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Abstract

Unmanned Air Vehicles (UAVs) have generated consider-
able interest in the control and commercial community due to
advantages over manned systems for several decades. In this
work we are concentrating on the nonlinear modelling of the
quad rotor UAV. A flying mill is also presented for flight test-
ing. Linearized models obtained in a quasi-LPV or Jacobian
fashion can be used as a starting point for robust control design
via Hinf loop shaping. Based on this nonlinear model, a Ho
loop shaping flight controller is designed for position control.

Keywords: Nonlinear Modelling, Quad Rotor UAV, fly-
ing mill, Ho, Loop Shaping Control.

1. Introduction

UAVs, or ‘Unmanned Air Vehicles,” are defined as air-
crafts without the onboard presence of pilots [6]. UAVs
have been used to perform intelligence, surveillance, and
reconnaissance missions. The technological promise of
UAVs is to serve across the full range of missions, includ-
ing areas such as communications relay and Suppression-
of-Enemy-Air-Defenses (SEAD) missions. Cutting edge
techniques in sensors, actuators, communications mod-
elling and robust control can make commercial and mili-
tary missions involving UAVs a reality.

UAVs have several basic advantages over manned sys-
tems including increased maneuverability, reduced cost,
reduced radar signatures, longer endurance, and less risk
to crews. Vertical take-off and landing type UAVs exhibit
even further advantages in the maneuverability features.
Such vehicles are to require little human intervention from
take-off to landing.

Affordability is the key word when building and con-
trolling a UAV. A commercial UAV Draganflyer III quad
rotor helicopter was considered by our team as a start-
ing point for more complex missions involving coopera-
tive control and formation flying. This instrument vehicle
has significant autonomy required for civilian and military
observation missions in a full scale version.

The H, loop shaping flight controller design proce-
dure combines classic loop shaping and notion of band-
width with model H,, robust stabilization. This method
which was first proposed by McFarlane and Glover [4] has
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now been widely used. Significant attempts were made
in the aerospace industry. In 1994 [8], H., loop shap-
ing controller was used for position control for a radio
controlled helicopter at hover. In 1996 [7], a fixed gain
two-degree-of-freedom H, loop shaping controller was de-
signed for the Westland Lynx multirole combat helicopter.
The two-degree-of-freedom architecture is more insensi-
tive to disturbance and model uncertainty. In 1999 [5], a
new linear parameter-varying (LPV) H, loop shaping de-
sign procedure was proposed to design a flight controller
for the pitch dynamics of the VAAC Harrier. In this ap-
proach the nonlinear model of the VAAC Harrier is ap-
proximated by a ”quasi-LPV” model. The control law
is then automatically scheduled over the flight envelope
using this quasi-LPV model. In 2001 [2], the two de-
gree of freedom control architecture and recent advances
in parameter-space control design techniques (Odenthal
and Blue, 2000) were combined to form a new approach
for designing flight controllers for high performance air-
craft throughout a large design envelope. This technique
extends traditional parameter-space methods to enable
the mapping of frequency response specifications into the
parameter-space providing a straightforward way of se-
lecting the gains in a fixed control structure to satisfy Hy,
robustness and performance specifications.

In this paper, we first present the nonlinear four-rotor
helicopter model and its corresponding SIMULINK model.
Next, a reliable testing flying mill is addressed. To achieve
the UAV autopilot, H,, loop shaping flight controller de-
fined in an initial non-scheduled form is implemented to
fulfill the control objectives based on the nonlinear posi-
tion control model.

2. Nonlinear Four-rotor Helicopter
Model

The UAV used in the project is a commercial four-
rotor helicopter, Draganflyer III, currently with a 3 min
flying time but extensible to 1 hour by adequate sizing
of the power source and actuators. Four-rotor helicopters
using the variant rotor speeds to change the lift forces are
dynamically unstable and therefore a control law is per-
manently required to ensure their stability. Motions of the
four-rotor helicopter can be briefly described in Figure 1.



