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Abstract

The focal point of this paper is to develop a measure of
closed-loop nonlinearity. In this work, the Vinnicombe met-
ric and the Quasi-Linear Parameter Varying representation
of a nonlinear system are exploited for this purpose. It is
expected that the proposed measure can serve as a decision
making tool for control engineers when considering whether
a linear or a nonlinear control strategy should be employed
to close the loop.

1 Introduction

Almost all processes are inherently nonlinear, however, this
does not require the use of nonlinear control. For instance,
[15] has shown that the control of a continuous stirred tank
reactor (CSTR) temperature over a wide operating range
can be achieved by using a single linear controller, in spite
of its well known highly nonlinear behavior. Similar obser-
vations are also found in [4].

Feedback control normally employed to handle uncertainty,
plant/model mismatch and noise attenuation, is also known
to modify closed-loop nonlinearity. Measuring open-loop
nonlinearity gives little information on the severity of
closed-loop nonlinearity. Therefore, a systematic approach
to quantify closed-loop nonlinearity is needed in order to
check the adequacy of a linear controller before any at-
tempts of using a nonlinear controller are made.

Over the past few decades, various linearity tests were pro-
posed [1, 2, 3, 8, 12, 13]. However, most of them are mea-
suring open-loop nonlinearity and are restricted to open-
loop stable systems. Recently, several attempts have been
made to tackle the quantification of closed-loop nonlinear-
ity [4, 9]. Particularly, [4] proposes a measure based on the
distance between a closed-loop containing a nonlinear pro-
cess and a linear controller, and an ideal linear closed-loop.
Albeit started independently, our approach is philosoph-
ically similar to that of [4]. In contrast to [4], the gap
between the graphs (i.e. all bounded input-output pairs)
of a nonlinear operator and its linear approximation is ex-
ploited in this work.

The gap metric framework has been first introduced to the
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control community by Zames and El-Sakkary [19] and later
popularized by T.T. Georgiou and M.C. Smith, see [5, 6, 7].
The advantages of using the gap metric are that the re-
sulting closed-loop nonlinearity measure is not restricted
to any specific types of uncertainty representations such
as additive or multiplicative, and it can handle open-loop
unstable systems. In this work we show that when the non-
linear system can be approximated by a set of linear models
representing the local dynamics of the systems at different
operating points, the Vinnicombe (or v-gap, denote by d,,)
metric can be used to measure the closed-loop nonlinearity.

Since its debut, the v-gap metric notion has attracted much
attention particularly in robust control and system identi-
fication. Like the gap metric, the v-gap metric measures
the aperture of two closed Hilbert sub-spaces representing
the graphs of two linear (possibly unbounded) operators.
However, the strength of the v-gap metric, as compared
to the gap metric, lies in the fact that it gives the least
conservative robust stability results whenever a homotopy
condition is satisfied [16]. In this sense if the v-gap between
two plants is big, then a controller that gives satisfactory
robust stability for one plant will show poor robust stability
or even destablize the other plant. Likewise, if the v-gap
between two plants is small, then a controller which guar-
antees robust stability of one plant implies that it robustly
stabilizes the other.

This work, assumes that the difference between a closed-
loop containing a nonlinear plant and a unity feedback and
an ideal linear closed-loop with a unity feedback is mainly
due to closed-loop nonlinearity. This implies that these
two closed-loops are subject to the same disturbances and
noises injected at the same points in the loops. If the closed-
loop nonlinearity (in gap terms, the uncertainty induced by
the nonlinearity) is insignificant relative to what the best
controller can cope with, then the closed-loop nonlinearity
is said to be manageable by a linear controller. Otherwise,
the closed-loop nonlinearity is significant, thus, the control
design engineer might want to consider a nonlinear control
strategy.

