
Low-level Loop Analysis and Pipelining of
Applications mapped to Xilinx FPGAs

Hossein Omidian
Xilinx Inc.

San Jose, CA, United States
hosseino@xilinx.com

Guy G.F. Lemieux
University of British Columbia

Vancouver, BC, Canada
lemieux@ece.ubc.ca

Abstract—In this paper we investigate using low-level loop
analysis to identify common loop patterns in the netlist generated
by the synthesis flow and use loop optimization techniques to
increase Fmax of applications implemented on Xilinx FPGAs.
Ordinarily, feed-forward paths in the netlist can be easily
pipelined. The focus of this study is only sequential loops (with
feedback cycles) that are more challenging to optimize. We show
that, using low-level loop analysis, we can improve Fmax on
average by 57% and achieve an average Fmax of 714MHz across
seven industrial designs. Using aggressive loop combining, we also
show that we can save 18% area on average while still improving
the Fmax by 15% to 41% on four of the seven designs.

Keywords-Low-level Loop Analysis, FPGA, Pipeline, Loop
Transformation

I. INTRODUCTION

The logic synthesis process sometimes results in slow logic
structures at the netlist level that reduce Fmax. If these slow
structures appear in feed-forward logic, pipelining is easy
and one of the most effective ways to improve performance.
Pipelining improves Fmax by introducing registers on the most
critical paths and reducing the effective number of gates and
wire distance that a signal has to traverse in one cycle. Figure 1
shows a simple example of how pipelining a feed-forward path
works. Figure 1a shows the original design with 3 levels of
LUTs between to two registers. The delay for the most critical
path for this design is 6ns, which corresponds to 166MHz.
As shown in Figure 1b, it’s possible to improve the perfor-
mance of this simple design by inserting two extra registers
between the LUTs. This reduces the critical path to 2ns and
increases Fmax to 500MHz. To preserve functional correctness
with feed-forward logic, pipelining requires inserting an equal
number of register stages on all of the parallel paths so they
are balanced. Ganusov et al., proposed an automated approach
to pipeline feed-forward paths using pipelining methodologies
[1]. They also showed the bottleneck for some designs are
sequential loops which cannot be easily pipelined.

In contrast to feed-forward paths, slow structures appear-
ing inside a sequential loop cannot be easily pipelined. For
example, Figure 2 shows how inserting a register in a loop
path breaks the sequence and functionality of the loop. The
original loop in Figure 2a shows a counter which is initialized
to zero and increments the output value by 1 each clock cycle.
Figure 2b illustrates how pipelining of the counter loop will

Fig. 1. Simple feed-forward pipelining.

Fig. 2. Pipelining a sequential loop breaks functionality.

produce a different sequence of values from the original design
– each count value is produced twice. Fixing this requires a
more complex transformation than simply inserting flip-flops.
In this case, it may be possible to split the logic into separate
odd and even loops, where each loop increments the previous
value by 2, and the results are merged on alternate cycles. This
allows the merged output rate to be double each of the loop
rates.

Previous studies such as Borch et al. show the impact of
micro-architectural loop structures in system-on-chip designs
[2]. Our own experience has shown that 80% of industrial
designs on FPGAs run below device capability because of
slow loops in the designs. These studies suggest that sequential
loops are quite commonplace, so a strategy is needed to find
them and transformations are needed to improve them.

There have been several studies on different loop optimiza-
tions to achieve highest Fmax and throughput. Techniques
such as loop splitting and similar transformations can be
used to optimize some designs with loops [3], [4]. In these
approaches, the user needs to spend considerable time ana-

391

2019 29th International Conference on Field Programmable Logic and Applications (FPL)

1946-1488/19/$31.00 ©2019 IEEE
DOI 10.1109/FPL.2019.00068



lyzing the design and manually parallelizing and pipelining
it as much as possible. In contrast, another approach is to
use an automated design space exploration tool to investigate
space/time tradeoffs. For example, the JANUS system [5])
explores many design parameter settings embedded into a
C program compiled using Vivado HLS; it finds the best
parameter settings to meet the user target (throughput or area)
while optimizing for the other (area or throughput).

These aforementioned approaches are useful for optimizing
loops in the designs. Unfortunately, they both require some
degree of expertise to implement in the high-level source
code or at the RTL level. Moreover, in our experience, even
after using these mentioned techniques, a netlist produced
from synthesis can still contain many timing-critical sequential
loops.

