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Abstract. Controlling a system in a model based framework means to obtain its
model, design a controller and close the loop. This process can be executed online by
an indirect adaptive controller. This paper describes the structure, the algorithms,
the C++ implementation and the user interfaces adopted for such a controller. The
applicability of this controller ranges from pulp and paper to biomedical engineering
with explicit benefits in the direction of a control strategy which is characterized
by: a systematic tuning procedure, reduced cross-couplings between channels and
minimized closed-loop overshoot and settling time.
Laguerre orthonormal basis functions identification has been extended for multivari-
able systems and further used to produce a valid linear process model. This model
is used at sampling time in a multivariable predictive controller to produce a control
move which achieves reference tracking in the presence of measured and unmeasured
disturbances and actuator constraints. This controller exhibits a modular structure
allowing use on delayed multivariable (MIMO) processes with self regulating or inte-
grating response characteristics in the context of enforceable constraints upon inputs.
An analysis of the parameters involved in the controller significantly reduced them
allowing for short commissioning time.
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1. INTRODUCTION

Traditional non-adaptive controllers are generally
employed for most industrial process control ap-
plications. The proportional-integral-derivative con-
troller or PID loop is especially cheap and easy to
implement. Even though its operations are sim-
plistic a PID loop can be remarkably effective
at keeping the process variable close to the set-
point. But, the simplicity of the PID controller
also makes it prone to failure when challenging
MIMO applications dominated by delay or with
integrating characteristics are to be tackled. Ac-

counting for the multivariate aspect of the pro-
cess in an adaptive fashion represents a significant
challenge for most process engineers.

MIMO adaptive controllers can outperform their
fixed parameter counterparts in terms of efficiency
by eliminating errors faster and allowing the pro-
cess to be operated closer to its constraints where
profitability is highest.

Very few adaptive controllers are capable of up-
dating their control strategies on line ( i.e. while
the process is running). In fact only a careful look
at these will entitle the user to define the extend



to which adaptation is allowed to chance the pro-
cess model or directly the controller parameters on
line. Only recently adaptive controllers have been
accepted as reliable and trustworthy by the plant’s
engineers who only now are convinced that, for
instance, the multivariable characteristic of the
controllers they have selected works as promised.
Some examples of such commercial controllers, in
alphabetical order, are:

• EXACT and Connoisseur from The Foxboro
Company (www.foxboro.com)

• BrainWave from Universal Dynamics Tech-
nologies (www.brainwave.com)

• CyboCon from CyboSoft (www.cybocon.com)

• DMCPlus from Aspentech (www.aspentech.com)

• INTUNE from ControlSoft (www.controlsoftinc.com)

• KnowledgeScape from KnowledgeScape Sys-
tems (www.kscape.com)

• RCMPT from Honeywell (www.honeywell.com)

Usually some kind of manual or automatic iden-
tification operation is an indispensable first step
towards effective adaptive control. Getting an ini-
tial model is still a challenge since the operator
expectations is to have them in closed loop at the
time of purchase. Some controllers are educated
by the operators based on hints developed on ex-
isting knowledge or assumptions about the pro-
cess. Others are trying to answer these questions
themselves by conducting empirical tests on the
process before start-up. Therefore weighted net-
work of orthonormal Laguerre functions, radial
basis function models, multilayer perceptron ar-
tificial neural network or ARX models are hidden
behind the scene, allowing the user to concentrate
on the essential problems related to the process.

The other issue is how the controller should com-
bine its observations with the information sup-
plied by the operators to design its own control
strategy. There are many answers to that ques-
tion but most of them fall into one of three basic
categories: i) indirect, model-based adaptive con-
trol; ii)direct adaptive control or iii) rule-based or
artificially intelligent adaptive control

For example, some controllers are relying on a pro-
cess model to create a suitable control law, but it
uses several rules to determine when it is likely
to have sufficient data to create the model cor-
rectly. Others can be configured to make use of a
process model as well or constructing it just for in-
formational purposes. Some controllers are using
the process model as the basis for designing their
own control law but are taking an expert systems
approach to create it.

