cope with linear time invariant integrating systems.

The pole of the continuous Laguerre function transfers into a pole of the
discrete time system located at a, usually called the time scale of the system.
An exact z-domain transfer function representation can be given for the state
space above defined:

Li(z) =

√

(1− a2)

z − a

(

1− az

z − a

)i−1

(8)

The plant model accuracy at crossover frequency is very important from the
perspective of the closed loop system transient response. A a good choice for
the Laguerre pole will be in that frequency region. Further the choice of the
discrete Laguerre function pole can be restricted to a fixed value providing a
good choice for the system sampling rate T . Choosing an appropriate sampling
time the time scale of the system will be changed. This is part of the solution
adopted in the case of the real time implementation when for reasons like
speed of the computation, a fixed choice for the pole is required.

The next step in building the Laguerre network relies on the fact that any
causal and asymptotically stable sampled linear system G(z) can be expressed
as:

G(z) =
∞
∑

i=1

ciLi(z) (9)

The Laguerre based identification algorithm proposed employs a number of
free parameters upon which the designer has control. For practical reasons
the discrete Laguerre plant model has to use a finite number of filters. In
our implementation the maximum number is N = 15, therefore G(z) will be
approximated by Ĝ(z) defined as:

Ĝ(z) =
N
∑

i=1

ciLi(z) (10)

Hence, note that a Laguerre model can be always transformed into a transfer
function but a general transfer function can only be approximated by a finite
Laguerre orthonormal basis. In a similar fashion, as in the case of a Pade
approximation, the dead time of the process is well modelled by a Laguerre
network, depending on its number of filters. A tradeoff has been observed,
when modelling a system, between dead-time modelling accuracy and the
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model settling time. Too many filters will result in a long process model settling
time.

A real time implementation being sought, a database with the state space
representations for several choices of dead-time and time constant but fixed
pole in the case of simple first order systems, was build and stored. This data
base is used during reset and startup procedures of the commercial controller
and reflects best this compromise.

In the case of an integrating system we have knowledge of the existence of the
integrator both in the plant and/or the disturbance model. In order to use a
discrete time Laguerre network suitable for self regulating systems our option
is to account just for the evolution of the stable part of the plant. Hence, the
integrating characteristic removed through a differentiator.

To produce an initial model for control, used also in the identification process
as a starting point, the steady state behavior is requested for the process vari-
able. In the case of an integrating system steady state is achieved only when
the contribution of the plant and the disturbance into the process variable
(PV) are matching. For this reason a method to remove the integrating char-
acteristic of the response has been developed. To estimate if the plant is at
equilibrium a batch least squares is used to determine the integrating process
slope. If this slope is smaller than the threshold the plant is therefore assumed
at equilibrium and learning started.

2.2 Real time predictive control method

It is known that the concept of predictive control involves the repeated opti-
mization of a performance objective (11) over a finite horizon extending from
a future time (N1) up to a prediction horizon (N2) [23,24].

Figure 2 characterizes the way prediction is used within the MBPC control
strategy. Given a set-point s(k + l), a reference r(k + l) is produced by pre-
filtering and is used within the MBPC cost function (11):

J(k) =
N2
∑

l=N1

‖(ŷ(k + l)− r(k + l)‖2
Q(l) +

Nu−1
∑

l=0

‖∆u(k + l)‖2
R(l) (11)

Manipulating the control variable u(k+ l), over the control horizon (Nu), the
algorithm, as a result of an optimization drives the predicted output ŷ(k+ l),
over the prediction horizon, towards the reference.