In this paper, we add loop analysis to the physical opti-
mization stage in the synthesis process and automate low-level
loop optimization for FPGAs. All of the designs we examine
have already gone through an aggressive physical synthesis
optimization provided by Xilinx Vivado, yet we are able to
find significant additional improvement in delay and area. This
assures us that we are working on loops that cannot be found
by the state-of-the-art industrial tools.

More specifically, this paper focuses on sequential loops in
industrial designs and applies or proposes different netlist-level
transformations to increase overall Fmax or throughput. We
analyze seven large industrial designs, ranging from 150,000
to 300,000 LUTs in size, and find specific loop patterns that
benefit from additional transformation and optimization. We
present four of these patterns found and show how to fix them
in detail. Fixing may involve automated netlist modification,
hints to the user for manual transformation, or automated
insertion of compiler directives. Just as software compilers
clean up lot of code to allow designers to write clear and
readable code instead of optimized code, we believe synthesis
tools need to clean up slow hardware structures.

II. LOW-LEVEL LOOP OPTIMIZATION METHODOLOGY

Synthesis tools transform a design from its original source
form into a logic circuit represented as a netlist. A netlist
shows how different FPGA logic resources (e.g., LUT, FF,
BRAM and DSP) are connected. Logic resources in the netlist
can be part of feed-forward paths or sequential loops.

As a motivational example, Figure 3 shows a simple loop
generated by a synthesis tool; this was extracted from one of
the industrial designs we examined. Figure 3a shows a portion
of the Verilog code representing the loop. Figure 3b shows
an approximate logic schematic where the if-statements are
represented by MUXs. Figure 3c shows a graph representation
of the same loop in the netlist which was generated by the
synthesis tool. In this case, a counter is shown in blue. Each
node in the counter graph is representing a count value. Each
if-statement was implemented as a LUT (nodes C1, C2 and
C3 in the graph). This example shows that four completely
different parts of the source code can result in a low-level
loop. In the industrial circuits we examined, an average of

Fig. 3. Counter with a loop controller

46% of the logic is inside sequential loops. Moreover, in most
cases, we also observed that those loops are the main reason
that prevents us from achieving higher Fmax.

Below, we discuss fixing four types of loop patterns.

A. Overview

First, we classify all paths as either feed-forward (which can
be easily pipelined) or loop (which are not easily pipelined).
Then, we analyze the loops and focus on the critical ones that
are amenable to optimization techniques.

B. Finding Loop Patterns

We created a tool to find loops in the netlist and sim-
plify them by finding primitive loops inside big independent
loops. This make the loop pattern simple and understandable
to developers. Simplified loops can be used by application
developers (both RTL level and HLS level) to see the low-
level effect of their implementations and gives them hints
to avoid complex loop patterns. Hence, identifying common
loop patterns is the primary objective of this tool. The second
objective is to automatically modify the netlist to optimize
simple loop patterns. If that is too difficult, then a message
can be printed instructing the user where to insert directives
to HLS implementations, or how to modify RTL, to facilitate
the desired pipelining speedup.

As mentioned before, it’s not possible to simply add pipeline
registers to a sequential loop; more sophisticated transforms
need to be used to improve the Fmax. First we synthesize the
design and tag the well-known structures such as counters.

392



This can be done using compiler information from the high-
level code. Then we run logic optimization to make sure the
design is optimized in order to get the highest Fmax. After
that we place and route the design on an FPGA in order
to get the accurate timing and Fmax results for the design.
Using a loop classifier, we classify the feed-forward logic
and sequential loop logic and do the loop analysis. For feed-
forward logic, we use automated pipeline analysis to get the
independent Fmax results for feed-forward logic and make
sure feed-forward logic is not the bottleneck. Then we run
timing analysis for the design to find a set of critical paths. If
the sequential loop logic is the bottleneck of the design, we
start the loop analysis process.

The first step of loop analysis is finding loop patterns in
a netlist, tagging them and simplifying big loops by finding
primitive loop patterns inside them. To do this, first we classify
the tagged components in the loop and run exhaustive sub-
graph isomorphism algorithm to find primitive patterns in the
loop and simplify the big complex loop. Finally we add the
simplified loop patterns to our loop pattern library. Algorithm
1 shows the finding loop patterns process.

