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Abstract. Process industries need a multivariable predictive controller that is low
cost, easy to setup and maintains an adaptive behavior which accounts for plant non-
linearities as well as potential mismodeling. In answer to this an indirect adaptive
controller, now a commercial product implemented on a Windows-NT/2000/XP plat-
form (BrainWave MultiMax), is proposed. To evaluate its performance the control of
a fuel blending process is presented.
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1. INTRODUCTION

Process industries need a multivariable predictive
controller that is low cost, easy to setup and main-
tains an adaptive behavior which accounts for plant
non-linearities and mismodelling. The classic way
to control a system in a model-based framework
is to obtain a model of the system and then to use
it for the design of a controller.

In answer to these requirements an indirect adap-
tive controller is proposed. The particular struc-
ture of such a controller is described. In doing this
we are showing how Laguerre orthonormal ba-
sis functions (Dumont and Zervos, 1986; Zervos,
1988; Zervos and Dumont, 1988) can be extended
to multivariable systems and used to produce a
valid linear process model. Further, we are pre-
senting how this model can be used at each time
step in a multivariable predictive controller to pro-
duce a plant input move that achieves good refer-
ence tracking in the presence of disturbances and

actuator constraints. The architecture of Brain-
Wave MultiMax, the resulting MIMO adaptive
model based predictive controller, now a commer-
cial product implemented on aWindows-NT /2000
/XP platform is also dicussed.

As mentioned for the identification part, a MIMO
Laguerre orthonormal basis function identification
was employed. Before making a decision with re-
spect to this way of producing on-line an LTI
plant model, a comparison with other established
MIMO methods such as subspace identification
(Larimore, 1990; VanOverschee and DeMoor, 1996)
was pursued. Motivated by practical applicability
we investigated the identification of multivariable
marginally stable systems. The solution offered
embeds this case. All these issues are addressed
in Section 2.

Multivariable model-based predictive control
(MBPC) methods have been widely and success-
fully used in certain sectors of the process indus-
tries for the last 20 years, particularly in the petro-



chemical sector (Morari, 1994). The main attrac-
tion of MBPC in the industrial world is the ability
to handle constraints. In the case of input con-
straints this ability of the MBPC scheme can be
achieved also via a MIMO anti-windup augmen-
tation of the traditional integrator situated at the
output of the controller. The plant dynamic model
is used to predict the behavior of the process out-
put variable within a limited time horizon. An on-
line optimization procedure determines the ma-
nipulated variable. In the case of an on-line/real-
time implementation, the computation time lim-
its the controller bandwidth. To address this is-
sue the indirect adaptive predictive algorithm has
been implemented using sparse matrices. The im-
plementation of the indirect adaptive predictive
controller is explained in Section 3.

Section 4 discusses the benefits of implementing
this controller to a fuel blending process that is
difficult to control with conventional proportional
integral derivative (PID) control due to the strong
coupling between the process channels. Conclu-
sions follow in Section 5.

2. THE MIMO LAGUERRE ORTHONORMAL
BASIS FUNCTION IDENTIFICATION

Over the last decade a significant amount of work
has been put into developing computationally reli-
able and less intensive identification schemes. Sub-
space methods are among the most powerful tech-
niques to have emerged (Larimore, 1990; VanOver-
schee and DeMoor, 1996). Various forms of sub-
space identification methods, directed towards iden-
tifying a multivariable system using simple com-
putations, are employed in an off-line fashion. There
is a strong resemblance between subspace meth-
ods and the method proposed in this paper. The
MIMO Laguerre orthonormal basis function iden-
tification is based on a projection of the plant
model onto a linear space whose basis is formed
by an orthonormal set of Laguerre functions. The
difference is the possibility of an on-line imple-
mentation in the Laguerre network case.

There are a number of advantages resulting from
the use of an orthonormal basis function for iden-
tification: i) the model structure is linear in the
parameters subject to estimation - therefore known
techniques like recursive least squares estimation
can be used; ii) the orthonormality facilitates mod-
elling with a fixed model structure hence avoiding
problems generated by the convergence of the pa-
rameter estimate vector to a local minimum; iii)
dead time dominant plants are easily dealt with;

iv) if needed a reduced number of functions in the
basis offers an efficient way to store the model pa-
rameters and filter the incoming plant data; v) the
ability to include prior knowledge on the system
poles vi) statistical properties of the estimate can
be calculated; vii) the practical implementation is
facilitated by the simple concept of the Laguerre
basis function.