In terms of effectively computing the future con-

trol move most these controllers are using the plant
model information, current inputs, outputs and
measured disturbances, as well as input and out-
put constraints, to solve a Linear Programming
(LP) or a Quadratic Programming (QP) prob-
lem, respectively. While doing this to ensure the
feasibility of the optimization problem a soft con-
straint approach is usually taken by assigning weights
on each output which are increased as it approaches
its constraint. With the same problem in mind
some of these controllers are adopting a zone type
approach rather than at specific set points track-
ing. When optimization is involved, to allow for
different degrees of complexity and hence speed
of computation, the afore mentioned controllers
are taking into account hard input constraints ig-
noring the output constraints or they look at all
constraints as active but assimilate them as soft
constraints.

In the context of other commercial adaptive con-
trollers the main contributions of this develop-
ment are focused on: i) the extensions of the La-
guerre orthonormal basis functions identification
for multivariable systems and its employment for
the identification of a valid linear process model;
ii) the model augmentation with a disturbance
model and its use at each sampling time in a mul-
tivariable predictive controller to produce the con-
trol move which achieves reference tracking in the
presence of measured, unmeasured disturbances
and actuator constraints iii) the modular struc-
ture allowing for different MIMO processes such
as delayed multivariable with self regulating or
integrating response characteristics iv) the C++
development and v) the development of an ade-
quate graphic user interface (GUI) answering the
requirements of process control engineers such as
user-friendliness.

In Section 2 of this paper the controller architec-
ture and features are disclosed. For a complete un-
derstanding of its implementation in Section 3 we
present the essential details on its internal model
followed by insights on the control computation
in Section 4 and ways to optimize its calculation
in Section 5. The utility of the MIMO adaptive
predictive controller is illustrated through a brief
study in Section 6 followed by conclusions in Sec-
tion 7.

2. CONTROLLER ARCHITECTURE AND
FEATURES

The MIMO advance predictive controller intro-
duced in this paper is capable of controlling up to
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12 cross-coupled loops or combinations thereof. Its
design is described in detail in (Huzmezan, 1998).
The controller bases its future control moves on
models and requested set points. From the ini-
tial estimates, internal models of the process are
built to predict the behavior of the controlled out-
puts. Several prediction and control parameters,
detailed in the next sections of this paper, are
provided to optimize the performance. The esti-
mated dynamics can be refined further by the use
of process identification features. In the case of
non-linear plant dynamics, common during vari-
ous phases of production, different models can be
configured and triggered automatically by an ex-
ternal module.

The controller is a multi-threaded software, ex-
panded to a MIMO version from the previous SISO
commercial product. To understand more the ca-
pabilities of the controller, the control thread flowchart
is provided in Figure 1.
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Fig. 1. MIMO Brainwave Controller Thread

After a successful setup of the controller, which
will be discussed in relation to the user interface,
a control loop is executed. Inside the controller
main thread, various checks are in place trigger-
ing execution of requested actions. Action flags
are triggered through the user interface. There
are four general actions set by the user: i)Reset
which triggers model building (1) and cost func-

