
Software-based Dynamic Overlays Require Fast, Fine-grained
Partial Reconfiguration

Hossein Omidian

Xilinx Inc.

San Jose, CA, United States

hossein@xilinx.com

Guy G.F. Lemieux

University of British Columbia

Vancouver, BC, Canada

lemieux@ece.ubc.ca

ABSTRACT
In this paper, we consider dynamic overlays which use fine-grained

partial reconfiguration (PR) to continuously adapt to their software-

based workload. In particular, we show how to modify a traditional

(static) overlay developed for OpenVX into a dynamic overlay. We

use a Xilinx FPGA, and show that the dynamic overlay needs unsup-

ported features including faster PR, relocatability, and fine-grained

configuration is needed for performance. Since these features are

not available in Xilinx FPGAs, we estimate the application-level

speedup they would provide. We find that vector custom instruction

(VCI) chaining, which allow a VCI to directly cascade its result into

another VCI is also essential. Overall, we find the static overlay

achieves a speedup of roughly 20× faster than a Cortex-A9 pro-

cessor, but with improved PR and chaining a speedup of 106× is

attainable. While there have been calls for fast, fine-grained PR

devices for decades, we believe that dynamic overlays may be the

first true "killer application" that will justify adding these features

to all FPGA devices.

1 INTRODUCTION
Overlays add a new layer of configuration on top of the FPGA

bitstream; customizing this new layer allows an overlay to solve a

specific problem. Some overlays, such as [1, 4, 5, 7] also use partial

reconfiguration (PR) as part of this new configuration layer, but

they only perform PR once when the overlay is customized or the

application is loaded, and do not do any further PR at run-time. For

this reason, we call these static overlays.
In this work, we introduce the concept of dynamic overlays,

where the overlay continuously changes a portion of the FPGA logic

at run-time through PR. We are not presently aware of any dynamic

overlays in the literature, although they may exist. In addition, we

make a distinction between fine-grained and coarse-grained PR.

This work assumes a fine-grained approach where a single large

PR region can be filled with many smaller, relocatable PR modules;

in this approach, configuration time is proportional to the size of

the PR module’s partial bitstream. In a coarse-grained approach,

the entire PR region or subregion needs to be reconfigured — while

it might be possible to do this without disturbing other PR module

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

HEART 2019, June 6–7, 2019, Nagasaki, Japan
© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-7255-8/19/06. . . $15.00

https://doi.org/10.1145/3337801.3337816

instances, the configuration time is proportional to the entire PR

region or subregion because of the necessary bit scrubbing.

To demonstrate the value of dynamic overlays, we build one to

accelerate OpenVX applications and show the potential speedup

when support is provided for fine-grained, relocatable bitstreams

with fast PR. OpenVX is a standard software API for computer

vision defined by Khronos Group, who also defined OpenCL. We as-

sume the application is written by a pure software programmer, and

that it is fully portable to other vendors’ OpenVX implementations.

Previous work uses HLS methods for synthesizing bitstreams

from OpenCV [16] and OpenVX applications (e.g., OpenVINO [3],

UC Irvine [11], and UBC [7] projects). However, all of these methods

generate a completely new bitstream when the application changes

by even a small amount. This makes it difficult to modify the appli-

cation, since the programmer needs to use complex vendor place

and route tools and a powerful PC. In contrast, the latest system

from UBC [8] uses a static overlay, where partial configuration is

used to partially customize the overlay at application load-time, but

the bitstream remains static at run-time.

In this work, we extend our prior work [8] to investigate a new

OpenVX system that uses a combination of VCI chaining and a

dynamic overlay to achieve even greater acceleration. The original

static overlay uses the VectorBlox MXP soft vector processor [10]

(SVP) with static vector custom instructions (VCIs). The dynamic

overlay allows VCIs to be reconfigured dynamically at run-time.

In this work, a VCI is designed as a small, relocatable PR module

within a large PR region (PRR) that can host multiple VCIs at once.

Each VCI accelerates one type of compute kernel in an OpenVX

application; as an application progresses from kernel to kernel,

a different VCI needs to be used. Due to finite PRR capacity and

internal fragmentation, some VCIs may need to be ejected to load

a new VCI. The size of the PRR partial bitstream and the rate at

which a VCI can be configured may affect application throughput.