In this approach, the v-gap metric is used to quantify the
degree of closed-loop nonlinearity. To do so, the nonlinear
plant is first decomposed into a set of linear models rep-
resenting the nonlinear plant’s local dynamics. Then the
v-gap metrics of all the possible pairs in the member set



are computed. The best nominal model in the sense that
it induces the smallest uncertainty ball is the one with the
smallest v-gap. The radius of this uncertainty ball is simply
the maximum v-gap in the member set. Since it is obvious
that closed-loop nonlinearity not only depends on the plant
itself, but also is a function of the controller, a linear con-
troller is needed to assess the degree of nonlinearity. If the
maximum v-gap is smaller than what the best linear con-
troller can cope with (which is typically measured in terms
of the generalized stability margin), then this controller is
claimed to maintain the closed-loop stability of the nonlin-
ear plant. This means, in other words, that the closed-loop
nonlinearity is manageable by a linear controller. Of course
any statements about performance would be still conserva-
tive. Note that, at the best of authors’ knowledge, none
of the metrics mentioned above are exploited to provide a
reliable closed-loop nonlinearity measure, hence, the v-gap
metric is used here in a completely novel context.

A nonlinear model (or operator), which captures the sys-
tem’s nonlinearity, is crucial for the success of the proposed
measure. In this light, the focal point of this paper is to
develop an indirect closed-loop nonlinearity measure by ex-
ploiting the v-gap metric notion and the special structure
of systems which admit a Quasi-LPV transformation.

This paper is organized as follows. Section 2 starts with
notations used in this paper followed by a brief review on
the Quasi-LPV representation and some preliminary results
on the Quasi-LPV coprime factorizations together with a
brief introduction to the 7%, loop-shaping controller de-
sign procedure for completeness. Next, the Quasi-LPV v-
gap metric and a computational algorithm are presented
in Section 3. In Section 4, an example involving a missile
control problem is used to illustrate the proposed measure.
Finally, some concluding remarks are drawn in Section 5.

2 Notation and Preliminaries

The notation used in this paper is standard: %5 is the finite
energy signal space and f; denotes signals in %[0, c0).
G*(s) = GT(—s). (-) and wno denote the maximum sin-
gular value and winding number, respectively. The schedul-
ing parameter space is denoted by by 2. In this sense,
Sq denotes all causal, Q. stable, finite-dimensional Quasi-
LPV systems defined in 2. S;, represents the elements in
Sq that have causal inverses. [P, C] denotes the standard
closed-loop containing the plant P and the controller C.

2.1 Quasi-LPV Transformation

Any plant exhibiting an output nonlinearity such as the
one in Eq.(1)

d 1p A(p)11 A(p)12 p Bi(p)
- — + | ) + | 1
dt L} ¢(P) [A(P)m A(P)m} [Z} [32(/))} “ ( )

can be recast into a Quasi-LPV representation as shown in
Eq.(2) provided that z.4(p) is differentiable with respect to
the state scheduling parameter p:

% [Z—qu(P)} = Al) {z—zeq(P)} + Blp) (v-uealp))  (2)
where i
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In the above, z.4(p) denotes a family of equilibrium points
obtained by setting the derivatives in Eq.(1) to zero. Note
that for plants that do not exhibit output nonlinearity,
the Quasi-LPV representation can approximate the actual
plant up to a first order approximation of all other states
except the scheduling state.

In order to use Eq.(2) for control purposes, the state depen-
dent ueq(p) needs to be known. Any incorrect estimation
of ueq(p) may jeopardize the robust property of the closed-
loop system. To avoid this problem, an integrator at the
plant input, which stores the trim input value u.q(p), can
be added as suggested in [14]. As a consequence Eq.(2) can
be rewritten as follows:
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In this development, a Quasi-LPV [14] is an appealing can-
didate owing to the following reasons: (i) plant’s nonlin-
earity can be captured by selecting appropriate scheduling
parameters; (ii) it is not a linearized version of the nonlinear
plant, instead it is derived through a state transformation;
(iii) a family of local linear models can be easily obtained
by merely freezing the scheduling parameters.

2.2 Quasi-LPV Coprime Factorizations

In the sequel, we will consider a Quasi-LPV system which
has the following state-space realization

i(t) = Alp)a(t) + Blp)u(t)
y(t) = C(p)a(t) + D(p)ult)

where p C z(t) is the scheduling parameter residing in the
scheduling space §2.