In normal operation the weights Q(l) and R(l) are independent of k. The norm
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‖.‖2
Q within the cost function is defined as ‖x‖

2
Q = xTQx. For prediction it is

assumed that ∆u(k + l) = 0 for l≥Nu. The prediction model is based on the
current representation of the plant model. As formulated, the optimization is
a quadratic programming (QP) problem, and can be solved using standard
algorithms. In the absence of constraints the problem resumes to a simple
least squares (LS) problem.

k+Nu k+N1 k+N2k-n k k+1 k+l

y(k)=r(k)

SET POINT

REFERENCE

r(k+l)
PREDICTED OUTPUT

CONTROL HORIZON - Nu

MINIMUM OUTPUT HORIZON - N1

MAXIMUM OUTPUT HORIZON - N2

PAST FUTURE

u(k+l)
MANIPULATED

INPUT
CONSTANT INPUT

k-2 k-1

Fig. 2. The MBPC prediction strategy

In the case of the advanced controller implementation, a simplified version of
the MBPC algorithm designed to ensure a real time implementation of the
whole indirect adaptive scheme, based on a sampling time as low as 0.1 s for 32
loops simultaneously has been used. Input constraints are managed through
a local anti-windup scheme. It is considered [25] that anti-windup has almost
similar performance with constrained MBPC for a wide range of plants and
control objectives.

The main argument favoring the use of predictive control instead of a conven-
tional passive state or output feedback control technique is its simplicity in
handling plant model changes.

The simplified version, a certainty principle based controller, is characterized
by the fact that the N2 steps ahead output prediction (y(k +N2) is assumed
to have reached the reference trajectory value r(k + N2). As shown in Fig. 2
a first order reference trajectory filter can be employed to define the N2 steps
ahead set-point for the predictive controller (r(k +N2)):

r(k +N2) = αN2y(k) + (1− αN2)s(k)
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In other words we can write:

r(k +N2) = ŷ(k +N2)= y(k +N2) + yd(k +N2) + yf (k +N2) (12)

where d and f are corresponding to the effect of unmeasured and measured
disturbance, respectively. Making an essential assumption that the future com-
mand stays unchanged: u(k) = u(k + 1) = · · · = u(k +N2) then the N2 steps
ahead predictor becomes:

y(k +N2)= y(k − 1) + δ(k)l(k) + δd(k)ld(k) + δf (k)lf (k) + βd(k)ûd(k) +

βf (k)uf (k) + β(k)u(k) (13)

where δ(k, δd(k), δf (k), β(k), βd(k) and βf (k) are dependent on the state
and observation matrix of the plant, known and unknown disturbance models,
respectively. Note that here u(k) is unknown, ud(k) (the estimated disturbance
model input) is estimated and uf (k) (the measured disturbance model input)
is measured.

It is obvious from the above definitions that if a designer is not looking beyond
the dead time of the system β∗ is zero. One must choose N2 such that β is of
the same sign as the process static gain and of sufficiently large amplitude. A
possible criterion to be satisfied when choosing the horizon N2 is:

β(k)sign(C(k)(I − A)−1B) ≥ ε|C(k)(I − A)−1B| (14)

with ε = 0.5. Note that in the simple case of a minimum variance controller
the matrix (I − A)−1B can be computed off-line as it depends only on the
Laguerre filters. Additional computation has to be carried on-line since the
models (i.e their Laguerre coefficients: C(k), Cf (k) and Cd(k)) are changing.

Solving the control equation (12) for the required control input u(k) we have:

u(k)= β(k)−1(yr(k +N2)− (y(k − 1) + δ(k)l(k) + yd(k − 1)δd(k)ld(k) +

+yf (k − 1) + δf (k)lf (k) + βd(k)ûd(k) + βf (k)uf (k)))

To track ramp references, in the spirit of internal model control, the plant
model needs to be augmented with an integrator. Such references are quite
common in the case of batch reactors. The integrator is used directly in the
controller output:

u(k)=u(k) + i(k)

i(k)= i(k − 1) + γki(r(k)− y(k))
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where γ has a nonlinear characteristic to carefully account for a number of
updates when the augmented integrator is active following a set-point change.
This strategy has been employed since this controller is to be applied to a wide
variety of processes among which only a few have ramping set-points. For step
set-points and to improve the controller’s stability margins this integrator
term is not directly required.