When a VCI is not available, the SVP can still be used to execute

the kernel using regular vector instructions. As VCIs can vary

considerably in complexity and size, the size of the bitstream for

each PR module also varies. Hence, simpler VCIs can be configured

faster, whereas more complex ones may take longer to configure

but can also perform faster computation.

2 SYSTEM OVERVIEW
This study uses a ZedBoard. The overlay consists of an ARMCortex-

A9 host processor (667MHz), the VectorBlox MXP soft vector pro-

cessor (SVP) [10] at 100MHz, and an empty PRR reserved for vector

custom instructions (VCIs) [9]. We explore a range of PRRs up to

14,000 LUTs. To use a VCI, the associated partial bitstream must be

relocated to an available location and then configured into the PRR.

https://doi.org/10.1145/3337801.3337816

HEART 2019, June 6–7, 2019, Nagasaki, Japan Hossein Omidian and Guy G.F. Lemieux

Figure 1: System overview

When used as a static overlay, the PRR can be filled with partial

bitstreams for multiple VCIs until full. However, when used as a

dynamic overlay, the contents of the PRR are modified on the fly at

run-time, enabling the use of more VCIs than the PRR can hold at

once.

Figure 1 provides a view of the overall system. The MXP has its

own scratchpad and supports up to 16 different VCI opcodes. The

scratchpad provides two streaming source operands on PortA and

PortB, and accepts results on PortC. These ports are configurable

in width for each VCI, and can provide or consume multiple words

of data every cycle. Each VCI can be implemented within the PRR

and connect to these ports. A mux network is implemented as part

of each VCI and connects it with the MXP. This mux network can

directly forward results between VCIs in a way that bypasses writ-

ing the intermediate result to the scratchpad. In this way, multiple

VCIs can be chained together for higher performance, assuming

they still conform to the 2-input, 1-output format.

In this system, there are three types of users: the Overlay Ar-

chitect, the FPGA Architect, and the Application Programmer. The

Overlay Architect designs the entire OpenVX run-time system and

creates VCIs for the OpenVX kernels. Several instances of each

kernel are created, each conforming to a different data width for

the ports; wider implementations will achieve higher performance,

but will also use more FPGA logic and require a longer time to

reconfigure. When multiple VCIs are chained together, the data

widths of their ports must match since there is no internal buffering.

Any of these users may write OpenVX kernel code in C/C++ for

the MXP, but it is most likely the Overlay Architect.

The FPGA Architect creates an instance of the overlay in an

FPGA device, and allocates a certain amount of area to the PRR.

The FPGAArchitect also pre-synthesizes a library of VCI implemen-

tations into PR modules that will fit the unique column footprint

and width of the PRR.
1
The FPGA Architect does not need to know

1
The footprint is defined by the order of the different types of columns, e.g. LUTs,

DSPs, and BRAMs.

about the application, and can do this work concurrently with

application development.

The Overlay Architect implements OpenVX kernels in C++ using

Vivado HLS to produce VCI implementations. The FPGA Architect

uses these to produce multiple VCI implementations, one for each

width from 1 to N lanes, where N is a power of 2 that matches the

largest SVP to be used. This produces a minimal-area VCI for each

width. Each VCI implementation is noted with its throughput, area

requirement, and bitstream size. Each OpenVX kernel also has a

pure software SVP implementation, where the throughput, in terms

of CPU clock cycles per pixel, is recorded at each image tile size.

The Application Programmer simply follows the OpenVX API as

defined by Khronos Group. The application is written in C, and can

be debugged using any vendors’ OpenVX implementation. Once

it is debugged, it can be migrated to the FPGA system described

here; the only portability concerns are minor details like memory

capacity. Note the Application Programmer knows nothing about

FPGAs, and does not use any FPGA vendor tools, only the OpenVX

run-time system created by the Overlay Architect and the OpenVX

library and FPGA device instance created by the FPGA Architect.

3 MAPPING OPENVX APPLICATIONS
An OpenVX application is defined as an OpenVX compute graph

of kernel nodes that is built up dynamically by the C program.

The OpenVX run-time system consists of two phases: an analysis

phase that is allowed to optimize the graph, and an execution phase.

During these phases, the run-time decides whether to run each

kernel node either on the static overlay or a VCI, and whether VCIs

will be loaded statically or dynamically.