The Laplace domain representation of the Laguerre
function, a complete orthonormal set in L2 is:

Ll(s) =
√

2p
(s− p)l−1

(s+ p)l
, l = 1, . . . , N (1)

where l is the number of Laguerre filters (l =
1, N), p > 0 is the time scale, and Ll(s) are the
Laguerre polynomials. The SISO Laguerre ladder
network can be expressed as a stable, observable
and controllable state space form as:

l(k + 1) =Aij l(k) + biju(k) (2)

y(k) = cij(k)
T l(k) (3)

where l(k)T =
[

l1(k), . . . , lN (k)
]T
is the state of

the ladder, and cij
T (k) =

[

c1(k), . . . , cN (k)
]

are
the Laguerre coefficients at time k. Aij is a lower
triangular square matrix with a dimension equal
with the number of Laguerre filters in the network
and bij is a column vector.

The corresponding discrete time state space rep-
resentation of the Laguerre network (Zervos and
Dumont, 1988) denoted for each ijth SISO model
as Aij , Bij , Cij , Dij is obtained for a fixed choice
of the Laguerre pole location. We have a strong
preference for a fixed real pole corresponding to
each input of the plant since it improves the speed
and accuracy of the estimation algorithm. In ex-
change this choice can lead to a slightly larger
number of Laguerre filters required to model, for
instance, underdamped second order dynamics.
Methods used to search for the Laguerre network
pole that provides the best model approximation
have been tested but no major improvement over
the conventional fixed pole choice backed by an
appropriate decision over the sampling time has
been observed in the case of a real time applica-
tion. This approach, together with a fixed num-
ber of Laguerre filters per input channel, allows a
common Aij and bij for each input to all outputs
SISO models in the MIMO case.

The MIMO model is achieved by assembling the
SISO structure into the cells of a transfer ma-
trix that linearly approximate the multivariable
plant. The way the MIMO system identification
using Laguerre orthonormal basis functions works
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is very similar with the SISO case (Dumont and
Zervos, 1986; Zervos and Dumont, 1988). In the
MIMO case the identification algorithm is aimed
at estimating the parameters of the C(k) Laguerre
matrix of coefficients instead of the the row vector
c(k). A recursive estimator is used to identify the
model, see (M.E. Salgado and Middleton, 1988).
The variation of the RLS method used is charac-
terized by parameters which reflect the forgetting
factor as well as improved convergence character-
istics. Before being employed in control the MIMO
state space representation is reduced to a minimal
realization based on an adequate tolerance.

Increased measurement noise or a large number
of filters in the individual networks can lead to a
reduced level of accuracy in the identified model.
In (Ninness and Gomez, 1990) the reader can find
a theoretical analysis that quantifies the under-
modelling and measurement noise induced errors
in the estimation. Hence, before employing the
plant data for the recursive model estimation, it
is mandatory to filter it. In particular if a dc offset
or an integrator is present the data is filtered to
remove this component.

As a result the identification mechanism presented
above, generally suitable for stable systems, is mod-
ified to account for practical applications with an
integrating characteristic in one or more input-
output channels. Note that the same procedure
of factoring the plant in a stable and a marginally
stable part, considered known, can also be applied
to a plant that contains known unstable dynamics.
For both cases the robustness of the identification
algorithm is conditioned by the exact knowledge
of the marginally stable or unstable part of the
plant.

3. INDIRECT ADAPTIVE PREDICTIVE
CONTROLLER

The controller includes the following: i) an intu-
itive approach which can be understood without
advanced mathematics; ii) tailoring of common el-
ements of MBPC schemes, such as models, ob-
jective functions, prediction horizons, to specific
problems; iii) a constrained cost function account-
ing for both the tracking error and control moves;
iv) ability to account for changes in the plant
model at each time step; v) reference management
employed for specific batch profiles.

