
An Accelerated OpenVX Overlay for Pure Software Programmers

Hossein Omidian
Xilinx Inc.

San Jose, CA, United States
hosseino@xilinx.com

Nick Ivanov
VectorBlox Computing, Inc.

Vancouver. BC, Canada
nick@vectorblox.com

Guy G.F. Lemieux
University of British Columbia

Vancouver, BC, Canada
lemieux@ece.ubc.ca

Abstract—This paper presents an FPGA-based overlay for
accelerating computer vision applications written in OpenVX.
A software programmer simply writes an application using
the standard OpenVX API. The OpenVX overlay consists of
an architecture and a runtime system that runs any OpenVX
application, unmodified, in an accelerated manner on an FPGA.
The architecture uses a Soft Vector Processor (SVP) for general
acceleration, and a library of Vector Custom Instructions
(VCIs) to further accelerate specific OpenVX kernels in the
FPGA fabric. The VCIs are predesigned in advance by a skilled
FPGA designer. The runtime system analyzes the OpenVX
computational graph and selects some kernel nodes to be exe-
cuted by VCIs, with the remaining kernel nodes to be executed
by the SVP. In making the selection, the runtime system uses
an optimization algorithm and relies upon bitstream relocation
and bitstream merging to fit multiple VCIs into a single, fixed-
size Partially Reconfigurable Region (PRR). The optimization
algorithm must select the VCIs that satisfy the area constraint
of the PRR and give the best overall application acceleration.
For example, on a Canny-blur OpenVX application, an 8-lane
SVP achieves speedup of 5.3 over the hard ARM Cortex-
A9. Selecting some nodes as VCIs provides another 3.5 times
speedup, for an overall speedup of 18.5. The overlay enables
OpenVX programmers with no FPGA design knowledge to
accelerate their application.

Keywords-Computer Vision; FPGAs; Soft Vector Processor;
Partial Reconfiguration; OpenVX; FPGA Overlay

I. INTRODUCTION

Software applications written in OpenVX are portable,
optimized and power-efficient across many accelerator back-
end targets. Portability is achieved by recompiling the
application together with a target-optimized OpenVX run-
time system. By supporting operations on image tiles,
OpenVX adds a memory management layer missing from
OpenCV, the de facto computer vision framework. This
allows OpenVX to save significant power and offer speedups
by keeping data on-chip for as many operations as possible.

Computer Vision (CV) is an important class of compu-
tationally demanding applications that are ideally suited for
FPGA acceleration. The general approach for accelerating
algorithms on FPGAs is to use high-level synthesis tools
that compile C and OpenCL into pipelined datapaths on
the FPGA fabric. However, these tools are only usable by
someone with hardware experience and knowledge about
FPGA design. It is unreasonable to expect software program-
mers to be able to use these tools to accelerate an OpenVX
application without extensive training and an opportunity to
develop experience.

To help reduce the barrier to entry of accelerating com-
puter vision applications, Xilinx has has created an OpenCV
library, called xfOpenCV, as part of their reVISION stack.
This library uses Vivado HLS to accelerate 45 vision kernels
that are also in OpenVX. Unfortunately, performance for
most functions is limited to only 1 or 8 pixels in parallel.
Hence, fine-grained scaling of the size or performance of
an accelerated application is not possible. In addition, users
need experience with hardware design and the FPGA tools.

Several approaches for synthesizing image processing
or computer vision applications onto FPGAs have been
published, including domain-specific languages such as
Darkroom [1], Rigel [2] and Halide [3], as well as HLS-
based OpenVX toolkits including Intel’s OpenVINO [4], a
research platform from UC Irvine [5], and JANUS [6], [7].
Among the FPGA-based OpenVX toolkits, JANUS is the
only one that uses an optimization framework for design
space exploration to automatically meet an area budget (with
maximum throughput) or a throughput target (with minimum
area). All of these approaches result in a high-performance,
custom-generated pipelined solution. However, the user must
also learn the FPGA tools (eg, to achieve timing closure).

This paper presents an OpenVX overlay that allows
pure software programmers, with no hardware knowledge
or FPGA tool experience, to develop complete FPGA-
accelerated OpenVX applications. Given an area target, the
OpenVX runtime makes fine-grained space/time tradeoffs to
achieve the highest possible throughput. The overlay starts
with either a hard ARM core, or a slower soft core to execute
the OpenVX runtime environment. For acceleration, it uses
the VectorBlox MXP Soft Vector Processor (SVP) [8] and
Vector Custom Instructions (VCIs) [9].

