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Abstract – This paper investigates a wavelet based de-
noising of the electroencephalogram (EEG) signal to 
correct for the presence of the ocular artifact (OA). The 
proposed technique is based on an over-complete 
wavelet expansion of the EEG as follows: i) a stationary 
wavelet transform (SWT) is applied to the corrupted 
EEG; ii) the thresholding of the coefficients in the lower 
frequency bands is performed; iii) the de-noised signal is 
reconstructed. This paper demonstrates the potential of 
the proposed technique for successful OA correction. 
The advantage over conventional methods is that there 
is no need for the recording of the electrooculogram 
(EOG) signal itself. The approach works both for eye 
blinks and eye movements. Hence, there is no need to 
discriminate between different artifacts. To allow for a 
proper comparison, the contaminated EEG signals as 
well as the corrected signals are presented together with 
their corresponding power spectra. 
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I.  INTRODUCTION 

The electroencephalogram (EEG) gives researchers a 
non-invasive insight into the intricacy of the human brain. It 
is a valuable tool for clinicians in numerous applications, 
from the diagnosis of neurological disorders, to the clinical 
monitoring of depth of anesthesia. For awake healthy 
subject, normal EEG amplitude is in the order of 20-50µV. 
The EEG is very susceptible to various artifacts, causing 
problems for analysis and interpretation. In current data 
acquisition, eye movement and blink related artifacts are 
often dominant over other electrophysiological 
contaminating signals (e.g. heart and muscle activity, head 
and body movements), as well as external interferences due 
to power sources. Eye movements and blinks produce a 
large electrical signal around the eyes (in the order of mV), 
known as electrooculogram (EOG), which spreads across 
the scalp and contaminates the EEG. These contaminating 
potentials are commonly referred to as ocular artifact (OA). 

The rejection of epochs contaminated with OA usually 
leads to a substantial loss of data. Asking subjects not to 
blink or move their eyes, or to keep their eyes shut and still, 
is often unrealistic or inadequate. The fact that the subject is 
concentrating on fulfilling these requirements might itself 
influence his EEG. Hence, devising a method for successful 

removal of ocular artifacts (OAs) from EEG recordings has 
been and still is a major challenge.  

Widely used time-domain regression methods involve 
the subtraction of some portion of the recorded EOG from 
the EEG [1, 2]. They assume that the propagation of ocular 
potentials is volume conducted, frequency independent and 
without any time delay. However, Gasser et al. in [3] argued 
that the scalp is not a perfect volume conductor, and thus, 
attenuates some frequencies more than others. 
Consequently, frequency-domain regression was proposed. 
In addition, no significant time delay was found, which was 
in consistency with the EOG being volume conducted.  

In [4] it was reported that, in reality, the frequency 
dependence does not seem to be very pronounced, while the 
assumption of no measurable delay was confirmed. Thus, 
while some researchers support the frequency domain 
approach for EOG correction [3, 5], others disputed its 
advantages [4, 6, 7]. However, neither time nor frequency 
regression techniques take into account the propagation of 
the brain signals into the recorded EOG. Thus a portion of 
relevant EEG signal is always cancelled out along with the 
artifact. Further, these techniques mainly use different 
correction coefficients for eye blinks versus eye movements. 
They also heavily depend on the regressing EOG channel.  

In addition, Croft and Barry [7] demonstrated that the 
propagation of the EOG across the scalp is constant with 
respect to ocular artifact types and frequencies. They 
proposed a more sophisticated regression method (the 
aligned-artifact average solution) that corrects blinks and 
eye movement artifacts together, and made possible the 
adequate correction for posterior sites [6]. They claim that 
the influence of the EEG-to-EOG propagation has been 
minimized in their method. 

In an attempt to overcome the problem of the EEG-to-
EOG propagation, a multiple source eye correction method 
has been proposed by Berg and Scherg [8]. In this method, 
the OA was estimated based on the source eye activity rather 
than the EOG signal. The method involves obtaining an 
accurate estimate of the spatial distribution of the eye 
activity from calibration data, which is a rather difficult task.  

Due to its decorrelation efficiency, the principal 
component analysis (PCA) has been applied for OA removal 
from the multi-channel EEG and it outperformed the 
previously mentioned methods. However, it has been shown 
that PCA cannot fully separate OAs from the EEG when 
comparable amplitudes are encountered [9]. 