Given the compute graph, and a target image size, the run-time

system uses an execution time model to determine the best tile

size, which kernel nodes should be implemented as a VCI, and

which VCI implementation to use. It also determines whether to

use bypassing/chaining, node fusion and dynamic PR. All of these

steps are described below.

3.1 Finding Different Implementations
Consider an application described as a graph G with N nodes.

G = (V ,E) , V = { f1, f2, ..., fN } (1)

For each node fm we can find NSV P different software-based vec-

tor processor (SVP) implementations S1m , S
2

m , ..., S
NSV P
m as well as

NVCI different VCI hardware implementations P1m , P
2

m , ..., P
NVCI
m .

Each SVP implementation Ssm can perform functionality of fm on

an image tile, in t(Ssm) time. Each VCI implementation Psm can per-

form functionality of fm with area cost A(Psm), and the number of

pixels it can consume/produce NP(Psm) each firing (i.e., tile width).

Using Execution Time Analysis (described below) and consid-

ering available resources, such as the size of the PRR, scratchpad

capacity, and PR reconfiguration speed, the OpenVX run-time sys-

tem decides which node should be implemented as SVP software

and which one should be implemented as VCI hardware.

3.2 Execution Time Analysis
To execute a general OpenVX compute graph, the run-time system

needs to fetch an image, one tile at a time, from main memory

Software-based Dynamic Overlays Require Fast, Fine-grained Partial Reconfiguration HEART 2019, June 6–7, 2019, Nagasaki, Japan

into the MXP scratchpad. For each tile, it must then execute the

whole compute graph, one kernel node at a time (either as SVP

or VCI implementations). In every stage of traversing the graph,

the intermediate data is saved in the scratchpad. This means the

tile size must be calculated based on the available scratchpad size,

which will be influenced by the amount of intermediate data needed

within each compute kernel, as well as the amount of state needed

to hold intermediate results while traversing the entire graph. After

all of the kernel nodes in the graph are executed on a tile, the results

are written back to main memory before fetching the next tile. The

execution time for these components is discussed below.

SVP Software Implementation
Assuming it takes tDMAM2S to read from the memory to the

scratchpad and tDMAS2M to write from the scratchpad to the mem-

ory, the execution time of executing a compute graph G with N
nodes f1, f2, ..., fN and subset of selected SVP implementations

S1, S2, ..., SN on image tile Tj is tTj . This is:

tTj = tDMAM2S + [

N∑
i=1

t(Si)] + tDMAS2M (2)

The overall execution time for NT tiles in the image is:

tA =

NT∑
j=1

tTj (3)

Accelerated VCI Implementation
Consider node fm in the compute graphG . Instead of using SVP

implementation Sm with execution time t(Sm), it is possible to use

a VCI hardware implementation Pm with execution time t(Pm)

and PR reconfiguration time tPR to improve the execution time.

Assuming we need to reconfigure this node NPR times during the

processing of the entire image, the execution time can be improved

if:

NT t(Sm) > NPR · tPR + NT · t(Pm) (4)

For OpenVX kernels implemented as VCIs, we can define kernel

throughput Θ(Pm) as the number of pixels consumed/produced in

each clock cycle. The same formulation can be used here to calculate

VCI execution time t(Pm):

t(Pm) = SetupTime(Pm) +
TileSize

Θ(Pm) · Fmax
(5)

where the Fmax is the speed of the SVP (here, 100MHz). In addition:

tPR =
PRsize
PRrate

(6)

Node Chaining
Each VCI normally implements one OpenVX kernel node, and

only one VCI is executing at a time. However, if the graph topology

allows, it’s possible to find a cluster of nodes where a series of

VCIs can chain together, sending the output of one directly to

the input of the next, without writing intermediate results to the

scratchpad. This scratchpad bypassing allows us to take advantage

of pipeline parallelism by overlapping VCI execution to achieve

higher performance.

Although chaining improves performance, it requires all VCI

implementations in the chain to be active at the same time. That is,

Figure 2: Node Clustering and Bypassing the Scratchpad

there must be sufficient area in the PRR to hold the entire VCI chain.