Unfortunately, the performance and area of the SVP falls
short of what can be achieved with custom logic. For
example, Table I shows the throughput of the vxMagnitude
OpenVX kernel on different platforms. The vectorized soft-
ware implementation running on a SVP with four vector

Table I: vxMagnitude kernel performance

Platform Throughput Speedup
(megapixel/s) vs. A9

Cortex-A9 (667MHz) 10.3 1.0
SVP V4 (100MHz / 13k LUTs) 65.5 6.3

SVP V8 (100MHz / 22.5k LUTs) 129. 12.5
Custom logic (100MHz / 3k LUTs) 1180. 114



lanes (V4) uses about 13,000 LUTs and achieves 6.3 times
higher throughput than the ARM Cortex-A9 despite its lower
clock speed. Increasing the number of vector lanes to 8 dou-
bles the speedup to 12.5 and uses 23,000 LUTs. However, a
custom logic implementation that is area-constrained to just
3,000 LUTs is 114 times faster than the ARM Cortex-A9.

While it may appear that custom logic is best, there are
two main limitations. First, and most importantly, it requires
knowledge of the FPGA tools, making it inaccessible to soft-
ware programmers. Second, unlike the SVP, it is completely
inflexible and cannot be ‘reprogrammed’ to do other tasks.

Thus, to accelerate OpenVX compute graphs in a way
that requires no FPGA or hardware skills, we have designed
an OpenVX overlay consisting of a processor resource, such
as a host ARM processor and SVP for some acceleration,
and a library of VCI modules. Each VCI module is a
custom pipeline that is predesigned by an FPGA expert to
accelerate one OpenVX kernel function. On a kernel-by-
kernel basis, each custom pipeline can achieve the same level
of performance as custom logic. At application load time,
the OpenVX runtime will generate an application-specific
bitstream using partial reconfiguration to activate multiple
VCIs at the same time.

However, choosing the right VCI modules is a difficult
problem. Not all of the compute kernels available in the
OpenVX VCI library will be used by an application, so
it would be wasteful to implement all of them at once.
Instead, to fit a limited budget, we can reserve a partially
reconfigurable region (PRR) in the FPGA and load a partial
bitstream for each required VCI into the PRR. This step
requires relocatable bitstreams and a tool like GoAhead [10].
In this way, software programmers can accelerate OpenVX
applications on FPGAs within an area budget without any
hardware or FPGA design skills.

The rest of this paper covers the process in detail.

II. SYSTEM OVERVIEW

An OpenVX application consists of the part written by
the programmer, plus a runtime environment provided with
a target-specific OpenVX SDK. At runtime, an OpenVX
application must build a graph of compute kernels, verify
the graph, and process (run) the graph. Because of this
flexibility, the graph contents are unknown before runtime.

The inputs and outputs of the graph are images. OpenVX
exploits on-chip buffers and pipelining in accelerators by
allowing an image to be divided into smaller tiles, where one
tile at a time is processed to completion through the graph.
A few OpenVX kernels cannot be tiled, so they require
complete image reconstruction at their inputs before those
graph nodes can be executed.

Figure 1 provides a general view of the OpenVX overlay.
It consists of an ARM Cortex-A9 host processor, the Vector-
Blox MXP SVP [8], an empty/reserved PRR in the FPGA
fabric, and a customized OpenVX SDK. The SDK includes

Figure 1: System overview

a runtime environment, a library of OpenVX kernels written
as C/C++ functions accelerated by MXP, and a library
of prebuilt Vector Custom Instructions (VCIs) which are
custom logic pipelines implemented in the FPGA fabric to
further accelerate some OpenVX kernels.

The user selects the size of the MXP (the number of
parallel vector lanes L, where L must be a power of 2)
and the size of the PRR (a rectangular region of the fabric).
The user also selects the size of the MXP scratchpad, which
typically ranges from tens of kB to a few MB. When
used with a VCI, the scratchpad provides two streaming
source operands on PortA and PortB, and accepts results on
PortC. Input sources are broadcast to all VCIs on PortA and
PortB. A multiplexer chain selects which result is written
back to the scratchpad on PortC. The multiplexer chain is
implemented as part of each VCI and connects it with the
SVP. As part of MXP configuration, each VCI opcode must
specify its own fixed throughput level between 1 and 4L
bytes per clock cycle; all three ports use the same rate.

The VCI library consists of select OpenVX kernels, each
with multiple implementations corresponding to each desired
level of throughput (from 1 to 4L bytes per cycle). To use
a VCI, the associated bitstream must first be loaded into
the PRR; more complex kernels that process more bytes
per cycle will consume more space within the PRR. Up to
K VCIs can be merged into a single PRR using bitstream
relocation and merging features of GoAhead [10]. Because
MXP supports only 16 VCI opcodes, K ≤ 16.