The approach employed for the SISO commercial
controller was extended in the MIMO case to in-
clude repeated optimization of a performance ob-
jective over a finite horizon extending from a fu-

ture time up to a prediction horizon (Clarke and
Mohtadi, 1989; Clarke, 1993). Given a set point, a
reference is produced via filtering and used within
the cost function. The algorithm drives the pre-
dicted output over the prediction horizon towards
the reference via manipulating the control vari-
able over the control horizon. Only the first move
is implemented. Hence the future control move-
ment is determined by minimizing the cost func-
tion:

J(k) =

N2
∑

l=N1

‖(ŷ(k + l)− r(k + l)‖2Q(l) +

Nu
∑

l=0

‖∆u(k + l)‖2R(l)

(4)

The input constraints are addressed by a MIMO
anti-windup mechanism. The horizons are Nu, N1

and N2 the control, initial and final prediction, re-
spectively. The weights Q(l) and R(l) can be time
dependent but constant over the future horizon.
The norm ‖‖

2

Q within the cost function is defined

as ‖α‖
2

Q = αTQα. It is assumed that ∆u(k + l) =
0 for l≥Nu. The optimization is carried out using
a least squares solution produced using the same
SVD algorithm which is part of the minimal real-
ization reduction code.

The general structure of MBPC schemes is re-
spected: i) the optimizer contains the constrained
cost function, its main task being to compute the
present and future manipulated variable moves
such that the predicted output follows the refer-
ence in a desirable manner; ii) the predictor em-
ploying the internal model and the measurement
or estimate of the current state provides the op-
timizer with future predicted values of states and
outputs; iii) the newly identified LTI models rep-
resent the plant; iv) the observer provides current
state estimates used by the predictor.

Two important issues are raised during the model
adaptation: i) under which conditions and how
well the process estimate will converge to the real
plant parameters; ii) what can we say about the
stability of these scheme when we are in fact switch-
ing between controllers designed based on plants
identified at different set-points and subjected to
various loads. At this stage, we are working to-
wards proving the convergence of the MIMO es-
timation procedure based on the following typical
assumptions: i) persistent input excitation in all
input channels; ii) bounded disturbances and iii)
the model is considered to accurately describe the
real plant. Note that some of these assumptions
are necessary and in fact achievable in practice for
good identification.

3



When estimation of the plant model is performed
in closed loop, independent persistent excitation
is a must, see (Goodwin and Sin, 1984). For in-
stance, a step change in the reference can pro-
vide the identification algorithm with a significant
amount of information during the initial samples
that follow the change, but, as soon as the tran-
sient disappears into the plant noise the plant/model
mismatch becomes unobservable. Hence, it is cru-
cial for the controller to modify its settings to ac-
count for such changes. The alternative solution
is a pseudo-random binary sequence with a fre-
quency content extending to the plant bandwidth,
added at the input of the plant. This alternative
becomes mandatory in the case of a MIMO non-
square system.

The adaptive control and identification algorithm
have a number of free parameters. The controller
design and implementation have minimized this
number and we are currently looking at automat-
ing the setting of these parameters based on a
given plant ideal model.

4. BENEFITS OF IMPLEMENTING THIS
CONTROLLER TO A FUEL BLENDING

PROCESS

The refinery where the fuel blending process 1 is
located manufactures fuels, primarily gasoline, diesel
fuel, and jet fuel. The refinery receives crude oil
from Alaska via tanker and from Canada via pipeline.
The refinery capacity is 108,000 barrels per day
of crude feed. A by-product of the crude refining
process is asphalt, which can be turned into a low
cost fuel for ships and is also used for road con-
struction. The process of transforming the asphalt
into a low cost fuel requires blending the asphalt
with cutting agents to meet both specific gravity
and viscosity specifications that make the asphalt
transportable. The cutting agents that are used
can be either fuel products manufactured by the
company or purchased from other companies. The
fuel cutters are expensive and hence the need to
minimize the cost of the cutters while maintaining
the specific gravity and viscosity of the blended
fuel is mandatory.

The utilization of the MIMO adaptive predictive
controller 1 is illustrated in this brief study on the
fuel blending process. For commercial reasons the

1 We would like to acknowledge S. Kline from Tesoro Re-
fining Company for allowing the field trials of the com-

mercial BrainWave MultiMax Controller produced by the

team from Universal Dynamics Ltd.
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Fig. 1. The closed loop with the advanced adap-
tive MIMO controller

data presented reflects, up to a simulation model,
the reality found in the refinery.