Recently, independent component analysis (ICA) has 
demonstrated a superior potential for the removal of a wide 
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variety of artifacts from the EEG [10, 11], even in a case of 
comparable amplitudes. ICA simultaneously and linearly 
unmixes multi-channel scalp recordings into independent 
components, that are often physiologially plausible. Also, 
there is no need for a reference channel corresponding to 
each artifact source. However, ICA artifact removal is not 
yet fully automated and requires visual inspection of the 
independent components in order to decide their removal. 

Other attempts have been based on different adaptive 
signal processing techniques [12-16]. The performance of 
these methods also relies on a cerebral activity to minimally 
contaminate the EOG reference.  

The EEG may contain pathological signals, which 
resemble OAs. Thus, these signals are most likely to be 
removed from the EEG recordings, leading to erroneous 
diagnosis. Therefore, it is important to distinguish between 
artifacts and pathological EEG signals prior to artifact 
removal. Artificial intelligence techniques prove to be 
somehow helpful in achieving this goal [17]. 

Our aim is to present a real-time OA removal technique, 
based on stationary wavelet transform (SWT) de-noising of 
a single frontal channel EEG. The proposed technique is 
based on an over-complete wavelet expansion of the EEG as 

follows: i) a stationary wavelet transform is applied to the 
corrupted EEG; ii) the thresholding of the coefficients in the 
lower frequency bands is performed; iii) the de-noised 
signal is reconstructed. No reference EOG channel is needed 
and the same approach is used for both the blinks and eye 
movement artifacts.  

The time and frequency characteristics of OAs are  
addressed in Section II, while Section III discusses the 
proposed method. Results are further presented in Section 
IV. 

II.  OCULAR ARTIFACTS 

There are two different originating phenomena for 
ocular potentials [1, 18, 19]. There is a potential difference 
of about 100 mV between a positively charged cornea and 
negative retina of the human eye, thus forming an electrical 
dipole (i.e. corneo-retinal dipole). Firstly, the rotation of the 
eyeball results in changes of the electrical field across the 
skull. Secondly, eye blinks are usually not associated with 
ocular rotation; however, the eyelids pick up the positive 
potential as they slide over the cornea. T his creates an 
electrical field that is also propagated through the skull. 

Fig.1 Uncontaminated Baseline EEG and Various Artifacts 
(a) Uncontaminated baseline EEG   (b) EEG contaminated with slow blink artifact   (c) EEG contaminated with fast blink artifact   (d) EEG 
contaminated with vertical eye movement artifact   (e) EEG contaminated with horizontal eye movement artifact   (f) EEG contaminated with round 
eye movement artifact 



 

 

3 of 3

Hence, ocular potentials spread across the scalp and 
superimpose on the EEG.  

The mechanism of origin (eye movements versus eye 
blinks) and the direction of eye movements determine the 
resulting EOG waveshape. Vertical, horizontal and round 
eye movements usually result in square-shaped EOG 
waveforms, while blinks are spike-like waves.  

Ocular artifacts decrease rapidly with the distance from 
the eyes [18]. Therefore, the most severe interference occurs 
in the EEG recorded by the electrodes placed on the 
patient’s forehead. Yet, this is the most convenient region 
for their placement. Thereto, the frontal and prefrontal lobes, 
which are at the origin of higher cognitive functions, are 
located directly behind the forehead. Therefore, the task of 
EOG correction for frontal channels is challenging. 

For the purpose of this paper, we have acquired EEG 
data from an awake, healthy male subject. A single frontal 
channel was recorded, corresponding to the Fpz electrode 
placement in the nomenclature of the International 10-20 
System. The baseline EEG and five various artifacts were 
recorded in the following fashion. For each artifact, the 
subject was first instructed to keep his eyes shut and still. 
Sixty seconds of presumably uncontaminated baseline EEG 
was thus recorded. Then, for the next 60 seconds, the subject 
was instructed to blink or move his eyes in a predetermined 

fashion. Finally, another resting period of 60 seconds with 
no EOG activity was recorded. Five ocular artifacts were 
recorded in this fashion: slow blinks (1 blink per 2 seconds), 
fast blinks (2 blinks per second), vertical, horizontal and 
round eye movements. The signal was notch filtered at 50-
60 Hz and sampled at 128 Hz.  