Input: A netlist
Output: A set of simplified loop patterns

1: do Synthesis(netlist)
2: tag Components(netlist)
3: do Logic Optimization(netlist)
4: do Place and Route(netlist)
5: (Feedforward,Loops)← loopClassifier(netlist)
6: FeedForward← PipelineAnalysis(FeedForward)
7: Critical Paths = Timing Analysis(FeedForward, Loops)
8: if Critical Paths are on Loops then
9: for all loop in Loops do

10: //Finding primitive patterns for each loop
Classify Tagged Components(loop.netlist)
Subgraph Isomorphism(loop.netlist,Loop Library)

11: Simplified pattern← Collapse Small Patterns
12: Loop Library← Simplified pattern
13: end for
14: end if

Algorithm 1: Finding Loop Patterns

Moreover, finding loop patterns and simplifying loop pat-
terns makes loop visualization easier for the user and eventu-
ally gives users hints on how their implementations generate
different loops and which part they need to optimize to avoid
complex loop patterns. Figure 4 shows a loop pattern before
finding a primitive loop within it. Figure 5 shows the same
loop after simplifying. Figure 5 can be easily read and used
by application developers.

C. Loop Analysis

As discussed before, we need to do more than simple
pipelining for sequential loops. After finding different loop
patterns, we need to use various approaches (e.g., loop

Fig. 4. Simple loop expanded

Fig. 5. Simplifying loop by collapsing inside loop patterns

cutting, loop transformation techniques and loop pipelining-
combining). In all those cases, we need to make sure these
approaches don’t change the functionality of the application.
Below, we show three simple common loop patterns and
discuss loop optimization approaches used to improve the
loops in the design.

Loop splitting. Figure 6a shows the simplified graph rep-
resentation of the example mentioned in Figure 3. Assuming

Fig. 6. Loop splitting example

393



the counter is on the critical path, we need to improve it
in order to eliminate it from the critical path. As shown in
the example in Figure 2, pipelining the counter changes the
sequence of the counter as well as its functionality. Instead,
loop transformation techniques such as loop splitting/unrolling
can be used. Figure 6 shows the counter split into two separate
loops (odd and even), each of which increments by 2. In this
case, the Fmax of each counter remains the same, though the
output of combined node (big node containing two counters)
can be sampled at twice the speed since two values are
generated per clock cycle. This eliminates a loop as a critical
path and potentially allows the Fmax for C1, C2 and C3 to
increase by a factor of two. This loop optimization technique
may increase area, and it can be easily automated.

Some might argue that splitting the counter into two coun-
ters can be done at the implementation stage by the developers.
There are three main reasons that handling this in a tool can
be beneficial. First, in all the design we explored, we observed
that loops can be generated from different parts in the whole
RTL project. Developers might not be aware of how those
loops are generated. Moreover, traditional logic optimization
techniques add another layer of obfuscation on how loops
are generated in the netlist. Second, each part of the RTL
project can be owned by different developers, so doing this
manually requires more analysis and communication during
development. Third, to split a counter manually, developers
need to add one more clock to the design manually. This adds
one more constraint to the design which restricts the synthesis,
placement and routing processes. On the other hand, the tool
is aware of available clocks and where the design is placed,
so handling counter splitting can be done easily by the tool.

Associative Refactoring. Figure 7a shows another simpli-
fied common loop we observe in a different industrial design.
The pattern is similar to an adder chain with a feedback loop.
Since the add operation is associative, we can simply change
the order and transform the loose loop in Figure 7a to an adder
chain with an accumulator at the end (a tight loop) shown in
Figure 7b. This transformation can improve the Fmax by a
factor of two. Moreover, this transformation can be done for
any associative function. This loop transformation approach
can be easily automated.

Combining. Another approach can be adding pipeline
stages inside the loop to increase the frequency, similar to
C-slow retiming [6]. As mentioned before, simply adding
pipeline stages inside the loop can change the sequence of
the loop while improving the Fmax. For example, if we add
a register between two adders in figure 7a, we increase the
Fmax by factor of two but the new circuit only generates
one valid output every two clock cycles. This means the
throughput has not improved. Although it might look we
haven’t improved the loop by adding a pipeline stage, we
have opened an opportunity to combine two isomorphic loop
patterns and generate a valid output for each of them on
alternate clock cycles. Figure 7c shows a combined-pipelined
loop. Every clock cycle, it generates one output for each loop
in a round-robin manner. This can save area by implementing

Fig. 7. Transforming or pipelining an adder chain

Fig. 8. Transforming and pipelining a function chain

one pipelined loop N times faster instead of N slow, separate
loops. This is the only technique we discovered that may save
area. It can be automated by pattern matching.