The OpenVX runtime system, described further below,
analyzes the application graph and uses an optimization
algorithm to determine which kernels are to be executed as a
VCI, with the remaining kernels to be executed on the MXP.
The optimization algorithm aims for maximum speedup,



subject to the constraint that all VCIs must fit within the
PRR. Hence, kernels that represent the most computation
will be executed as a VCI.

Through this use of a predefined VCI library, GoAhead,
partial reconfiguration, and the OpenVX runtime optimiza-
tion framework, regular software programmers do not need
any FPGA-specific knowledge.

A. Mapping OpenVX Applications to an FPGA

The process of mapping an OpenVX application involves
three steps. The first step, designing the overlay, is done in
advance by FPGA experts and involves creating the SVP-
accelerated kernels and the VCIs. Each OpenVX kernel is
given a pure software implementation on the SVP, where the
throughput, in terms of pixels it can produce in a time unit,
is recorded for various image tile sizes. In addition, each
OpenVX kernel is written as heavily parameterized C++
for Vivado HLS. For each level of throughput, the JANUS
framework is used to search the design space enabled by
the parameterization and find the smallest implementation
that meets the throughput target. Instead of JANUS, manual
optimization is also possible. Each VCI implementation is
noted with its throughput, area, and partial bitstream.

The second step, building an overlay instance, is also done
an FPGA expert who defines the SVP, scratchpad, and PRR
sizes. This can be done independently of the third step.

The third step, creating an application, is done by a
software programmer following the OpenVX standard. The
programmer selects an overlay instance to run the appli-
cation along with the OpenVX runtime system. Given an
OpenVX graph and an image size, the runtime uses an
execution time model to determine the best tile size, which
nodes should be implemented as a VCI, and which VCI
implementation (throughput level) to use. It also generates
the PRR bitstream and loads it into the fabric.

These steps are described in more detail below.

B. Finding Different Implementations
Consider an application described as a graph G:

G = (V,E) , V = {f1, f2, ..., fN} (1)

For each node fm we can find NSV P different SVP imple-
mentations S1

m, S2
m, ..., SNSV P

m as well as NV CI different
VCI hardware implementations P 1

m, P 2
m, ..., PNV CI

m . Each
SVP implementation Ss

m can perform functionality of fm
on an image tile in t(Ss

m) time. Each VCI implementation
P s
m can perform functionality of fm with area cost A(P s

m).
Considering available resources, such as the size of the

PRR and the speed of SVP and VCI implementations, the
OpenVX runtime system decides which nodes should be run
as SVP software and which nodes should be accelerated
with a VCI. After enumerating different implementations
for each OpenVX node, to minimize the search space, the
OpenVX runtime system prunes any dominated implemen-
tation points. Moreover, it uses “execution time analysis”

and tile/image DMA time to estimate the overall execution
time for each implementation.

C. Execution Time Analysis

To execute a general OpenVX graph, the runtime system
needs to fetch each image tile from main memory to the
scratchpad and execute the whole graph, one node at a time
(either as SVP or VCI implementations). In every stage
of traversing the graph, the intermediate data is saved in
the scratchpad. This means the tile size must be calculated
based on the available scratchpad size. After executing all
the graph nodes on a tile, results are written back to main
memory before fetching the next tile. The execution time
for these components is discussed below.

1) SVP Software Implementation: The execution time of
a graph G with N nodes f1, f2, ..., fN and a set of selected
SVP implementations S1, S2, ..., SN on image tile Tj is tTj

.
This is calculated as:

tTj
= tDMAM2S

+ [

N∑
i=1

t(Si)] + tDMAS2M
(2)

The overall execution time for NT tiles in the image is:

tA =

NT∑
j=1

tTj
(3)

2) Accelerated VCI Implementation: Consider node fm
in the compute graph G. Instead of using SVP implemen-
tation Sm with execution time t(Sm), it is possible to use
a VCI hardware implementation Pm with execution time
t(Pm) to improve the execution time.

For the VCI, we can define kernel throughput Θ(Pm) as
the number of bytes consumed/produced in one clock cycle.
This can be used to calculate VCI execution time t(Pm):

t(Pm) =
T ileSize

Θ(Pm) · Fmax
(4)

where Fmax is the clock speed of the SVP (eg, 100MHz).
3) Pruning Slow Standalone VCIs: To reduce the search

space, VCI implementations that are slower than SVP im-
plementations are pruned. Hence, we only consider VCIs
that satisfy t(Sm) > t(Pm).