Further the plant, disturbance and feedforward states are updated allowing
the computation of the output estimations ŷ(k), ŷf (k) and ŷd(k). The input
to the unknown disturbance model is estimated as:

ûd(k + 1) = ŷ(k) + ŷf (k) + ŷd(k)− y(k) (15)

2.3 The indirect adaptive predictive control solution

When compared with classic or robust control techniques, adaptive control
has a number of features. Such algorithms provide: i)on-line corrections of the
model function of the changes in the plant dynamics, reducing the system
sensitivity; ii) simple structure and design; iii)an attractive solution for auto-
matic tuning of process control loops; iv)control performance for systems with
unknown parameters

In model based control the plant model has to be identified in order to pro-
duce a control action. Using the discrete time Laguerre model we observe that
the weights ci of each individual Laguerre orthonormal term arranged in the
matrix C, for a given pole and number of filters, can be selected to approxi-
mate the plant or disturbance model. A modified recursive least square (RLS)
algorithm to estimate these parameters is employed. The RLS procedure is
used at each time step to obtain the parameter vector together with the co-
variance matrices. This procedure is minimizing the memory usage since no
matrix inverse, old input, output or Laguerre coefficients data is stored. The
properties of the least squares algorithm (i.e. the non-biased estimation when
no model structure error and white measurement noise) are readily transferred
to the recursive algorithm, see [27]. In the case of no correlation between the
output measurement noise and the input sequence the bias is guaranteed zero.
Enough excitation (e.g. through set-point changes) can ensure fulfillment of
this condition. In [28] a condition for a signal to be sufficiently rich is stated.

When we approximate a nonlinear system by a linear model and when the
operating condition changes the approximated model parameters also change.
To correctly estimate the model parameters the assumption that their rate of
change is slower than the sampling time is required. The forgetting factor (i.e.
an exponentially decaying weight) is added to the measured data sets (e.g.
heavy weighting is assigned to the most recent data due to its importance,
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versus a small weight in the case of older data).

The core of the recursive least squares algorithm is the update of the covariance
matrix:

P (k + 1)=
1

λ

[

P (k)−
P (k)l(k + 1)l(k + 1)TP (k)

λ+ l(k + 1)TP (k)l(k + 1)

]

+ µI + νP (k)2 (16)

This update includes the additional terms weighted by µ and ν for improved
stability of the estimation, see [29], and is repeated in a similar manner for
Pf (k + 1) and Pd(k + 1). Through the introduction of the two additional
terms µI and νP (k)2 covariance matrix resetting and boundeness is achieved,
respectively, see [29].

Finally the model estimate is obtained by adding a correction to the previous
estimate. The correction is proportional to the difference between the real
output of the plant or disturbance and its prediction based on the previous
parameter estimate:

C(k + 1)=C(k) +
αP (k)l(k + 1)

λ+ l(k + 1)TP (k)l(k + 1)
e(k)

(17)

This procedure is repeated in a similar manner for the matrices of Laguerre
coefficients: Cf (k+1) and Cd(k+1). Typical values for these parameters used
inside the controller are α = 0.1, λ ∈ [0.9, 0.99], µ = 0.001 and ν = 0.001. Note
that for a constant input the state update will reproduce the previous state and
therefore the Laguerre coefficients will be unchanged. This mechanism avoids
convergence to wrong values when there is no process persistent excitation.
The algorithm is expected to converge if the model error is small and the input
signal ”rich” enough.

For better performance we had to extend further the on-line identification
scheme and account for unmeasured disturbances. It is recognized that distur-
bances can i)affect the system output; ii)be involved as loads at the plant in-
put; iii)added in the middle of a process. In the former two cases the measured
effect is obtained filtered through a transfer function that includes completely
or partially the model. Based on the definition of the disturbance and the
plant model we can always locate the disturbance effect at the plant output.

The practical issue raised by this approach is: ”How can we estimate the
sequence used as an input to the unknown disturbance model?”. Our approach
assumes that the unknown ûd(k) is estimated as in equation (15) In practice
the steps leading to the computation of ud(k) are iterated a number of times
at reset for fast convergence.
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The complete learning procedure involves an update for the plant and known
and unknown disturbance models state estimates based on their corresponding
models. Knowing the model states, the plant and known and unknown dis-
turbance models outputs are updated. Often the unknown disturbance model
is fixed to predefined values reflecting the type of disturbance possible to en-
counter.