The combined-pipelined adder loop just described can be
applied in more general situations. Figure 8a shows a big
function chain with feedback. If the function f is associative,
it’s possible to transform it into a function chain with a tight
loop feedback at the end as shown in Figure 8b. Regardless
of whether the function f is associative or not, we can use
pattern matching to find N similar patterns and use combining

394



Fig. 9. Pipelining a loop inside an FSM by changing a condition

to improve the throughput and save area.
Early Conditions. A fourth common pattern we will dis-

cuss, called early conditions, is shown in Figure 9a. It’s a
part of simple FSM where each state waits for fixed amount
of time using a counter. For example, state Sn initializes its
counter to zero and waits in the same state while counter is less
than N . With big counters, conditions such as Counter < N
following by initialization of the current state and next state
often generates several levels of logic which slows down the
circuit. Figure 9b shows the netlist generated by the synthesis
tool. There are two registers at both ends and there are five
LUTs in between. Three LUTs at the left side of the dashed
line are generated to implement the condition logic and two
LUTs at the right side of the dashed line are generated to
implement the initialization logic. It’s possible to increase the
Fmax by adding a pipeline stage between condition logic and
initialization logic, but this would generate the final condition
one clock cycle late.

Instead, we can generate the condition one cycle early. Fig-
ure 9c shows the waveform of original condition, current state
and counter. To correct the circuit, we add a new condition,
computed one cycle early. After a pipeline delay, this can
be combined with the initialization logic. Figure 9c shows
“New-Cond”, which is ((State = Sn−1 AND Counter >
M − 1) OR (State = Sn AND Counter < N − 1)); after
a one cycle pipeline delay, this is equivalent to the original
condition. In our experience, these types of patterns can be
automated for simple FSMs, but more complex cases likely
require manual modifications by experts. However, even in
the complex cases, an analysis tool can give developers hints
on how to modify FSM timing.

These four sequential loop patterns can be detected and
pipelined to improve clock speed. In the next section, we

describe the results of optimizing 11 sequential loop patterns
in seven large industrial designs.

III. EXPERIMENTAL RESULTS

Our experiments are carried using Xilinx Vivado tools and
UltraScale+ devices. We have developed a tool that analyzes
a post-synthesis netlist and its timing analysis to find critical
sequential loop patterns. Depending upon the loop pattern,
the tool either automatically modifies the netlist or suggests
modifications to be made to the source. When modifications
are suggested, we make the changes by hand. After all changes
are made, we produce an optimized netlist and use timing
analysis to determine the final Fmax.

TABLE I
TYPES OF LOOP PATTERNS DETECTED

Pattern Method Automated Mod.

1. Counter Splitting Yes
2. Combinational chain Refactoring Yes
3. Combinational chain Combining Yes
4. FSM Early condition Some
5. Triangle Accumulator Cutting Yes
6. Combined counters w/ controller Cutting Yes
7. Counter with a controller loop Cutting Yes
8. CRC lookalike Combining Yes
9. FIFO chain Cutting Yes
10. FIFO with read/write pointer Cutting No
11. FIFOs with a controller Cutting No

We examined seven industrial designs ranging from ap-
proximately 150,000 LUTs to 300,000 LUTs. In those seven
designs, we identified more than 50 loop pattern instances.
Among those instances, we found the 11 distinct pattern types
listed in Table I. The first four pattern types are described in
the previous section; page limits prevent us from discussing
the remaining seven patterns, but most of them are resolved by
cutting the loop with a register and transforming the logic to
restore correctness in ways similar to those already described.
All 11 of these patterns can be detected by our analysis tool.
For many of these patterns, the netlist can be automatically
modified and output in optimized form. In some cases, the
tool only gives a hint of the changes needed, and relies upon
the user to modify and recompile the netlist source code.

