
Modular and Lean Architecture with Elasticity for
Sparse Matrix Vector Multiplication on FPGAs

Abhishek Kumar Jain, Chirag Ravishankar, Hossein Omidian,
Sharan Kumar, Maithilee Kulkarni, Aashish Tripathi, Dinesh Gaitonde

AMD, San Jose, CA, United States
Email: abhishek.kumar.jain@amd.com

Abstract—The use of domain-specific accelerators is becoming
prominent for a variety of emerging domains such as graph
analytics and HPC, where most of the computations revolve
around Sparse Matrix-Vector (SpMV) Multiplication. Many of
the existing SpMV accelerators do not scale well on FPGA fabric
and exhibit significant performance and area overheads [1], [2],
[3]. With the increased external memory bandwidths supported
by FPGA platforms, SpMV accelerator design sizes are growing
rapidly and exhibit timing closure challenges in physical imple-
mentation [4], [5]. To utilize all the High Bandwidth Memory
(HBM) channels on the FPGA device, accelerator designers
rely on the reuse and replication of the processing elements
(PEs). As the number of PEs in a design grows, the achieved
frequency of these large designs is often much lower than a
single PE design [4], [5]. In this paper, we present a modular
and lean architecture for the SpMV workload enabling elastic
communication between building blocks. The proposed SpMV
accelerator uses single-precision floating-point arithmetic (FP32)
and achieves a frequency of 465 MHz for single-instance imple-
mentation. The lean nature of the design enables the scaling of the
accelerator to sixteen instances, which utilizes all of the 32 HBM
pseudo-channels available on the Alveo U280 FPGA platform.
The accelerator design with sixteen SpMV instances, spanning
multiple FPGA dies, can close timing at 310 MHz which is 80%
higher than GraphLily [4] and 40% higher than HiSparse [5].
We demonstrate up to 50 GFLOPS performance on the Alveo
U280 FPGA Platform which is 2.5× of GraphLily [4].

I. INTRODUCTION

Domain-specific Accelerators [6] and FPGA Overlays [7],
[8] for machine learning (ML) are becoming mainstream
because of high energy efficiency and performance. These
perform dense linear algebra efficiently by minimizing data
movement, exploiting high data reuse, regular memory access
pattern and temporal and spatial locality [6], [7], [8], [9]. The
use of domain-specific accelerators is becoming prominent for
other domains as well (e.g., graph analytics and HPC) where
most of the computations revolve around SpMV [10], [11].

FPGA-based SpMV Accelerators are emerging as a promis-
ing solution since these accelerators have the capability to
boost performance and energy efficiency by customizing mem-
ory hierarchy, communication, and compute logic to suit the
needs of the application [12], [4], [5]. SpMV accelerator
design sizes are also growing rapidly with the increased
external memory bandwidths supported by modern FPGA
platforms, especially since the introduction of HBM-enabled
FPGA devices [13]. The Alveo U280 platform provides 460
GBps HBM bandwidth. To effectively utilize this much band-

width on FPGA devices, accelerator designers rely on the reuse
and replication of the processing elements [4], [5].

Many of the existing SpMV accelerators do not scale well
on HBM-enabled FPGAs and exhibit significant performance
and area overheads [4], [14], [5], [3]. While scaling the exist-
ing SpMV accelerators on HBM-enabled FPGAs, we run out
of resources before utilizing available bandwidth from all of
the HBM pseudo-channels (PCs). According to [3], to utilize
all of the 32 HBM PCs on the Alveo U280, Hitgraph [1] and
ThunderGP [2] require approximately 6× more resources than
are available on the Alveo U280. LUT requirements per PC are
16.9% and 21.3% for Hitgraph and ThunderGP, respectively.
Clearly, we observe issues such as over-utilization and difficult
timing closure as we scale the accelerator size. Some of the
latest SpMV accelerators [4], [14], [5] rely on improved design
choices to reduce resources requirement (LUT/PC) but find
it difficult to close timing at HBM interface frequency (450
MHz on the Alveo U280). GraphLily [4], Sextans [14], and
HiSparse[5] runs at 166, 197, and 237 MHz, respectively while
targeting the Alveo U280 platform.