The waveforms in Fig. 1 present 10 seconds of each 
signal; i.e. the uncontaminated baseline EEG and the EEG 
contaminated with different artifacts. The corresponding 
power spectra are presented in Fig. 2 along with the average 
power spectrum of the baseline EEG (see Fig. 2a), and each 
individual power spectra of the EEG recorded during resting 
periods. 

Fig. 2 clearly shows that OAs are large, transient slow 
waves. They occupy the lower frequency range; from 0 Hz 
up to 6-7 Hz for the eye movement artifacts, and typically 
up to the alpha band (8-13 Hz), excluding very low 
frequencies, for the eye blinks. This is a well-known and 
documented result [3], which our experiments proved 
consistent with. Clearly, OA amplitudes are of a much 
higher order than those of the uncontaminated EEG and 
have a characteristic pattern of changes. Vertical eye 
movement artifacts (Fig. 2.d) also seem to produce a rise in 
the higher frequencies. However, this is most likely due to 
the increased muscle activity, and it is also present to a 
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Fig.2 Power Spectra of Uncontaminated Baseline EEG and Various Artifacts 
(a) Uncontaminated baseline EEG and other resting periods   (b) EEG contaminated with slow blink artifact   (c) EEG contaminated with fast blink
artifact   (d) EEG contaminated with vertical eye movement artifact   (e) EEG contaminated with horizontal eye movement artifact   (f) EEG
contaminated with round eye movement artifact 
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lesser degree for the other two eye movements (horizontal - 
Fig. 2.e, and round - Fig. 2.f). 

III.  WAVELET-BASED DE-NOISING  

A.  Problem Statement 

As previously mentioned, the EOG is the non-cortical 
activity that contaminates the EEG recordings. Thus, since 
the brain and eye activities have physiologically separate 
sources, we will assume the recorded EEG is a superposition 
of the true EEG and some portion of the EOG signal. Thus, 
we have: 

 
 

where recEEG  is the recorded contaminated EEG, trueEEG  
is due to the cortical activity, and EOGk ⋅  is the propagated 
ocular artifact at the recording site. The offsetdc  takes into 

account the zero mean value of the cortical EEG, since this 
might not be true for the recorded EEG due to the process of 
data acquisition.  

We are interested in estimating the ocular artifact based 
on the analysis of the recorded EEG. By subtracting it from 
the contaminated EEG, we will then obtain a corrected EEG, 
which minimizes the effect of the ocular artifact and gives 
an appropriate representation of the true cortical EEG.  

The true EEG is a noise-like signal. We can not observe 
any clear patterns within it, nor can we simply correlate the 
particular underlying events with its waveshape [20]. 
Furthermore, in the awake, conscious state, neurons are 
firing in a more independent fashion. As a result of this 
desynchronization, the awake EEG signal is even more 
random-apearing. The EOG removal can be approached by 
recovering the regression function ( EOGk ⋅ ) from the 
recorded data.  For this purpose, in the last decade, wavelet 
thresholding has emerged as a simple, yet effective 
technique for de-noising [21]. 

B.  Wavelet Thresholding 

The main statistical application of wavelet thresholding 
is a nonparametric estimation of the regression function f, 
based on observations si at time points ti. The si observations 
are modelled as: 

 
iii tfs ε+= )( , i = 1, 2, … N (N=2n)      (2) 

where εi are independent and identically distributed   N(0,σ2) 
random variables at equally spaced time points ti.  

Due to the orthogonality of the wavelet transform, we 
are alowed to perform filtering in the space of wavelet 
coefficients. The procedure for supressing the noise 
involves: i) finding the coefficients of the wavelet transform 

of {si}; ii) comparing each wavelet coefficient against an 
appropriate threshold; iii) keeping only those coefficients 
larger than a threshold; and iv) applying an inverse wavelet 
transform to obtain an estimate of f. The assumption is that 
large coefficients kept after thresholding belong to the 
function to be estimated, and those discarded belong to the 
noise. This is a fair assumption due to the good energy 
compaction of the wavelet transform. Some of the function 
coefficents might eventually be discarded since they are of 
the same level as the noise coefficients. Thus, this de-
noising technique works well for functions whose wavelet 
transform results in only a few nonzero wavelet coefficients, 
like e.g. functions that are smooth almost everywhere, 
except for only a few abrupt changes [22].   