Definition 1 (Extended Quadratic Stability). For a
dynamic system characterized by the following state-space
equation

(5)

(4)

#(t) = A(p)a(t), peQ



the system is said to be extended quadratic stable (Q. sta-
ble) if there exists a real differentiable positive-definite ma-
triz function P(p) = PT(p) > 0 such that

L p(p) + A(p)T P(p) + P(p)Alp) <0,

Q.
dt vp e

(6)

Lemma 1. Any Q. stable system is exponentially stable,
if 3 constants a, § > 0 such that

F(®,(t, 7)) < ae Pt VpeQ

where ®,(t,T) denotes the transition matric for Eq.(5)

Proof. see [18, pg. 16] O

Definition 2 (Q, stabilizable). The Quasi-LPV system
given in Eq.(5) is said to be Q. stabilizable if 3 a continuous
matrixz function F(p), such that the following system is Q.
stable Vp € Q

i(t) = {Alp) + B(p)F(p)}a(t).

Definition 3 (Q. detectable). The Quasi-LPV system
given in Eq.(5) is said to be Q. detectable if 3 a continuous
matrixz function H(p), such that the following system is Q.
stable Vp € )

#(t) = {A(p) + H(p)C(p) }(t).

Lemma 2 (Quasi-LPV Coprime Factorizations). Let
P, have a continuous, Q. stabilizable and Q. detectable
state-space realization

A(p) | B(p) ]
Clp) | D(p) |

Let F(p) and H(p) be continuous matriz functions such
that i(t) = {A(p) + B(p)P(p)}(t) and i(t) = {A(p) +
H(p)C(p)}tz(t) are Q. stable Vp € Q and define (dropping
p dependence for notation simplicity)

|
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Proof. see [18, pg. 149] O

Definition 4 (Contractive right coprime factoriza-
tion). Let N, € Sq and M, € S, have the same number
of columns. The ordered pair [N,, M,] represents a con-
tractive right coprime factorization (crcf) of P, over the
ring Sq, if

1. Pp:NpMIjl;
2. 3X,Y,e€Sq such that X,N, +Y,M, =1I;

3. [N MI1" is a contraction in the following sense
N,
I3 ] <2

Definition 5. Define the contractive right graph symbol
G,: Lt — L@ L5 of an LPV system P, as follows

sup sup (10)

PEL {ue Ly ||ul2<1}

Gyi= |t (11)

where [N,, M, is a cref of P,.

Remark 1: It is obvious that GG, generates the set of all
stable input-output pairs of the LPV system P, by allowing
G, to act on the whole of %,

Theorem 1 (Quasi-LPV Graph). Let P, have a con-
tinuous, Q. stabilizable and Q. detectable realization, then
a contractive right graph symbol of P, is given by

A+ BF | BS—:
C+ DF | DS—>

1

F Sz

G, = (12)

where F = —S~YBTX, + DTC), S = I + DD, R =
I+ DD” and X, is a solution of the generalized control
Riccati inequality (GCRI)

X, +(A-BS'DTC)'X, + X1 (A— BS™'DTC) (13)
~X;BS'BTX, +CTR™'IC <0 VpeQ

Proof. see [18, pg. 150] O

Remark 2: The results as stated here are for right coprime
fractorizations. The dual results are easily obtained for left
coprime factorizations.

Remark 3: Analogous to [16], the Quasi-LPV graph in
Eq.(12) is used in the next section to define the correspond-
ing Quasi-LPV v-gap metric.

2.3 %, Loop-Shaping

Proposed by [10], the 4%, loop-shaping controller design
method is based on the /75, robust stabilization and classi-
cal loop-shaping technique. The 7, loop-shaping consists
of two major steps:

1. The open-loop plant is shaped using pre- and post-
compensators to give a desired open-loop shape. Nor-
mally, it is desirable to shape the plant such that
the maximum singular value frequency plot has a -
20dB/decade slope at the crossover frequency.



2. Denoted by P; = Wy PWj, the shaped plant is then
robustly stabilized with respect to coprime factor un-
certainty using a controller synthesis method based on
an J%, optimization.