Symbol Definition
u(2) u(2) = F4 — F2
U(-?)) U(3) = F3 - F1
’LL(4) U(4):F1—F2+F3—F4
F5,Fyp,F.p force in body-axis x,y,z direction
F. Py F, force in earth-axis x,y,z direction
I.,1,,1, moment of inertia in x,y,z direction
D,q,T roll rate,pitch rate,yaw rate
¢,0,9 roll angle,pitch angle,yaw angle
up,vp,WRB velocity in body-axis x,y,z direction
u,V,W velocity in earth-axis x,y,z direction
X,y,2 COG in earth-axis x,y,z direction

Table 1: The nomenclature used in theoretical formulation

The vertical motions along z-axis in the body-fixed frame
can be obtained by changing the speeds of all the four
rotors simultaneously. The forward motions along x-axis
in the body-fixed frame can be achieved by changing the
speeds of rotor 1 and 3 reversely and retaining the speeds
of rotor 2 and 4. The lateral motions along y-axis in the
body-fixed frame can be reached by changing the speeds
of rotor 2 and 4 reversely and retaining the speeds of ro-
tor 1 and 3. The yaw motions are related to the difference
between the moments created by the rotors. To turn in a
clock-wise direction, rotor 2 and 4 should increase speeds
to overcome the speeds of rotor 1 and 3. The x,y axis
definition becomes arbitrarily since the structure presents
X,y symmetry.

Figure 1: The Four-rotor Helicopter Model

Table 1 summarizes the nomenclature used in the the-
oretical formulation and further in the SIMULINK model
of the four-rotor helicopter, Draganflyer III. This nomen-
clature is based on GARTEUR notations [1].

The rotational transformation matrix between the
earth-fixed frame and the body-fixed frame can be ob-
tained based on Euler angles:

Rpp =Ry Ry Ry =

cpcl  —sep + cpsfsgp  sse + chsbep
scl  cped + sipsOsp —chsp + sipsled
—s6 chso copct

Note that Rgp = RL; and s and c represent sin and
cos, respectively.

The transformation of velocities between body-fixed
and earth-fixed coordinates is then:

u up
v| =Rgp | vB (1)
w wp

Similarly, the accelerations, rotational velocities, posi-
tions, forces and moments can be transformed based on
Rgp between the coordinate systems.

In the body-fixed frame, the forces are defined as fol-
lows:

F.p 0
Fp= |Fyp| = 40
F.p Zi:l F;

In the earth-fixed frame, the forces can be described as:
F,| =Rgp-Fp =

4 sin ¢ sin ¢ + cos v sin 0 cos ¢
(Z F;) | —cos®sin ¢ + sin ) sin 6 cos ¢
i=1 cos ¢ cos 0
Therefore, the equations of motion x,y,z in the earth-fixed
frame are represented as follows .

I F,— K- &
m|y| = Fy—Ks-y
z F,—mg—Ks-z

where K; are the drag coefficients. Note that these coeffi-
cients are negligible at low speeds. As result the equations
of motion can be defined below using force and moment
balance.

x Fa;—Kl'i
mli|l=| F,—Ky-y
Z F,—mg—Ks-z
¢ =1(Fs— Fy — K49)/1,
0 =1(F,— Fy — Ks0)/1,
Y= (My — My + M — My — Keip) /I, =

(Fy — Fy + F3— F4— Kg})/1,

where [ is the length from the center of gravity of the
helicopter to each rotor and M;’s are the moments of rotor
i. I represents the moment of inertia with respect to the



axes and [ ; includes the moment of inertia of z axis and
the force to moment scaling factor.

For convenience and compatibility with the control
panel of the Futaba radio transmitter used with Dragan-
flyer III, we define the inputs to be:

u(l)=F + Fy+ F5+ Fy
u(2) = Fy — Fy
u(3)=F3—F

u(d)=F — Fy+ F3— Fy

Therefore, the motion equations of motion become:

. u(1)(siny sin ¢ + cossinfcos ) — Ky - & ©)

m

. u(1)(sinesinf cos ¢ — cossinp) — Ky - 3
v= m

. u(l)cosgpcosf — Kz -2

0= (u(2) — Ks50)I/I,
¢ = (u(3) — Kao)l/ L
= (u(4) - Kgih) /I

A quasi-LPV formulation for the above motion equa-
tions leads to following LPV model:

NEAR 0 0 0000 0 0 0 0] [[2]]
Y 0000O0OO0O O 0O0°0 Y
z 000000 -100 0f][Z?
60 0000O0O0O O 0O0°0 0
d||lél| (000 0OO0OO0 O O0O0O )
dt | [¢|| |0 00000 0 00 Of[]|g
g 0000O0O O 0O 0f/[]|g]
(o7 000100 0 00 06T
é 000010 0 000 b
vl ] 0000001 0 00 0]y
rsin ¢ sin ¢+cos v sin 0 cos ¢ 0 0 O-
sin ) sin @ co%Zé—cos 1 sin ¢ 0 0 0
COS(?,SOSH 0 0 0
0 /1, 0 0 [u(1)
0 0 I/, 0] |u?2)
0 0 0 I [u@3)
0 0 0 0] [u4)
0 0 0 0
0 0 0 0
i 0 0 0 0]