tion calculation(3); ii) Load which will Load Sce-
nario (3)- a pre-defined set-up of models and tun-
ing parameters; iii)Save which will save the cur-
rent set-up as a Scenario (4) and iv)Mode Switch
which switches from manual control to Auto (10).
For multi-modelling support an External Model
Index (6) may be provided (inside the PLC or
other connecting device) which will trigger a new
scenario to be loaded. There are up to 20 scenarios
that can be configured, each with different process
estimates and tunings. At this point the controller
will acquire process data (8) (i.e. the values for
all inputs, all outputs and all measured distur-
bances). Depending on the user’s choice, the con-
troller will enter either manual or auto (10) mode.
In the manual mode the controller monitors the
process without influencing it. If identification is
enabled, the values read are used to update off-
line Laguerre models(13) using the identification
algorithm described in Subsection 3.3. In the auto
mode, the values read from the process are used
to calculate the next CV move (11) based on the
algorithm presented in Section 4. If, at the same
time, identification is enabled, an identification al-
gorithm is used to update on-line Laguerre models
(12). The above sequence is then repeated at every
sample time, which is only restricted by the execu-
tion time of the controller main thread (about 50
ms for an average complexity system on a 1GHz
IntelTM processor).

3. THE CONTROLLER INTERNAL MODEL

The models in Braiwave are built using Laguerre
series, an orthonormal set of functions defined as
in continuous time as:

fi(t) =
√

2p
eptdi−1

(i− 1)!dti−1
[ti−1e−2pt] (1)

where i is the order of the function and p is the
time scale. See (Dumont and Zervos, 1986) for
more details. A model is built by choosing appro-
priate linear combination of the first N Laguerre
functions and integrated over some interval [a, b].

3.1 Self-regulating processes

In the case of Braiwave a discrete representation
of the Laguerre functions has been used as shown
below.

l(k + 1) = al(k) + bu(k) (2)

where l(k) is the state vector, u(k) is the input.
The matrix a is a lower triangular, n×n, with the
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property that every diagonal or sub-diagonal has
the same number:

a =




τ1 0 . . . 0
−τ1τ2 − τ3

T
τ1 . . . 0

...
(−1)N−1τN−2

2 (τ1τ2 + τ3)
TN−1

. . .
−τ1τ2 − τ3

T
τ1 τ1




(3)

whereas b is defined as

bT =
[
τ4 −τ2

T
τ4 . . . (−τ2

T
)N−1τ4

]
(4)

where
τ1 = e−pT

τ2 = T +
2
p
e−pT − 1)

τ3 = −Te−pT − 2
p
(e−pT − 1)

τ4 =
√

2p
1 − τ1
p

The output is approximated by a weighted sum of
the state vector l(k)

y(k) = cl(k) (5)

where c =
[
c1 c2 . . . cn

]
is a vector representing

the Laguerre network coefficients. In case of a time
varying system c becomes c(k). An m× p MIMO
system can be represented as an array of state
equations (2), one for every input ui, i = 1, . . . ,m
and an array of output equations (5) one for every
output yj , j = 1, . . . , p:

L(k + 1) = AL(k) +BU(k) (6)

where

L(k) =
[
l1(k) l2(k) . . . lm(k)

]T

U(k) =
[
u1(k) u2(k) . . . um(k)

]T

Y (k) =
[
y1(k) y2(k) . . . yp(k)

]T

A is a block diagonal matrix with a on the diag-
onal repeated m times, similarly for B while C is
of the form:

C =



c11 c12 . . . c1m

c21 c22 . . . c2m

...
... . . .

...
cp1 cp2 . . . cpm




Note that, due to the orthonormality of the La-
guerre network, a and b can be the same for ev-
ery state equation, thus the number of individual
state vectors is m (no of inputs) rather than m×p.
This reduces the number of flops from (m + p)2

to m2 when computing predictions. Furthermore,
this representation makes the system fully observ-
able and controllable, and the state reduction pro-
cedures such as minimal realization are unneces-
sary. The MIMO system has the following block
representation
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Fig. 2. Multivariable Prediction System

This multivariable model is used to predict the
system’s response. Predictions are made by iter-
ating the above state space equations N2 steps
ahead:

Y (N2) = CL(N2)

To arrive at L(N2) we iterate the state vector L

L(2) = AL(1) +BU(1)

L(3) = AL(2)+BU(2) = AL(A(1)+BU(1))+BU(2)

L(4) = AL(3) +BU(3) =

A(A(AL(1) +BU(1)) +BU(2)) +BU(3)
...