The achieved quality of results (QoR) of these large designs
is often much lower because various high-level semantics of
the design including the structure of the processing elements,
how they are composed, the structure of the memory hierarchy,
and the interconnect are abandoned in the implementation
flows. One underlying reason for QoR loss is that back-end
implementation tools compile the designs as one large entity.

In this paper, we present a streaming dataflow accelerator
for SpMV around the concept of modular and lean building
blocks. We design and integrate domain-specific atomic mod-
ules and interconnect to maximize compute while maintaining
QoR and designer productivity. Our approach to composing
the SpMV accelerator is inspired by the GraphOps dataflow
library [15]. GraphOps relies on HLS to generate the building
blocks while we use a hybrid approach of mixing HLS with
RTL for introducing FPGA awareness in the implementation.
For example, some of the blocks in a design can use hard
FPGA primitives more efficiently when implemented in RTL
than in HLS [16]. On the other hand, HLS tools allow the the
functionality of a building block to be described at a higher
level to reduce developer effort, enable design portability,
and enable rapid design space exploration, thus improving
productivity, verifiability, and flexibility. We rely on a mixed
IP approach (HLS and RTL) to introduce modularity and
customization opportunities in the design.



We finely control all aspects of the FPGA implementa-
tion flow to create area-efficient and high-performance phys-
ical implementations. We extract critical paths from post-
implemented netlists as feedback to create leaner and more
optimized building blocks at the HLS and RTL levels. Results
show that the SpMV accelerator can operate close to the band-
width limit of the hardware platform, the limiting constraint
in sparse computations. The main contributions of this paper
are as follows:

• Demonstrating that (a) the modular and lean design
of the SpMV accelerator coupled with (b) thoughtful
implementation can allow complete saturation of HBM
channels. We can compose an efficient SpMV accelerator
using modular building blocks and show the bandwidth
utilization of up to 26.2 GB/s, 90% of the peak memory
bandwidth of two HBM PCs (28.8 GB/s).

• Demonstrating the implementation of our unique SpMV
design which uses all of the 32 HBM pseudo-channels
(PC) on the Alveo U280 FPGA platform by carefully
floorplanning 16 SpMV accelerator blocks. The design
can close timing at 310 MHz which is 80% higher than
GraphLily [4] (166 MHz) and 40% higher than HiSparse-
PB [5] (218 MHz). We demonstrate up to 50 GFLOPS
performance on the Alveo U280 FPGA Platform which
is 2.5× of GraphLily [4].

The paper is organized as follows: Section II dives into
the emerging HBM-enabled FPGA platforms, the limitations
of the FPGA implementation flow in mapping the SpMV ac-
celerator designs; Section III describes the streaming dataflow
architecture for SpMV targeting FPGAs; In Section IV, we de-
scribe our implementation flow enhancements to control each
phase of the FPGA CAD flow and create high-performance
implementations. We present the results of implementing
SpMV accelerator in section V and discuss the merits of using
the proposed approach. Finally, a broad area of future work is
discussed in Section VI.

II. BACKGROUND

In this section, we start with a discussion on SpMV
accelerators in general and highlight the accelerator design
challenges. Next, we discuss emerging HBM-enabled FPGA
platforms and the limitations of the FPGA implementation
flow in mapping large-scale SpMV accelerators efficiently on
the platform.