After running the tool on each of the industrial designs,
we listed the optimization types that were applied to each

TABLE II
LOOP OPTIMIZATION METHODS USED FOR EACH DESIGN

Design Loop optimization methods

design 1 Cutting, Splitting, Refactoring
design 2 Cutting, Splitting, Refactoring
design 3 Refactoring, Early condition
design 4 Cutting, Splitting
design 5 Cutting
design 6 Cutting, Splitting
design 7 Cutting, Splitting, Refactoring

395



TABLE III
LOGIC LEVELS IMPROVEMENT AFTER USING LOW-LEVEL LOOP ANALYSIS

Design Logic levels before Logic levels after

design 1 4 3
design 2 4 3
design 3 5 4
design 4 13 3
design 5 6 3
design 6 5 3
design 7 7 3

Fig. 10. Fmax results

circuit in Table II. In addition, Table III shows the (worst-
case) number of logic levels before and after using the tool.
As we can see, the tool is able to reduce logic depth in all
designs and results in the higher Fmax shown in Figure 10.
Here, the percentage increase in Fmax is shown on the left y-
axis (bar graph), whereas the final optimized Fmax is shown
on the right y-axis (line graph). In these results, the tool is
focusing on Fmax improvement only, so it does not apply
pipelining and combining in cases where it doesn’t improve
timing. The tool improves Fmax between 19% and 82%, or
57% on average. In absolute terms, it achieves an Fmax of
714MHz on average.

Fig. 11. Saved area and achieved Fmax using aggressive combining

In four of the seven designs, the tool found multiple
instances of a loop pattern similar to Figure 8. (In the other
three designs, this loop pattern was not found, so the results are
unchanged from the previous figure.) Using pattern matching,
the tool can automatically identify these instances and use the
pipelining and combining technique to save area. This time, we
run the tool with the goal of saving as much area as possible,
possibly at the expense of improving Fmax. Figure 11 shows
the amount of area saved in these four designs; on average,
18% area is saved. In addition, Fmax has also improved
between 15% and 41%. While the Fmax improvement is not
as high as before, it is sometimes necessary to save area as
well.

IV. CONCLUSION

In this paper we investigate using low-level loop analysis on
a netlist to identify common loop patterns generated by synthe-
sis. While feed-forward paths are easily pipelined, sequential
loops require greater care. We have identified 11 types of pat-
terns that can be accelerated among seven industrial designs.
The paper describes four of these patterns and the required
optimizing transformations: splitting, refactoring, combining,
and early conditions. These methods are implemented in a
netlist analysis tool that either patches the netlist, or tells the
user how to modify the source. When applying this tool and
optimizing for Fmax, we were able to improve Fmax by an
average of 57% and achieve an overall Fmax of 714MHz.
When applying this tool and optimizing for area, it saves
an average of 18% of LUTs and still get 15% to 41%
Fmax improvement. All of these design modifications can be
made at the source level, but in many cases it would result
in unreadable and hard-to-maintain source code. It is also
worthwhile to note that these improvements were made after
the Xilinx physical synthesis process; Vivado was unable to
make the same types of transformations.

REFERENCES

[1] I. Ganusov, H. Fraisse, A. Ng, R. T. Possignolo, and S. Das, “Automated
extra pipeline analysis of applications mapped to Xilinx UltraScale+
FPGAs,” in International Conference on Field Programmable Logic and
Applications (FPL). IEEE, 2016, pp. 1–10.

[2] E. Borch, E. Tune, S. Manne, and J. Emer, “Loose loops sink chips,” in
International Symposium on High Performance Computer Architecture.
IEEE, 2002, pp. 299–310.

[3] J. Liu, J. Wickerson, and G. A. Constantinides, “Loop splitting for
efficient pipelining in high-level synthesis,” in International Symposium
on Field-Programmable Custom Computing Machines (FCCM). IEEE,
2016, pp. 72–79.

[4] S. Dai, G. Liu, R. Zhao, and Z. Zhang, “Enabling adaptive loop pipelining
in high-level synthesis,” in Asilomar Conference on Signals, Systems, and
Computers. IEEE, 2017, pp. 131–135.

[5] H. Omidian and G. G. Lemieux, “Janus: A compilation system for bal-
ancing parallelism and performance in OpenVX,” in Journal of Physics:
Conference Series, vol. 1004, no. 1. IOP Publishing, 2018, p. 012011.

[6] N. Weaver, Y. Markovskiy, Y. Patel, and J. Wawrzynek, “Post-placement
c-slow retiming for the Xilinx Virtex FPGA,” in International Symposium
on Field-programmable Gate Arrays. ACM/SIGDA, 2003, pp. 185–194.

396