In addition, the overall VCI chain still needs to follow VCI topology

restrictions: overall, there can be a maximum 2 input operands

(PortA and PortB) and one destination operand (PortC). Finally,

every node in the chain must use the same data width so they are

rate-matched.

For example, Figure 2(a) shows a graph with three nodes and

its execution timeline. Standalone VCI implementations are used

for each node in the graph. This means each VCI implementation

needs to write its results to the scratchpad before executing its

successors. It also means each node must wait for its predecessors

to finish their jobs before it can begin. Since the execution of nodes

A, B and C do not overlap, the system only needs to keep one VCI

configured at a time within the PRR.

In contrast, nodes B and C can be chained as shown in Figure

2(b). The chain bypasses the scratchpad for writing, so the result of

node B is sent directly by the mux network to the VCI implementing

nodeC . For this to work, the VCI for node Amust be executed first,

and the mux network must be configured to stream data through

the VCIs of both B and C , which must be active simultaneously.

In a different example, shown in Figure 2(c), nodes B and C are

both using the result of node A. This concept of fan-out was not
present in the previous two examples. To avoid writing the result

of A to the scratchpad, two VCI chains must be formed: A and B,
as well as A and C . This example shows that clustering needs to

consider all uses of the intermediate data between nodes.

Now that we have explained VCI chaining, we will describe the

execution time analysis for standalone VCIs as well as VCI chains.

Pruning Slow Standalone VCIs
To enhance performance and reduce the search space, standalone

VCI implementations that are slower than SVP implementations are

pruned. Hence, we will only keep VCIs that satisfy the following

equation:

t(Sm) >
PRsize · NPR
PRrate · NT

+
TileSize

Θ(Pm) · Fmax
+ SetupTime(Pm) (7)

Bypassing the Scratchpad
Similarly, we will prune VCI chains that are slower than the SVP

implementations. Assuming we can implement a sequence of NC
nodes as a VCI chain, we will only keep VCI chains that satisfy the

HEART 2019, June 6–7, 2019, Nagasaki, Japan Hossein Omidian and Guy G.F. Lemieux

Table 1: Some common patterns used for node fusion

Pattern

ConvertColor, Gaussian

Gaussian, Sobel_X

Gaussian, Sobel_Y

ConvertColor, Gaussian, Sobel_X

ConvertColor, Gaussian, Sobel_Y

Sobel_X, Sobel_Y, Magnitude

Sobel_X, Sobel_Y, Phase

Gaussian, Sobel_X, Sobel_Y, Magnitude

Gaussian, Sobel_X, Sobel_Y, Phase

ConvertColor, Gaussian, Sobel_X, Sobel_Y, Magnitude

ConvertColor, Gaussian, Sobel_X, Sobel_Y, Phase

Magnitude, Phase, Non-Maxima

Sobel_X, Sobel_Y, Magnitude, Phase, Non-Maxima

following equation:

NC∑
j=1

t(S
j
M) >

NC∑
j=1

PR
j
size · N

j
PR

PR
j
rate · NT

+max[
1

Θ(P
j
m)

] ·
TileSize

Fmax

+

NC∑
j=1

SetupTime(P
j
m)

(8)

We prune the problem space by eliminating all implementations

that cannot satisfy equations 7 and 8.

Pre-synthesized Node Fusion
Instead of VCI chaining, it is possible to fuse nodes together. This

accomplishes a similar result, but the VCI must be pre-synthesized,

so the pair of nodes to be fused must be known in advance by the

Overlay Architect. This can also be automated by precomputing

a library containing the most frequently-used pairs of OpenVX

nodes.

The difference between VCI chaining and node fusion is shown in

Figure 3.With chaining, the mux network is used to steer the output

of A to the input of B. With node fusion, the connection is made

internally within a single PR module, and the entire fused function

is synthesized into a single VCI. This can yield higher performance

within an area budget; for example, with node chaining, each VCI

might be limited to 2 pixels per firing, whereas node fusion might

be able to support 3 or 4 pixels per firing within a similar budget

due to lower fragmentation.

It may be possible to fuse more than two nodes together. While

producing all combinations of nodes would be infeasible, it is possi-

ble to consider only common patterns. For example, Table 1 lists a

few common patterns with up to 5 nodes. These patterns must still

conform to the overall two-input, one-output operand structure, but

with node fusion it is possible encapsulate more complex internal

structures, e.g. there may be more than two internal branches.