Special care has to be taken when chosing an 
appropriate threshold, which always involves the estimation 
of the noise variance σ2 based on the data.  

C.  Stationary Wavelet Transform 

The discrete wavelet transform (DWT) is not 
translation-invariant, meaning that in general, if we apply a 
DWT to a shifted version of a signal x, we do not get the 
shifted version of the DWT of x. Due to this drawback, de-
noising with standard DWT often suffers from artificial 
additional artifacts, e.g. ringing effects in the vicinity of 
discontinuity, depending on its actual location [23]. This 
produces wavelet estimators of irregular visual appearance. 

In practice, we obtain the DWT of a sequence {xi} by 
applying a pair of low-pass and high-pass filters, which 
must comply with certain conditions, such as orthogonality 
[24, 25]. Then, the resulting sequences are decimated (i.e. 
only every even member of a sequence is kept). By feeding 
down the low-pass sequence to the next level and repeating 
the filtering and decimation, we obtain the approximation 
and the detail of the sequence {xi} at that level. This 
procedure is repeated until we reach the desired level of 
decomposition. The decimation steps can be equally carried 
out by selecting every odd member of each sequence instead 
of even ones. Furthermore, we can choose to select even 
members at some levels and the odd members at others. 
Obviously, the final result will be different, but the 
orthogonality of the transformation is kept, hence the 
process can be easily inverted to obtain the perfect 
reconstruction.  

Different wavelet transforms corresponding to various 
selections of decimation steps are referred to as the ε-
decimated discrete wavelet transforms, and they are all 
shifted versions of the ordinary DWT applied to the shifted 
sequence {xi} [26]. Any particular ε-decimated DWT 
defines a particular set of wavelet bases and their time 
positions, and consequently, the grid of integers for each 
level at which the wavelet coefficients are localized. Various 
misalignments between the features in the signal and those 
of wavelet basis are leading to more or less pronounced 

offsettruerec dctEOGktEEGtEEG +⋅+= )()()( (1) 
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artifacts when de-noising. To minimize these artifacts, we 
apply ε-decimated DWTs with different shifts, followed by 
the averaging over the obtained results [23, 26].  

The stationary wavelet transform (SWT) of sequence 
{xi} is equivalent to applying each possible ε-decimated 
DWT, and then averaging over the results [26]. In practice, 
SWT is easily obtained in a similar fashion as DWT, except 
that the decimation step is not performed. This leads to over-
complete (redundant) representation of the original signal, 
with great potential for statistical applications. The 
approximation and detail sequences at each level of 
decomposition are of the same length as the original 
sequence, rather than becoming shorter by a factor of 2 as 
the level increases; the complexity at level L is increased 
from O(2L) to O(L2L). 

D.  Methodology 

Since OAs occupy lower frequency bands and have 
significantly larger amplitudes than the noise-like awake 
EEG, a multi-level wavelet decomposition of recEEG   
allows the detection of the presence of artifacts, as they 
generate much larger coefficients. Thresholding these 
coefficients (i.e. setting them to zero), and then recomposing 
the signal will thus correct the EEG. We will use the 
stationary wavelet transform and its inverse, since it has 
better sampling rates in the lower frequency bands, hence 
leading to smoother results.  

The analysis is based on a 1-second epoch of EEG 
signal (128 samples). To overcome boundary effects, epochs 
are extended on both ends, with the samples from the 
previous epoch at the beginning and fliped samples of the 
current epoch at the end. The length of the epoch extensions 
has to be greater or equal to the wavelet filter length. For 
acceptable computational complexity, the analysis has been 
carried out by performing a 5 level decomposition 
(frequency bands 0-2 Hz, 2-4 Hz, 4-8 Hz, 8-16 Hz, 16-32 
Hz and 32-64 Hz). A Coiflet 3 wavelet filter has been 
chosen, since the shape of its mother wavelet resembles the 
shape of the eye blink artifact. This maximizes the 
amplitude of coefficients corresponding to the eye blink 
artifacts in the lowest band of decomposition. Furthermore, 
this choice minimizes the spread of artifacts to higher 
frequency bands. The filter length keeps the computational 
complexity low. It has turned out that it works properly for 
the eye movement artifacts as well.  