It is noted that the %5, norm of the closed-loop transfer
function is minimized in the above % robust stabilization
synthesis. Denoted by bp ¢, the reciprocal of Eq. (14) is
often called the generalized stability margin which has a
close relationship with the v-gap metric. Mathematically,
the genralized stability margin is defined as:

7] a—epy [=ca]ll ) (L 7] € Ao
bpc =
0, otherwise.
(14)
For a more detail treatment of the 57, loop-shaping, see

[10].

3 Main Results

Having defined the Quasi-LPV coprime factorizations, the
Quasi-LPV v-gap metric can be defined as follows:

Definition 6 (The Quasi-LPV v-gap Metric). The
Quasi-LPV v-gap §$*"V is given by

IG,, G,

i det(G, Gy ) () # 0
Yw € (—00, 00)and
SQTPY (P (), P(py))i= wno det(G;Gm)(jw)

v (P(pi),P(p;)) o, Vpi,ijEQ

1 otherwise

where G, and G »; denote the normalized right graph sym-
bol of P(p;) and the normalized left graph symbol of P(p;),
respectively as defined in Theorem 1. It is obvious that the
0g*"Y =6, whenever p;, p; are frozen. Together with the
bp,c, the following theorem is one of the main results aris-
ing from the v-gap metric notion.

Theorem 2. Given a nominal plant P(p;) € P, obtained
by freezing the scheduling parameter p; € Q, a controller C
and a constant v, then: [P(p;),C] is stable for all plants
P(pj), Vp; € Q satisfying 67°77 (P(ps), P(p;)) < v iff
bp(pi).c > 7-

Proof. Since 63*FV = 0, whenever p;, p; are frozen, the
proof follows from that of [16], Theorem 4.5. O

Theorem 3. Given a nominal plant P(p;) € P, and
perturbed plants P(p;) € P, Vp; € Q obtained by freez-
ing the scheduling parameter at p;,p; € € respectively
and a constant v < supgbp(,,),c, then: [P(p;),C] is
stable for all controllers, C, satisfying bp,,).c > v iff
6357 (P(pi), P(p;)) <y Vp; € Q.

Proof. See [16], Theorem 4.5. O

The novel computational algorithm for closed-loop
nonlinearity

1. Recast the nonlinear system into a Quasi-LPV form
and grid the scheduling parameter space. A set of
linear models is obtained by freezing the scheduling
parameter.

2. For each model, the v-gaps to all other models are
obtained. §; = {d2*"V(P(p:), P(p;)), ¥ p; € Q}.

3. Denote by L*, the best nominal model for closed-loop
control is the one that has the smallest co-norm in
0;y V.

4. Apply pre- and post-compensators to L*. (Ls =
WoL*W1). Repeat step 2, but applying W7 and Ws
to all P(p;) and P(p;) this time. Obtain the new L*
according to step 3 and subsequently the new L.

5. Design a robust controller using 7%, loop-shaping for
L, and compute bpc max, the maximum uncertainty
ball that the linear controller can tolerate.

6. Find the farthest point L’ (in the v gap metric sense)
in the polytope centered at L*. The v-gap between L*
and L’ is denoted by ¢’.

7. By empolying Theorem 2, the closed-loop nonlinear-
ity is manageable by the designed linear controller if
bPC,max > 0.

8. By using Theorem 3, the closed-loop nonlinearity is
larger than what the linear controller can cope with if
bPC,max <4

4 A Missile Control Problem

A missile control problem is used to illustrate the effective-
ness of the proposed nonlinearity measure. The model is
adopted from [14]. The control objective is to control nor-
mal accelaration, nz, by manipulating tail fin deflections.
To achieve this, two control loops, namely an inner-loop
and an outer-loop, are normally used. The inner-loop is
responsible for controlling the angle of attack, «, using fin
deflections, §, while the outer-loop is used to control the ny
by providing appropriate setpoints for «. However, since
our main concern is on closed-loop nonlinearity measure,
only the inner-loop design is considered here.