The MIMO plant has two inputs (two different
cutter types) and two outputs (specific gravity
and viscosity) and a measured disturbance (the
flow of asphalt). The plant model presented large
discrepancies between channels, different dynam-
ics including different gains, time delay and strong
cross-coupling. The fuel blending control loop had
a time constant of 60 seconds and a dead time
of 4 minutes. The blending of the cutter with
the asphalt occurred when the asphalt tempera-
ture was 525F. The blended mixture then travels
through a series of heat exchangers and the spe-
cific gravity is measured when the final mixture
is 75F. The specific gravity must be maintained
at 12.3 API (American Petroleum Institute spe-
cific gravity units) and the addition of the cutting
medium must be minimized. The viscosity control
loop presented similar dynamics with a negative
gain.

These dynamics together with the cross-coupling
between the main cutter input and the viscosity
can be observed in Figure 2 which reflects the
final result of learning the plant and measured
disturbance models. BrainWave MultiMax, cho-
sen as the advanced control software for online
fuel blending of the cutters with the hot asphalt,
was interfaced to a Siemens Moore Apacs Sys-
tem through a Modbus connection. An industrial
computer was placed in the same cabinet as the
Apacs system to run the BrainWave MultiMax
controller. A derived function block was developed
to interface the controller tag information to the
tags corresponding to the Apacs system. Once the
adaptive controller was integrated into the control
strategy, bump tests were initiated to determine
the models for the process response via its user
interface. A multi-model approach was utilized to
take into account the effect different cutters would
have on the blended mixture. The process of bump
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Fig. 2. The plant and feedforward models
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Fig. 3. The closed loop control of specific gravity

tests, model identification and control optimiza-
tion took three days.

The results presented in Figures 3 and 4 exceeded
the existing control performance by several or-
ders of magnitude outperforming at the same time
the manual control capabilities of the operators.
These Figures the profile of the output distur-
bance and the command sequence generated by
the controller to reject it, whilst providing ex-
cellent reference tracking within 0.5 API. At the
same time the product viscosity is kept tight within
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Fig. 4. The closed loop control of fuel viscosity

Fig. 5. A snapshot of the controller face plate reflecting

the trender, model viewer and controller setup win-
dows

acceptable bounds. As a result, reduced cutter ad-
dition is saving an estimated $ 150,000 dollars an-
nually, with a return on investment of less than
2 months. In addition the possibility for the op-
erators to redirect their attention to more criti-
cal loops is greatly appreciated. BrainWave Mul-
tiMax was implemented quickly and is easily mod-
ified by the company process engineers.

A snapshot from the controller face plate shown
in Figure 5 is giving a flavor of the way the setup
window blends in the trender for the process re-
sponses together with the model viewer which al-
lows the user to supervise the accuracy of the on-
line identification process.

5. CONCLUSIONS

The advanced model based predictive controller
BrainWave MultiMax was developed in a modu-
lar structure for use on multi-input/multi-output
MIMO processes with possible integrating responses,
exhibiting long delays and time constants. The
controller was developed and tested using a flex-
ible Matlab Simulink test-bed, which enabled us
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to do most of the preliminary testing in this envi-
ronment and subsequently implemented in C++.
A thorough analysis of the parameters involved
in the controller provided golden rules for a num-
ber of tuning parameters, dramatically reducing
the commissioning time. Particular attention was
paid to the development of the graphic user inter-
face (GUI), the implementation in real time of the
controller to achieve sample times as low as 0.1 [s]
for a medium size MIMO system, together with
a strict management of the controller features in
order to make it user-friendly.

The applicability of this controller ranges from
pulp and paper to biomedical engineering. The
main benefits of this control strategy are: a sys-
tematic tuning procedure, reduced cross-couplings
between channels and minimized closed-loop over-
shoot and settling time. Prohibitive costs of pre-
dictive control and a low number of commercially
available multivariable adaptive controllers pre-
vent industries that operate on small profit mar-
gins to take advantage of such technology. This is
exactly the niche market this controller is target-
ing.

In terms of applications the paper shows the ben-
efits of the aforementioned controller to a fuel
blending process, which is characterized by seri-
ous control challenges such as strong coupling be-
tween channels and significant delays in all chan-
nels. The controller performs well when the pro-
cess is subject to large variations in the production
rate with direct consequence upon the process dy-
namics.

Although, the proposed controller works well in
a wide variety of situations it still lacks a theo-
retical analysis. For instance a proof making clear
how the transition between the different internal
models or settings in the controller affect the over-
all system stability, performance or the required
robustness properties is necessary.

Current extensions of the controller are concen-
trated on automatic probing, automatic model val-
idation and automatic horizons and weights ad-
justment based on model evolution.
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