L(N2) = AN2−1L(1) +AN2−2BU(1) + . . .

+ABU(N2 − 1) +BU(N2) (7)

In order to make the controller more or less ag-
gressive it can assumed that only inputs u1 to uNu

Nu < N2 will change while all others will remain
zero.

3.2 Integrating processes

As defined above the matrices A, B and C are the
model state space representations characterizing
a stable (i.e. self-regulating) process. When the
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process is marginally stable the matrices are aug-
mented with an integrator (i.e. poles on the unit
circle). The controller assumes that if an output
has an integrating response to one input, then it
has an integrating response to all inputs. This is
a safe assumption, since a self-regulating distur-
bance is trivial to reject with an integrating input.
Consequently in the model of the system the inte-
grators are placed at the output of the signal. In
Figure 2 the integrators would be placed between
the C matrix and the corresponding outputs yi.

3.3 Model Learning

The on or off-line model learning capability estab-
lishes this software as an adaptive controller. The
process model may be either refined or even built
from scratch. Model identification is performed
using recursive least squares. By using the vari-
ance of the states and the prediction error, the
best possible fit is identified so that the predic-
tion error is driven to white noise. The algorithm
that identifies the vector of Laguerre network co-
efficients for a SISO cell within the MIMO system,
as shown in (M.E. Salgado and Middleton, 1988),
is characterized by the following equations:

c(k + 1) = c(k) +
αP (k)l(k + 1)

λ+ l(k + 1)TP (k)l(k + 1)
e(k)

P (k+1) =
1
λ

[
P (k) − P (k)l(k + 1)l(k + 1)TP (k)

λ+ l(k + 1)TP (k)l(k + 1)

]

+βI − δP (k)2

where α, λ, β and δ are constants, P(0) is a diag-
onal matrix with 10s on the diagonal and e(k) is
the prediction error.

4. BUILDING THE CONTROL MOVE

The ability to predict the future response of the
process allows the controller to come up with con-
trol moves which will effectively keep the process
at set point even for challenging processes with
long time delays and integrating characteristics.
The controller adjusts its moves based on the er-
ror between the actual output of the process and
the desired output. Figure 3 shows the observer
which is implemented to monitor and adjust the
states of the model based on the prediction er-
ror between the predicted and actual output. The
error can be magnified or reduced by adjusting
the observer gain matrix appropriately . This is

equivalent to an observer pole placement, see Fig-
ure 3.

+

-
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Prediction
Error

Predicted States
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Fig. 3. The observer

The control moves are determined by looking at
the predicted future error, which is the difference
between the predicted future output and the de-
sired future output (reference). The user can spec-
ify the region over which these error values will
be summed. The region is bounded by the initial
(N1) and final (N2) prediction horizon. The sum
of the squared predicted errors inside the predic-
tion interval can be written as:

N2∑
i=N1

||Ŷ (i) − Ŝ(i)||2

where Ŷ (i) is the predicted output at update i
and Ŝ(i) is the reference at update i.

It is also possible to set the number of control
moves that the controller will take to get to the
set point by adjusting a parameter called control
horizon (Nu). Squaring and summing the changes
in the control moves gives:

Nu∑
i=1

||∆U(i)||2

A norm becomes a weighted norm if a weighting
matrix is introduced and multiplied with the vec-
tor, thus for a given vector a, ||a||2Q = aTQa. If we
weigh the error and the movement with weight-
ing matrices Q and R respectively, and add the
two sums, we arrive at the cost function employed
within the Brainwave Multimax controller:

J(∆u) =
N2∑

i=N1

||Ŷ (i) − Ŝ(i)||2Q +
Nu∑
i=1

||∆U(i)||2R

The tuning matrices Q and R allow greater flex-
ibility in the solution of the cost function. Q pe-
nalizes the error while R penalizes the movement.