A. SpMV Accelerators on FPGA Platforms
SpMV refers to the multiplication of a sparse matrix A

by a dense vector x to produce a result vector b. There are
many application domains including sparse neural nets [17],
[18], graph analytics [19], and physics simulations [20] where
sparse computation, especially SpMV, is a key component.
Acceleration of SpMV is thus becoming increasingly impor-
tant [21], [22]. Despite having significant parallelism, SpMV
is challenging to optimize due to irregular memory access
patterns and low memory-to-computation ratio. For real-world
sparse matrices, traditional processor architectures fail to ef-
fectively utilize the compute resources and exhibit poor energy
efficiency [23].

Due to the dynamic nature of data flow, the peak perfor-
mance of any SpMV accelerator depends primarily on the
available memory bandwidth and the capability of the compute
logic to effectively use it. SpMV accelerators need to perform
two FLOPs (one multiplication and one addition) for each
matrix value, resulting in a computation-to-communication
ratio of 2 FLOPs per ’N+M’ Bytes (assuming N Bytes for
value and M Bytes for indexing). N is 4 Bytes for FP32
values and M is usually 4-8 Bytes depending on the encoding
format. For example, in coordinate list (COO) encoded format
where both row and column indexes are stored along with the
non-zero values, assuming 2 Bytes each for row and column
indexes, M results in 4 Bytes. Hence for every byte accelerator
fetches from memory there is very little amount of compute.
This is one of the reasons compute units become limited by
memory bandwidth.

Emerging SpMV accelerators have started to make use of
HBM-enabled FPGA platforms but these accelerators, unfor-
tunately, do not scale well, resulting in under-utilization of
the HBM bandwidth [4], [14], [5], [3]. In this paper, we show
that modularity and composability can help in building better
FPGA implementations. We provide a hardware designer with
a set of composable building blocks, broad enough to target a
wide array of sparse applications. Flexible and modular hard-
ware blocks in our library can be used to construct accelerators
for high-performance streaming sparse computations.

B. High Bandwidth Memory (HBM) Platforms

HBM is an emerging memory solution that offers high
bandwidth by stacking multiple DRAM dies vertically. HBM
provides multiple channels that can service memory requests
concurrently. With the recent release of HBM-enabled FPGA
platforms, developers can now exploit unprecedented external
memory bandwidth. This allows more memory-bounded ap-
plications to benefit from FPGA acceleration. For example,
the Alveo U280 has 32 HBM channels delivering 460 GBps
bandwidth in total. The latest Versal HBM devices are capable
of providing a further boost in bandwidth, 820 GBps, as HBM
technology is improving at a very fast pace.

To utilize ever-increasing HBM bandwidth on FPGA de-
vices and to make use of all the HBM channels on a device,
accelerator designers rely on the reuse and replication of
the processing elements [2], [24], [4], [5]. This results in
very large designs that are mapped on the hardware platform
where physical resources get heavily utilized, which leads to
challenges in physical implementation.

C. FPGA Implementation Flow

The front-end of the implementation flow consists of high-
level synthesis, which transforms the high-level design de-
scription into a netlist of physical gates. This netlist is then
mapped to the target FPGA architecture with resources such
as K-LUTs, DSPs, and Block RAM. The main objective of
the front-end flow is to minimize the number of resources
used (area) as well as the logical depth for each synchronous
path (performance). The resulting netlist then goes through the
back-end flow, which consists of placement and routing. The
placement problem is to map the resources of the logical netlist



to resources on the physical FPGA while optimizing total
wire length and critical path delays. This problem becomes
challenging as designs get larger and more complex, coupled
with constraints imposed by the FPGA architecture and device
floorplans.

Commercial FPGA CAD tools provide support for incre-
mental and out-of-context compilation, which allows the user
to partition their design and implement each partition in
isolation on a non-overlapping region of the FPGA floorplan.
The key advantage of this approach is reduced compilation
runtimes, predictable and repeatable results, as well as in-
creased productivity. However, the algorithms do not have a
full picture of the design, especially at interfaces between
modules. Furthermore, the dedicated regions of the FPGA
become unusable for parts of the netlist that are not part of
the identified partition. These factors result in sub-optimality
and loss of QoR.