Wavelet coefficients have been thresholded only in the 
lower frequency bands (i.e. up to 16 Hz). The thresholding  
procedure sets all coefficients larger than a threshold to zero. 
This one step procedure is equivalent to estimating the OA 
with standard wavelet de-noising technique, and then 
subtracting it from the corrupted EEG. 

Although in overall the EEG signal is non-stationary, 
we can assume its stationarity during the period of one 
epoch. Furthermore, it is true that the variance of the awake 
EEG signal can significantly change from one second to 
another, but this variation is small in comparison with the 
variance of the epochs corrupted by artifacts. Hence, the 
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Fig.3 Fast Blink Artifact 
(a) Contaminated EEG and corrected EEG     
(b) Stationary wavelet decomposition of contaminated EEG    
(c) Power spectra of contaminated EEG and corrected EEG 
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threshold could be estimated by simple statistical analysis of 
the baseline EEG, which is presumably artifact-free. Thus, 
the aquired 60 seconds of the baseline EEG was analyzed 
and each second was decomposed by 5 level SWT with 

Coiflet 3 wavelet filter. For each second, the maximum 
absolute value Mk of wavelet coefficents has been calculated 
for each band k of decomposition below 16 Hz. The 
threshold Tk  for the band k has been calculated as 

 

The proposed methodology enables real time EEG 
correction in the presence of OAs.  

IV.  RESULTS 

Figures 3 and 4 show the results of the de-noising for a 
single epoch of fast blink and horizontal eye movement. The 
contaminated and corrected EEG epochs and their power 
spectra are shown, together with the removed artifacts.  In 
addition, the stationary wavelet coefficients of the 
contaminated EEG epochs are presented along with the 
applied thresholds for details at levels 3-5 (frequency bands 
18-16 Hz, 4-8 Hz and 2-4 Hz), and the approximation at 
level 5 (frequency band 0-2 Hz). Note the exact preservation 
of the high frequency content of the original signal, both in 
amplitude and phase. Note also how the dc bias is 
automatically removed, which is the result of thresholding in 
the approximation band.  

Fig. 5 shows 10 seconds of contaminated and corrected 
EEG for slow blink, while Fig. 6 presents the de-noising 
result obtained from a 5-second EEG contaminated with 
vertical eye movement. Since the per second analysis is 
based on extended epochs, we are able to cancel out the 
boundary distortion originating from the convolution of the 
wavelet filter with the sampled data.  

V.  CONCLUSION 

Ocular artifact correction can be a challenging task. A 
multitude of techniques have been proposed in the literature. 
However, assumptions concerning the propagation of these 
artifacts across the scalp are still actively discussed. There is 
no general consensus as of which of these techniques offer 
the best choice. 

In this work, we have investigated a simple wavelet-
based de-noising technique. Compared with previous 
methods, this technique neither relies on prior measurements 
of the EOG, nor makes the distinction between eyeball 
movement and eye blink artifact correction. Since in real life 
applications both artifacts are present simultaneously, a 
method based on such discrimination is then unreliable. 

Using the time-frequency localization property of the 
wavelet transform, and the high sampling feature of SWT in 
all frequency bands, the proposed technique has clearly 
shown its potential in correcting for low frequency artifacts, 
such as OAs, while preserving the phase and magnitude of 
higher frequency components.  

)(2)( kkk MstdMmeanT ⋅+= (3)

(c) 

Fig.4 Horizontal Eye Movement Artifact 
(a) Contaminated EEG and corrected EEG     
(b) Stationary wavelet decomposition of contaminated EEG    
(c) Power spectra of contaminated EEG and corrected EEG 
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The selection of the threshold is still under 
investigation. A more conservative threshold leads to a 
stronger filtering in lower frequency bands. Adaptive 
filtering techniques might be used to fine tune threshold 
values. Further, when computational complexity is not of a 
concern, a higher level of decomposition (e.g. 7 levels) can 
produce even smoother results.  

The technique presented in this paper represents a 
natural evolution towards a real-time reliable wavelet based 
algorithm for estimation of the hypnosis level during clinical 
anesthesia. In conjunction with our work presented in [27], 
the proposed EOG removal technique is paving a path for 
clinical trials of a new hypnosis monitor. 
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