3.3 Solving the Space/Time Tradeoff
After pruning the problem space, the next step is exploring space/-

time tradeoffs to find suitable implementations for each OpenVX

node and solving the scheduling problem by finding which ones

Figure 3: VCI chaining versus node fusion

need to be implemented as SVP and which ones need to be imple-

mented as a VCI or VCI chain.

Previous studies have shown the scheduling problem can be

defined as an ILP problem and be solved by ILP solvers [6, 12].

Although ILP solvers can solve these problems, they lack flexibility

such that it can be difficult to model certain types of constraints or

opportunities such as node fusion.

Rather than address the complexities of ILP modelling, in this

work, we developed a heuristic approach that allows us to con-

sider combining or fusing multiple nodes into a single node. Going

through different possible nodes to fuse, the heuristic uses an ex-

haustive search to find which nodes need to be implemented as

SVP and which ones need to be implemented as VCI. The heuristic

is simple and limited, but shows reasonable results. Due to space

limitations, we are unable to describe it fully herein.

4 EXPERIMENTAL RESULTS
In this section, we investigate the estimated speedup provided by

the SVP and various VCI configurations. The performance of three

different hardware configurations are measured: the baseline ARM

Cortex-A9 running at 667MHz; the SVP running at 100MHz together

with the A9; and the SVP and A9 with different VCI options also

at 100MHz. More than 25 OpenVX kernels are implemented as

ARM, SVP and HLS versions. For the HLS versions, a library of

different PR bitstream implementations for each VCI instance were

generated to facilitate the trade-off finding process; this included

determining the PR bitstream size and ensuring they could run

at the target 100MHz. Note that we have fully implemented and

verified all OpenVX kernel functions for the SVP andVCIs. However,

due to time limits, we have not implemented the ability to load

VCIs using PR. Also, Xilinx PR limitations do not allow us to vary

PR rates, perform fine-grained relocation of PR modules, or load a

Software-based Dynamic Overlays Require Fast, Fine-grained Partial Reconfiguration HEART 2019, June 6–7, 2019, Nagasaki, Japan

A
Color Convert

B

Gaussian 3x3

C

Sobel_X_3x3
E

Magnitude

D

Sobel_Y_3x3

F

Phase
Figure 4: Graph representation of Sobel application

A
Color Convert

B

Gaussian 3x3

C

Sobel_X_3x3
E

Magnitude

D

Sobel_Y_3x3

F

Phase

G

Non-Maxima
H

Hyst Thresh

I

Gaussian 3x3
J

Magnitude

Figure 5: Graph representation of Canny-blur application

PR module based only upon its minimal bitstream size. Instead, we

estimate speedup using VCI execution time profiles and estimated

configuration times.

We generated two versions of the MXP configured with 4 lanes

(SVP-V4) and 8 lanes (SVP-V8), where each lane is 32 bits wide. Us-

ing a ZedBoard, we measured actual SVP runtimes for the OpenVX

kernels on just the ARM processor and on the ARM with MXP

enabled. One experiment showed, on average across four different

kernels (ColorConvert, Gaussian, Sobel and Magnitude), the SVP

achieves a 4.6× speedup on SVP-V4 over the Cortex-A9, and an 8×

speedup using SVP-V8. Neither of these results used VCIs, and they

were all measured on real hardware.

To show the capabilities of our approach, we implemented two

benchmarks as OpenVX compute graphs: 1) Sobel application with

6 nodes (Figure 4) and 2) Canny-blur application with 10 nodes

(Figure 5).

All the kernels in both applications can be run using image

tiles except the hysteresis thresholding kernel (node H) in Canny-
blur. The hysteresis thresholding kernel needs the global image

perspective, so it must DMA all tile results prior to that node before

running the subsequent nodes. Thus, to run Canny-blur, we need
to run the first part on whole image, save the results for the whole

image to memory, and then read the results back for the second

part.

4.1 Impact of Bypassing and Fusion
To show which kernels are actually selected as VCIs, and which are

chained together, we refer to the speedups shown in Figure 6 on an

SVP-V4 with various PRR area budgets. A breakdown of the VCIs

selected for each area budget (numbered 1 through 5) are shown

in Table 2. The SA rows of the table contain a list of which nodes

in Figure 5 are implemented as standalone VCIs (i.e., without any
bypassing); these results are similar to the static overlay without

bypassing in prior work [8].