Figure 2 reveals the SIMULINK diagram of Dragan-
flyer III, based on the Equation 2. The four inputs are
u(1), u(2), u(3) and u(4) in body-fixed frame and the nine
outputs are u, v, w, x, y, z, THETA, PHI and PSI. The
definitions of input and output parameters can be found in

the Table 1. The model has 12 states. Saturation blocks
are inserted before the two outputs (velocity and position
in the z position of the earth-fixed frame) to preserve the
reality of the actuators.

Equation sinsin ¢ + cosvy sinfcos¢ and Equation
sin v sin 0 cos ¢ — cosysin ¢ are implemented in Fcn and
Fenl blocks in Figure 2 while Fen2 represents the Equa-
tion cos ¢ cosf. In Equation 1, the moments of inertia in
all axes , the mass and the length from COG of the he-
licopter to each rotor have to be identified first so that
this model reflects the reality of the Draganflyer III. The
Matlab M-file 'uavini.m’ initializes the above parameters
and hence requires running before the SIMULINK model
is used. The values of the identification procedure carried
on the UAV system are to be recorded in this file.
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Figure 2: The SIMULINK Model Diagram of The Model

3. The Flying Mill

A picture of the flying mill is shown in Figure 3. The
steel base and carbon fiber boom limit the flight route of
the UAV Draganflyer III to a half sphericity of 1 meter
radius.

Two revolute joints at the base and near end of boom
provide two degrees of freedom required for flight testing
and system identification. In order to mitigate friction in
the joints, the revolute joint at the near end of boom uses
two low-friction radial ball bearings. The bearings are
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Figure 3: Photo of the flying mill with Draganflyer 111

mounted in-line at an appropriate distance apart, parallel
to their respective rotational axis, to minimize the mo-
ment loads. The far end of the boom is connected to
a custom designed spherical bearing which provides the
tested UAV enough tilted degrees of freedom and also pre-
vents its four propellers from touching the ground or the
boom. Due to the above features of this rig, the modelling
and identification performed for the UAV did not justify
the modelling of the flying mill. This spherical bearing
is made of aluminum to reduce the payload of the tested
UAV. The additional payload due to the weight of boom
and the spherical bearing is approximately 60 g. The fly-
ing mill is mounted on a solid board to prevent overturning
during the experiment or a catastrophic failure. Another
platform is built to support the UAV during take off and
landing. This platform can be replaced by limiting the
UAV elevation.

Two optical encoders with resolution of 0.2 degree
were used to sense the elevation and angles radial defining
the UAV position. One optical encoder is fixed at the bot-
tom of the steel base to record the rotational angle of the
vertical shaft. Another optical encoder is mounted at the
revolute joint at the near end of the boom to record the
vertical position of the tested UAV. The two optical en-
coders are connected to the D/A dSPACE interface board,
DS1102. During the experiment, the position of the UAV
is provided by the data from the two optical encoders.The
attitude data is updated by three gyroscopes on the UAV.
The accelerations along three axes are given by the triax-
ial accelerometer also placed on the UAV. The encoders
were used during the identification and validation of the
UAV parameters.

4. Two DOF H, Flight Controller For

Position Control

The objective of this controller is to achieve a robust
control of the four-rotor helicopter, Draganflyer III, at
hover even in disturbed air. The loop shown in Figure
4 which is used to control the attitude angles and vertical
velocity provides stabilization and decoupling as imple-
mented in [3]. The two degree of freedom architecture
is applied for good reference tracking and disturbance re-
jection. The reference inputs are vertical velocity (W_r),
pitch angle (THETA 1), roll angle (PHI_r), yaw rate (R.r)
and its control inputs are pedal, longitude, latitude, yaw
controls. This controller should fulfil the requirements as
follows:
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Figure 4: Two DOF H,, flight controller loop

e All the closed loop poles must lie in the left half of
the s plane to ensure the stability and robustness.

e The closed-up bandwidth shall be as high as practi-
cally possible, and hence the rising time in each loop
should be around 2 seconds.

e The stability margin ¢ is in the interval [0.3, 0.4] al-
lowing for 30-40 % uncertainty in coprime factor.

e Quick pulse and step disturbance rejection.

e The plant was obtained by linearizing the nonlinear
model around u = [4.8000]7 equilibrium point. This
is equivalent to freezing the scheduling states of the
nonlinear controller around these control values.