The Quasi-LPV representation of the missile dynamics is
given as follows (see [14] for the model description and sim-
ulation parameters):

Ll PR ) | 4 [8
— | 97 Qeq = d—(Geq X
dt |:5_5er1(0‘):| A(a) |:6_6eq(a):| + |:(1)i| v (15)



f9QS cos(a/f)b
o 1 9QS cos(a/)bs

A(a) —lo 7d11edqa(a> fQISdbm *dqiﬁfa) ngSCVfi/S‘(/@/f)bz
0 — eq() _d3eq(®) £9QS cos(a/f)bz
do da wVv
QSbz
nz — nZ,eq = W (5 - 66(1) (16)

By using 50 grid points on the scheduling parameter «, Fig-
ure 1 shows the unshaped v-gap contour between a chosen
nominal model at a; and all other models at o; € Q. It
is interesting to note that the contour is symmetric over
the x-axis and the two nominal models at +8.75 are in fact
identical. The best linear approximations, L*, are those at
a; = £8.75°. Denote by L', the most dissimilar models
from L* are the ones at a; = 0°,430° and the correspond-
ing v-gaps are 0.94. This means that any controllers that
give satisfactory stability of the nominal plant will likely
to destabilize the resulting closed-loop as the scheduling
parameter is approaching 0° or +30°. In fact, no mat-
ter which nominal model is chosen, the corresponding un-
shaped v-gap exceeds 0.9 at some points when the angle of
attack is evolved around £30°.

30

20

-10

Figure 1: Unshaped v gap contour

However, since the v-gap is sensitive to dynamic scaling,
an appropriate weighting of the nominal plant is required.
This is done by employing the first step of the 75, loop-
shaping technique. In this case, the corresponding pre- and
post-compensators are:

58345(s+10)2

(51300)(s1250) 0 0
_ Wo — 3(405+400)
Wl = I3 and 2 = 0 ——+ti00 0
117000(s+10)
0 0 G+1)(s1200)

(17)
Figure 2 shows the resulting open-loop gain shapes.

Using the compensators in Eq.(17), the v-gaps between
a chosen nominal model and all other members in the

Singular Values

Singular Values (dB)

50 | | I
107 10° 10' 10° 10°
Frequency (rad/sec)

Figure 2: Shaped loop gains. Solid: «, dashed: ¢ — gq,
dashed-dotted: n,

scheduling space are recomputed. Figure 3 shows the cor-
responding shaped v-gap contour. Clearly, there is a sig-
nificant reduction in the v-gap values, but the best linear
models remain the same (i.e. the models at a;; = £8.75°).
The most dissimilar models also remain the same, but the
v gap values are now 0.056, about 17 times less than that
of the unshaped case. This implies that the weighted local
models are very close to each other in closed-loop. The
reduction in the v-gap is due to the linearizing effect of
feedback|3, 14].
Q&/

(8.75,8.75)

30
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Figure 3: Shaped v-gap contour

Based on the model at a;; = 8.75°, the 7% linear controller
with bpcmax = 0.505 is obtained via % loop-shaping
technique. Since the worst v-gap induced by the nonlin-
earity is less than the bpo max (i.e. 0.056 < 0.505), Theo-
rem 2 suggests that the designed controller is sufficient to
cope with the closed-loop nonlinearity when the plant is
pre- and post-compensated. Simulation results, as shown
in Figure 4, confirm that the linear controller does pro-



vide good tracking performance when angle of attack « is
evolving within the £30° available envelope.
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Figure 4: Servo responses of the angle of attack. («
achieved solid vs. a demanded dotted).

5 Conclusion

An indirect closed-loop nonlinearity measure using the v-
gap metric and the Quasi-LPV representation is proposed.
The contribution of this work is two-fold. Firstly, it acts as
an effective decision making tool for the control engineers
when they are faced with the problem of deciding whether
to stick to the linear control strategy or use a nonlinear con-
trol approach in solving their problems. Secondly, for a cer-
tain class of nonlinear systems, the proposed measure can
be used as a way to design compensators which reduce the
closed-loop nonlinearity. However, a systematic approach
to closed-loop nonlinearity reduction needs a more indepth
study. Dealing with non-differentiable nonlinearity such as
hysteresis can be difficult. The proposed method can be
extended to handle this type of nonlinearity by embedding
such a nonlinearity using an integral quadratic constraints
[11] followed by a Quasi-LPV transformation of the remain-
ing model. This will be an extension of the work presented
in [17].
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