The first case of bypassing, BP1, chains together A and B, but is

only slightly faster than SA1 which implements separate VCIs for

A and B within the same area budget. As the area budget for the

PRR increases, bypassing begins to show more improvement. Once

the area budget is at 11,500 LUTs bypassing is over twice as fast as

the standalone result (note the log scale on the Y-axis).

Table 2: List of kernels implemented as VCIs in Figure 6

Implementation Kernels implemented as VCIs

SA1 A, B

BP1 AB

SA2 A, B, C

BP2 (AB), C

SA3 A, B, D

BP3 (AB), D

SA4 A, B, C, D

BP4 (ABC), (ABD)

SA5 A, B, C, D, E, F

BP5 (ABCDE) , (ABCDF)

Figure 6: Sobel speedup by due to bypassing

4.2 Impact of Dynamic Overlay
So far, all of the VCIs are fully static, conforming to a static overlay.

In this section, we will estimate the performance improvement with

a dynamic overlay.

Now, instead of static VCIs within the PRR, we will dynamically

reconfigure each VCI while evaluating a graph. To simplify discus-

sion, suppose NPR = NT in Equation 4. This might be the case

when the first use of a VCI incurs latency, but future uses within a

graph can hide the latency (e.g., configuration prefetching). In this

case, the time to reconfigure and run on the VCI must also be faster

than the software-only SVP implementation. That is,

t(Sm) > tPR + t(Pm). (9)

When we allocate a new VCI to the PRR, we need to select a

precise location. First, we do a simple first-fit search strategy in the

free space. If that fails, we eject the configured VCI that has been

idle for the longest time. We find that most VCIs with the same

bandwidth require a similar amount of space within the PRR.

This allocation heuristic is far from perfect, and it may lead to

internal fragmentation within the PRR. Since the entire graph is

known, a more precise scheduler can look at whether kernels are

used multiple times in the graph. Also, since the multiple image tiles

will be passed through the entire graph, the reconfiguration sched-

ule is cyclic. Using these properties, a better heuristic can optimize

for the fewest reconfigurations while also avoiding fragmentation.

HEART 2019, June 6–7, 2019, Nagasaki, Japan Hossein Omidian and Guy G.F. Lemieux

Figure 7: Canny-blur speedup due to dynamic overlay
(14,000 LUT budget)

Rather than attempting to create such an optimal heuristic, we

went with a simple one (which uses more reconfigurations than

necessary, thereby underestimating the speedup) and ignored the

fragmentation problem (since it is likely solvable). These should be

addressed in future work.

Changing the PR Rate
When using a dynamic overlay, the PR rate determines how long

it takes to configure a new VCI. Considering Equation 6 and 9, this

rate can significantly influence run-time.

Figure 7 shows the impact that PR has on speedup. In this figure,

the Canny-blur application is run on an SVP-V8 with both dynamic

overlay and static overlay on an image of size 1920 × 1080. As the

PR rate increases on the X-axis, the overall speedup (relative to

ARM) improves. Although bypassing is initially a small advantage,

its advantage grows as PR rate increases.

To put these results into context, the maximum PR rate for a

Xilinx 7-series device is 400MByte/s using their on-chip ICAP in-

terface.
2
This is the lowest PR rate shown in the figure, and it is so

slow that the overlay cannot dynamically switch any VCIs. Hansen

et al. demonstrated the ICAP can be overclocked over 5× to achieve

2.2GByte/s on real devices [2]. Unfortunately, the dynamic overlay

provides no benefit until 6.4GB/s or higher. Xilinx’s new Versal

architecture [15] supports 16GB/s, which is a point where signif-

icant gains start to be seen. Assuming PR configuration data can

be cached on-chip, even higher PR rates are possible. For example,

Trimberger et al. proposed a time-multiplexed FPGA architecture

in 1997 with a 33GByte/s reconfiguration rate [13]. We hope this

work provides incentive for exploring much faster PR rates and

fine-grained, relocatable PR in future FPGA devices.

5 CONCLUSION
This paper demonstrates the performance advantage of using a

dynamic overlay over a static overlay. A dynamic overlay uses

partial reconfiguration (PR) to dynamically change part of the over-

lay based upon the continuously changing needs exhibited by an

application at run-time.