In performing the on-line model identification the controller checks if: i) the
modelling flag is enabled, ii) the process variable (PV) y(k) is within the
learning range and iii) a set point (SP) s(k) change in ”auto” mode or a
control variable (CV) u(k) change in ”manual” mode exceeding predefined
thresholds has occurred.

Industrial reality has generated the requirement for the indirect adaptive pre-
dictive controller to have the capability of switching the models used for con-
trol. The control law is computed at each time instant hence for the most
general case issues of stability and the convergence of the method become
paramount. In [1] these issues are partially addressed. The multi-model scheme
is using a hysteresis type switching to avoid instability.

Fig. 3. The closed loop of the advanced control system applied to the batch reactor

The closed loop system depicted in Figure 3 is implemented in C++ and
runs on the WindowsTM 2000 operating system. An OLE for process control
(called OPC server) is used to communicate to the existent Distributed Control
System (DCS). Logic was programmed in the DCS device to allow operation
from the existing operator console. The operator can select between manual,
PID (DCS) or advanced control modes.
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3 A batch reactor processes

The chemical batch reactor in this application is used to produce various
polyester compounds. The process involves combining the reagents and then
applying heat to the mixture in order to control the reactions and result-
ing products. A specific temperature profile sequence for the batch reaction
must be followed to ensure that the exothermic reactions occur in a controlled
fashion and that the resulting products will have consistent properties. An ad-
ditional requirement is that the reaction rates must be controlled to limit the
production of waste gases that must be incinerated to the design capacity of
the incinerator. The potential of an uncontrolled exothermic reaction is present
in some batches and proper temperature control is critical to regulating these
reactions and preventing explosions.

TE TIC

R2 CIRCUIT

HX HEAT

HX COOL

R2 SUPPLY

BATCH

REACTOR

Fig. 4. The simplified scheme of a batch reactor system

The reactor operates in a temperature range between 70 and 220 F ◦ and is
heated by circulating a fluid (DowTherm-G) through coils on the outside of
the reactor. This fluid is in turn heated by a natural gas burner to a temper-
ature in the range of 500 F ◦. The reactor temperature control loop monitors
temperature inside the reactor and manipulates the flow of the DowTherm
fluid to the reactor jacket. Increasing the flow increases heat transfer rate to
the reactor. It is also possible to cool the reactor by closing the valves on
the heat circuit and by re-circulating the DowTherm fluid through a second
heat exchanger. Cooling is normally only done when the batch is complete
to facilitate product handling. Refer to Figure 4 for a simplified schematic
of the system. The temperature response of the reactor and the temperature
response of the DowTherm fluid at the outlet of the reactor jacket coils are
shown in Figure 5.
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Fig. 5. The batch reactor system response under manual control

The process engineers at the plant made several unsuccessful attempts to au-
tomate control of the reactor temperature using a conventional PID controller.
The reactor temperature is difficult to control because of the long dead time
(about 8 minutes) and long time constant (about 18 minutes) associated with
heating the reactor from the outside. This is further complicated because the
system essentially behaves as an integrator due to the accumulation of heat
in the reactor and is therefore only marginally stable in open loop. PID con-
trollers are not well suited for systems with such response characteristics and
can be very difficult to tune for closed loop stability. The reactor was controlled
manually by experienced operators and requires constant attention to ensure
that a correct temperature profile and resulting reaction rates are correct.

The reactor temperature is stable only if the heat input to the reactor equals
the heat losses. If the DowTherm flow is set even slightly higher than this
equilibrium point, the reactor temperature will rise at a constant rate until
reactor temperature limits are exceeded. The equilibrium point changes dur-
ing the batch due to heat produced by the exothermic reactions (less heat
input required to maintain reactor temperature) and the production of vapors
(more heat input to maintain reactor temperature). During the final phase of
the batch, the exothermic reactions are complete and the vapor production
gradually falls almost to zero. Very little heat input is required to maintain
reactor temperature during this phase.