III. EXPERIMENTAL RESULTS

In this section, we estimate the speedup provided by the
SVP and various VCI configurations. Three different hard-
ware configurations are considered: the baseline, consisting
of the ARM Cortex-A9 processor running at 667MHz; the
SVP, in two configurations V4 and V8 with four and eight
32-bit lanes, respectively, running at 100MHz without any
VCI; and the SVP (in two configurations) with VCI also
running at 100MHz. We generated V4 and V8 versions of
the SVP hardware on a ZedBoard, and using that hardware
we gathered runtime data for the SVP kernels.



Figure 2: Speed of ARM Cortex-A9 compared to SVP

Figure 3: Graph representation of Canny − blur

Figure 4: Canny − blur speed versus area

More than 25 different OpenVX kernels are implemented
as SVP and HLS versions. For the HLS versions, our JANUS
space/time scaling tool [6] builds a library of area-minimized
VCI implementations at different throughput levels.

The throughput results for four specific kernels are shown
in Figure 2. On average across those kernels, the SVP V4
achieves a 4.6 times speedup over the Cortex-A9, and the
SVP V8 achieve an 8 times speedup.

Performance of a Canny-blur filter, shown in Figure 3,
is given in Figure 4. Although SVP V4 and V8 are able
to achieve better throughput than ARM, the use of VCIs
offers significant improvement for only a modest additional
area increase. In Figure 4, results for five different PRR
sizes are labeled as ‘-1’ through ‘-5’. The VCIs selected
to fit within each of the labeled PRR sizes are given in
Table II. In this table, the letter indicates which node(s) from
the graph in Figure 3 are accelerated with a VCI. As the
PRR size increases, more VCIs are fit into the PRR and
greater speedup is achieved. Although not shown in the table,
the throughput of each VCI is also selected to maximize

Table II: List of kernels implemented as VCIs in Figure 4

Implementation Kernels implemented as VCIs

V4-1 and V8-1 A B
V4-2 and V8-2 A B, D
V4-3 and V8-3 A B C D
V4-4 and V8-4 A B C D, H, I
V4-5 and V8-5 A B C D, H, I, J

throughput without exceeding the capacity of the PRR.

IV. CONCLUSION

This paper presents a method for accelerating OpenVX
applications on an FPGA using an overlay. The overlay
has a runtime component which analyzes the application,
determines which OpenVX kernels should be implemented
as vector custom instructions (VCIs) within a partially re-
configurable region (PRR), and loads an application-specific
bitstream. The customized OpenVX SDK contains an op-
timization framework as part of the runtime system, as
well as a pre-generated a library of area-minimized VCI
implementations defined at multiple throughput levels. The
overlay achieves speedups beyond what a plain SVP can
accomplish. For example, on Canny-blur, the 8-lane SVP
without VCIs is 5.3 times than an ARM Cortex-A9; using a
PRR about half the SVP size boosts speedup to 18.5 times
with VCIs. This allows OpenVX programmers to achieve
hardware-like speeds with no FPGA design knowledge.

REFERENCES

[1] J. Hegarty et al., “Darkroom: Compiling high-level im-
age processing code into hardware pipelines,” ACM Trans.
Graph., pp. 144:1–144:11, 2014.

[2] J. Hegarty et al., “Rigel: Flexible multi-rate image processing
hardware,” ACM Trans. Graph., pp. 85:1–85:11, 2016.

[3] J. Pu, S. Bell et al., “Programming heterogeneous systems
from an image processing DSL,” ACM Trans. Archit. Code
Optim., pp. 26:1–26:25, 2017.

[4] Intel, “Openvino toolkit,” 2018. [Online]. Available:
https://software.intel.com/en-us/openvino-toolkit

[5] S. Taheri, J. Heo, P. Behnam, P. Veidenbaum, and A. Nico-
lau, “Acceleration framework for FPGA implementation of
OpenVX graph pipelines,” Center for Embedded and Cyber-
Physical Systems, UC Irvine, Tech. Rep., 2018.

[6] H. Omidian and G. G. Lemieux, “Exploring automated
space/time tradeoffs for OpenVX compute graphs,” in ICFPT,
2017, pp. 152–159.

[7] H. Omidian and G. G. Lemieux, “JANUS: A compilation sys-
tem for balancing parallelism and performance in OpenVX,”
in J. of Physics: Conf. Series, vol. 1004. IOP Pub., 2018.

[8] A. Severance and G. G. F. Lemieux, “Embedded supercom-
puting in FPGAs with the VectorBlox MXP matrix processor,”
in CODES+ISSS, 2013, pp. 1–10.

[9] A. Severance, J. Edwards et al., “Soft vector processors with
streaming pipelines,” in FPGA, 2014, pp. 117–126.

[10] C. Beckhoff, D. Koch, and J. Torresen, “Go Ahead: A partial
reconfiguration framework,” in FCCM, 2012, pp. 37–44.