The design procedure can be described as following:

1. Loop Shaping: The singular values of the unshaped
linear model G of Draganflyer III is shown Figure
5. Since the architecture of pitch angle and roll an-
gle loops is identical, the singular values of these
two loops overlap each other. Note that during con-
troller parameter tuning, the parameter of these two
loops should keep the same. Otherwise, «(2) and u(3)
would oscillate heavily around the equilibrium point.

Using frequency-dependent precompensator W; and
a postcompensator Ws, the singular values of the
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Figure 5: Open Loop Singular Values of the unshaped and
shaped plant

shaped plant G which is defined as G, = WoGW;
can be shaped to the designed open-loop shape and
crossover frequencies at around 7 rad/s in Figure
5. The diagonal precompensator W contains pro-
portional and integral (PI) filters. The proportional
parts can reduce the phase lag around crossover and
set the actuator range. The integral parts can im-
prove the disturbance rejection ability. The post-
compensator W5 contains second-order low-pass fil-
ters for noise rejection and robustness augmentation
and the LHP zeros in pitch angle and roll angle loops
to guarantee the slope of -1 in crossover region. The
expressions for Wy and W5 are as follows:

W1Zdiag[1'5*(1‘52;+0'965) 60 60 1.5*(17.523+9.7)]

Ws = diag
1000 730%(s+2.31) 730%(s+2.31) 1000
$2+41s+730 $24+72s+1430 $2+72s5+1430 s2+41s+730

. Robust Stabilization: Calculate the stability margin
e:

_ I 1T
() 0 P

where ]T/fs and ]\N/'S is the normalized coprime factors
of P, such that Py = M;*N, and

M;7'M? + N7'N: =1

If the stability margin is in the interval [0.3, 0.4], the
H, controller K., would guarantee robustness based
on theoretical [4] and practical experience [5].

In the case of each open loop, the stability margin
¢ has direct relationship with the gain margin (GM)
and phase margin (PM) as:

1
GM = +£201ogy, # and PM = 2 arcsin e
— &

We should note that the calculated GM and PM can
also be used to analyze the robustness and stability.
Typically we require GM > 2(6dB) and PM > 45°.
Opening loop at a time is a common way of testing the
closed loop system’s margins. The H,, optimization
gave € = 0.3532.

3. Implementation: The final feedback controller K is
then constructed by combining the H, controller K,
with the shaping functions W; and W5 as:

K =W K, Ws
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Figure 6: Sensitivity and complementary sensitivity
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Figure 7: Step responses with H,, controller

The resulting closed-loop system was implemented
and simulated to verify the robust stability and per-
formance of the achieved controller.

Figure 6 shows the sensitivity and complementary sen-
sitivity for the H., designed controller. The peak of them
is close to 1 and thus good disturbance rejection and ref-
erence tracking are expected and achieved. Figure 7 com-
pares the step responses of each loop separately with the
H., controller in place. The rising time of each step re-
sponse is around 2 seconds, satisfying the specification.
Figure 8 representing the impulse responses of each loop
with the controller proves that the controller has quick
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Figure 8: Impulse responses H,, controller

pulse disturbance rejection. Figure 9 shows the output
step disturbance starting at 12 seconds to each loop. The
controller reject the disturbance after 3 seconds. Nonlin-
ear simulations with the nonlinear model were performed
using the H,, flight controller at hover. Figure 10 shows
the simulation results of the four outputs when the ref-
erence values of the vertical velocity (W) is fixed to zero
and the reference value of the pitch angle (6) and roll an-
gle (¢) are changed from 0 to 0.5 rad at 15 and 30 seconds
respectively. There is also a step from 0 to 0.5 rad/s of
the yaw rate at 45 seconds.
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Figure 9: Output step disturbance responses

5. Conclusions

A nonlinear modelling of the quad rotor UAV Gra-
ganflyer IIT was presented. A flying mill which is used for
flight testing and parameter identification was introduced.
Based on this nonlinear model, a H,, loop shaping flight
controller is achieved for position control. The simulation
results prove its robustness, good reference tracking and
disturbance rejection.
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