For a better understanding of the plant dynamics the control strategy devel-
oped by the operators is revealed. From experience, the DowTherm flow is
initially set to a nominal value (17% to 19%) that will cause a slow rise in the
reactor temperature. The rate of rise is not constant due to the changes in
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heat requirements that occur during the batch. If the rate of rise is too fast as
to cause an overload of the vapor incinerator or so slow as to stall the temper-
ature rise required to follow the batch profile then the operator will intervene
and adjust the flow up or down by 2% to 4%. Otherwise the temperature
ramp rate that results from the set DowTherm flow is accepted. During the
final phase of the batch, the equilibrium point for the system changes from
a DowTherm flow of about 15% to almost 0%. The operators manage this
phase by setting the flow to either 20% if the reactor temperature is below
set point or 0% if the reactor temperature is above set point because these
settings will guarantee that the reactor temperature will move in the desired
direction. This control method results in oscillation of the reactor temperature
about the set point and requires constant attention by the operator.

In order to reduce the batch cycle time and improve product consistency,
the plant desired to automate the temperature profile control sequence. The
inability to obtain automatic closed loop control of the reactor temperature
was a barrier to batch sequence automation.

4 Application results

The advanced model based controller was implemented on the reactor tem-
perature control loop. The controller parameters were estimated from the ob-
served system response from a previous batch and an approximate model of
the system was developed in the controller using 15 Laguerre filters. There
was some concern that a single model of the system may not be valid for the
entire batch sequence because the composition and viscosity of the polyester
in the reactor changes substantially during the batch. The first attempt was
based on a single model of the reactor response and the control performance
was found to be very good. The controller was left in place and has since been
controlling the reactor temperature in automatic.

The integrating type response of the reactor is apparent from the control
actions made by the controller as the reactor temperature follows the set point
to higher temperature operating points with a final control output at 0%.
Note that the batch sequence was suspended and the controller was placed in
manual mode for a short time due to a water supply problem at the plant. The
batch sequence was later resumed and the controller was placed in automatic
for the rest of the batch.

A chart of the temperature control performance of the advanced controller
during an entire batch is shown in Figure 6.

The operators now adjust temperature profile set point instead of the DowTherm
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flow. Complete automation of the batch sequence including automatic set
point ramp generation for the reactor temperature is now possible.

Fig. 6. The batch reactor system response under automatic control

Operation of the reactor is further improved because the rate of vapor produc-
tion is significantly more constant due to the improved control of the reactor
temperature. This helps to avoid overloading of the vapor incinerator and
possible violation of environmental emission regulations due to incomplete
combustion of the process waste gases.

5 Other successful applications

The model based predictive controller has been implemented on many other
industrial processes involving significant time delays. Control of pulp bleach-
ing to achieve a desired brightness following a 40 minute reaction time in
a retention tower is among them. In this example, the mill had designed a
Smith Predictor compensated PID controller and the model predictive con-
troller was installed to compare performance. The results of this application
demonstrated a 48% reduction in pulp brightness standard deviation when
using the adaptive model based controller.

Another successful example is the control of excess oxygen to the Claus sulfur
recovery process. This process is commonly used by oil and gas refineries to re-
cover sulphur which is a by-product of the refining process. Control of oxygen
is critical to maximize recovery and reduce sulfur emissions as it effects the
stoichiometries of the reaction. Oxygen is adjusted to maintain the concentra-
tion of the hydrogen sulfide and the sulfur dioxide at a ratio of 2:1 at the last
stage of the Claus reactor. In this example the refinery used a PID controller
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with a feed forward calculation for air demand based on flow of the process
stream. The adaptive model based predictive controller was also configured to
model the process stream flow as a feed forward variable. The process time
delay was about 90 seconds with a time constant of about 60 seconds. The
advanced controller achieved a 38% reduction in standard deviation of the
hydrogen sulfide to sulfur dioxide ratio compared to the PID control scheme.
The improved control resulted in a 0.2 to 0.3 % increase in sulfur recovery.

6 Conclusions

An advanced model based predictive controller MBPC developed for use on
processes with an integrating response exhibiting long dead time and time
constants has been successfully applied to the temperature control of a batch
reactor. The controller was easy to apply and configure. It has achieved very
good control performance on a reactor that could not be controller in a satis-
factory manner using PID controls implemented in the plant DCS.

The automatic control of the reactor temperature now enables the plant to
reduce batch cycle time, to increase plant productivity and to improve product
quality and consistency through an automated batch sequencer.
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