The above cost function is optimized with respect
to ∆U . By differentiating and solving for ∆U the
next set of optimal control moves is obtained. The
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cost function, also called optimizer and predic-
tor bases its calculations on state vectors pre-
dicted by the observers, see Figure 4. Input con-
straints are implemented via a multivariable anti-
windup scheme which was proved to be equiva-
lent to an on-line optimization for common pro-
cesses (Goodwin and Sin, 1984).

Once the cost function is built it remains the same
until we change one of the models, Q, R, or one of
the horizons. At each update, the following takes
place: i) the state vector is estimated and ad-
justed; ii) the output is estimated and iii) the next
move is calculated.

Measured disturbances prediction is similar to the
primary process prediction. For the sake of com-
patibility with the previous version of the con-
troller, measured disturbances are assumed to af-
fect one output at a time. There can be up to three
measured disturbances per output in the current
controller structure.

Optimizer
&

Predictor

Measured Disturbance
Observer

Primary Observer

Plant

with
Measured

Disturbance

Reference

Fig. 4. The controller with the plant in the loop in the
presents of measured disturbances

5. OPTIMIZING THE COMPUTATION

Building the cost function is a computationally
intensive process. Matrices of dimensions in the
hundreds or thousands are multiplied. Due to the
fact that most of these matrices are more than
80% sparse, a sparse matrix structure has been
developed. In the structure only the non-zero en-
tries of the matrix are stored in the form of a link
list, as shown in Figure 5, together with the en-
try’s row and column position. In most cases this
is a significant memory and time saver. The A
matrix:

A =



a 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a


 (8)

for a 4 × 4 system is a 60 × 60 block diagonal
matrix, as described in equation (6). Its diagonal
consists of four 15× 15 lower diagonal a matrices
each with only 120 non-zero elements. Therefore,
the A matrix has then 60 × 60 = 3600 elements,
120 × 4 = 480 non-zero. Thus A is 87% sparse. If
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Fig. 5. The sparse matrix structure

we now try to predict the movement, say 41 steps
ahead, then according to equation (7), the A40

matrix will have to be computed. This can lead
to intense computations given that A grows with
the system’s dimension. Squaring A the conven-
tional method leads to 60 × 60 × 60 = 216, 000
multiplications A40 is 39 times (i.e. 8,424,000).
With the sparse matrix structure only the non-
zero elements get multiplied. It can be shown that
squaring the a matrix involves 680 non-zero cal-
culations (the reader can verify that by taking
into consideration the lower triangular structure
of a the number of multiplications to compute
a2 is

∑i=15
i=1

∑i
j=1 j = 680 . From equation (8)

can be seen that squaring A will involve squar-
ing only the block diagonal, that is 680 × 4 =
2, 720 calculations, obtaining A40,therefore, will
take 2, 720 × 39 = 106, 080 calculations, a 98.8 %
decrease from the original 8,424,000! The draw-
back of this scheme is the relative difficulty of find-
ing the specified element in the link lists, however
the considerable reduction in calculations far out-
weighs that drawback. In the end the calculation
time is decreased tenfold or more. The implemen-
tation of the sparse matrix structure is an essen-
tial feature which makes the controller practical.

6. CONTROLLER PERFORMANCE

The MultiMax controller can be configured for
processes of up to 12 inputs and 12 outputs. This
would result in potentially 144 models to be built
for the CV-PV relationships, plus up to 36 feedfor-
ward models (3 feedforwards per PV). An example
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will be shown here for a 2 input, 2 output pro-
cess consisting of both and integrating and self-
regulating type process. The relationships config-
ured for this example are:

PV1 PV2
CV1 integrating self-regulating

(dt = 5, τ = 5, gain = 0.03) (dt = 10, τ = 5, gain = 1)
CV2 integrating self-regulating

(dt = 15, τ = 5, gain = 0.015) (dt = 5, τ = 5, gain = 1)

This process simulation results in 4 models being
configured in the controller, each identified either
from open loop step changes, or from closed loop
control process identification. In the example here,
the process estimates are determined from open
loop step changes. Owing to the cross coupling
between the processes, only 2 step changes are
required since both channels react to changes in
either of the control variables.