The dynamic overlay presented in this paper is used to acceler-

ate OpenVX applications. It is based upon a soft vector processor

2
The PR rate for Intel FPGAs is similar [14].

(SVP) along with vector custom instructions (VCI) implemented

as PR modules. When the set of VCIs is statically selected for an

application, this creates a static overlay.

The OpenVX SVP-V8 static overlay with a 14,000 LUT area bud-

get achieves about 17× speedup over the Cortex-A9. With node

chaining and node fusion, this technique reaches about 28× speedup.

A larger area budget allows encapsulation of even larger portions

of the OpenVX graph, producing better results.

The OpenVX dynamic overlay allows VCIs to be reconfigured

dynamically at run-time tomaximize performance.With sufficiently

fast PR rates, the overlay reaches 106× faster with bypassing, and

32× faster without bypassing. Hence, a combination of both fast

PR and bypassing are needed to unlock maximum performance.

This work requires a PR rate in excess of 50GB/s to achieve top

performance, but the precise rate required is very system- and

application-specific. Factors influencing this include DRAM speed,

tile size, SVP scratchpad size, SVP width, and compute intensity of

the OpenVX graph.

These speedup results are only enabled by a well-designed PR

subsystem. The results in this paper depend upon very fast reconfig-

uration, relocating modules quickly with fine-grained positioning,

and partial bitstreams that scale in size with the amount of area

used (without requiring readback/scrubbing of larger regions or

padding). This PR wishlist is not new, but OpenVX is an important

application for FPGAs, and we hope that our dynamic overlay pro-

vides a compelling reason for vendors to reconsider implementing

this wishlist – not only due to its high performance, but because it

enables pure software programmers to use FPGAs.

REFERENCES
[1] Aklah, Z. T. A Hybrid Partially Reconfigurable Overlay Supporting Just-In-Time

Assembly of Custom Accelerators on FPGAs. PhD thesis, 2017.

[2] Hansen, S. G., et al. High speed partial run-time reconfiguration using enhanced

ICAP hard macro. In IEEE IPDPSW (2011).

[3] Intel. OpenVINO toolkit.

[4] Janssen, B., et al. A dynamic partial reconfigurable overlay framework for

python. In ARC (2018), Springer.

[5] Koch, D., et al. An efficient FPGA overlay for portable custom instruction set

extensions. In FPL (2013).

[6] Kooti, H., and Bozorgzadeh, E. Reconfiguration-aware task graph scheduling.

In IEEE EUC (2015).

[7] Omidian, H., et al. Exploring automated space/time tradeoffs for OpenVX

compute graphs. In IEEE ICFPT (2017).

[8] Omidian, H., et al. An accelerated OpenVX overlay for pure software program-

mers. In IEEE ICFPT (2018).

[9] Severance, A., et al. Soft vector processors with streaming pipelines. In FPGA
2014.

[10] Severance, A., et al. Embedded supercomputing in FPGAs with the VectorBlox

MXP matrix processor. In CODES+ISSS 2013 (2013).
[11] Taheri, S., et al. Acceleration framework for FPGA implementation of OpenVX

graph pipelines. Tech. rep., Center for Embedded and Cyber-Physical Systems,

UC Irvine, 2018.

[12] Tompkins, M. F. Optimization techniques for task allocation and scheduling in
distributed multi-agent operations. PhD thesis, MIT, 2003.

[13] Trimberger, S., et al. A time-multiplexed fpga. In FCCM 1997, IEEE.
[14] Xiao, Z., et al. A partial reconfiguration controller for Altera Stratix V FPGAs.

In FPL (2016).

[15] Xilinx. Versal: The first adaptive compute acceleration platform (ACAP).

[16] Xilinx. Xilinx OpenCV User Guide UG1233, January 2019.

	Abstract
	1 Introduction
	2 System Overview
	3 Mapping OpenVX Applications
	3.1 Finding Different Implementations
	3.2 Execution Time Analysis
	3.3 Solving the Space/Time Tradeoff

	4 Experimental Results
	4.1 Impact of Bypassing and Fusion
	4.2 Impact of Dynamic Overlay

	5 Conclusion
	References