Fig. 6. Multimax Control

Figure 6 shows how this system works in both
open loop and closed loop control with BrainWave
- MultiMax. It can be seen that any changes to ei-
ther of the actuators will result in both integrat-
ing and self-regulating process responses in the
two channels. These open loop step changes allow
accurate model identification. The control in open
loop also demonstrates the cross coupling between
the various channels, together with their charac-
teristics.

Controlling the system with the MultiMax con-
troller, configured with a control horizon of 5 up-
dates, an initial prediction horizon of 20 updates
and a final prediction horizon of 40 updates re-
sults in tight set point control in both channels.
The tuning of the Q and R matrices are straight-
forward. In the case of the Q matrix, an identity
matrix has been found most appropriate; for the
R matrix, the tuning is equal to

R =
[

100 0
0 100

]

Finally, the observer gain matrix for this example
was equal to

K =
[

0.01 0
0 0.01

]

With this tuning, very little overshoot of set point
is also observed following significant set point changes,
in addition to tight control of the set point in the
unchanged channel. The example shows set point
changes for both channels with the associated con-
trol moves that have been implemented by the
controller based on its internal model estimates
and tunings.

Attention was paid to the development of a graphic
user interface (GUI) that answers the requirements
of process control engineers involved in a sum of
industries. The real time implementation is achiev-
ing sample times as low as 0.1 [s] for commonly
encountered medium size MIMO systems. A strict
management of the controller features is employed
to ensure its user-friendliness.

A snapshot from the controller face plate shown
in Figure 7 is giving a flavor of the way the setup
window blends in the trender for the process re-
sponses together with the model viewer which al-
lows the user to supervise the accuracy of the on-
line identification process.

Based on the control objectives of the operator,
the tunings of the controller can be adjusted to
maintain tighter set point control at the expense
of more actuator movement, or to limit actuator
movement at the expense of set point control. Ad-
ditionally, changes to the observer gain matrix
will affect set point tracking at the expense of
unmeasured disturbance rejection. The numbers
used in the simulation shown here represent fairly
conservative numbers for the tuning parameters.

7. CONCLUSIONS

The advanced model based predictive controller
BrainWave MultiMax was developed in a modu-
lar structure for use on multi-input/multi-output
MIMO processes with possible integrating responses,
exhibiting long delays and time constants. The
controller was developed and tested using a flexi-
ble Matlab Simulink test-bed, which enabled us to
do most of the preliminary testing in this environ-
ment and subsequent implementation in C++. A
thorough analysis of the parameters involved in
the controller provided golden rules for a num-
ber of tuning parameters, dramatically reducing
the commissioning time. Particular attention was
paid to the development of the graphic user inter-
face (GUI) in order to make it user-friendly. The
implementation in real time of the controller can
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Fig. 7. A snapshot of the controller face plate reflecting
the tender, model viewer and controller setup win-
dows

achieve sample times as low as 0.1 [s] for a medium
size MIMO system.

The applicability of this controller ranges from
pulp and paper to biomedical engineering. The
main benefits of this control strategy are: a sys-
tematic tuning procedure, reduced cross-couplings
between channels and minimized closed-loop over-
shoot and settling time. Prohibitive costs of pre-
dictive control and a low number of commercially
available multivariable adaptive controllers pre-
vent industries that operate on small profit mar-
gins to take advantage of such technology. This is
exactly the niche market this controller is target-

ing.

In terms of applications the paper shows the bene-
fits of the aforementioned controller to a challeng-
ing multivariable process characterized by strong
coupling between channels, significant delays in
all channels and an integrating characteristic.
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