Therefore, the typical flow for a user concerned about
performance is to compile the entire design as one entity,
which allows the tools to see the complete picture and globally
optimize the design. We address the scalability challenges
of this approach and attempt to mitigate them by carefully
guiding the tools at various stages of the flow.

III. STREAMING DATAFLOW ARCHITECTURE FOR SPMV

Modern computing platforms, for example, the Alveo U280
FPGA and Tesla V100 GPU, support very high HBM band-
width, 460 GBps and 900 GBps respectively. However, uti-
lizing this much bandwidth efficiently is difficult for large-
scale and highly sparse matrices due to very high random-
access pattern and workload imbalance. The fixed memory
hierarchy of GPU architectures can not avoid the penalty of
cache misses while executing sparse workloads. On a cache
miss, when a cache line is requested from main memory, a
fraction of the cache line data is used and the rest is thrown
away. This results in unnecessary data movement and power
overheads. On the other hand, an FPGA accelerator with a
customized memory hierarchy can avoid unnecessary data
movement by efficiently generating main memory requests.
In this section, we present the streaming dataflow architecture
for the SpMV accelerator. Next, we describe the design of the
SpMV accelerator around the modular building blocks and
then we discuss the implementation on the FPGA fabric.

A. Accelerator Overview

Our SpMV accelerator uses gather-apply-scatter (GAS)
model [1] as an execution strategy and coordinate list (COO)
encoded adjacency matrix for storing sparse matrices in HBM
banks. We design multi-ported multi-banked on-chip buffers
(using memory blocks and packet-switched networks) to store
input and output vectors on-chip. We exploit the benefits of
low latency and parallel random access to on-chip buffers
while streaming multiple non-zeros in parallel from HBM
banks. The efficiency of the proposed SpMV accelerator can
be determined by checking how efficiently it can process
non-zeros coming from off-chip memory without introducing
significant stalls. However, stalls are inevitable due to bank
conflicts while accessing multi-ported multi-banked on-chip

Fig. 1: Partially-unrolled SpMV Loop and corresponding
Streaming Dataflow for Scatter-Gather SpMV Pipeline.

buffer. Sparse matrix non-zeros can be stored in memory by
sorting them based on row/column indexes or by arranging
them randomly or diagonally. In this paper, we also study the
effect of the sparse matrix arrangement in memory on bank
conflicts (see Section V-A).

Fig. 1 shows the SpMV loop (partially unrolled version)
and corresponding hardware architecture. If a DRAM channel
allows the injection of N non-zeros every cycle into the
system, an architecture can be designed on top of FPGA fabric
to operate on all of them in parallel. Most of the existing
FPGA based SpMV accelerators follow a common theme of
a streaming pipeline. One stage of the pipeline is generally
referred to as scatter and the other as gather as shown in
Fig. 1. The scatter stage uses a multi-port buffer for storing
vector x. Every cycle, it requests a set of N non-zeros and
uses column indexes to perform N reads in parallel, multiply
it with corresponding data, and send the result forward to the
gather stage. The gather stage also uses a multi-port buffer for
storing y. It uses row indexes to perform N reads in parallel,
performs addition with corresponding data, and finally writes
the result back in y.

B. Accelerator Design

We design modular IP blocks (designed and verified in
isolation) and stitch them together in Vivado IP integrator
via latency-insensitive channels (AXI-streams with ready-valid
handshake). To give an example, some of the building blocks
in our SpMV accelerator (see Fig. 2) are: (a) 2×2 switches
to construct network-on-chip (NoC): noc 0 and noc 1 (b)
streaming Hazard Resolving Backpressure unit (HRB) units
(hrb 0 to hrb 7) to handle carried dependencies. As shown
in Fig. 2, the Load-store adaptor (LSA) is a module that
connects the SpMV pipeline with HBM channels. Stream
splitters (b A0, b A1, b x) are the modules for splitting the
wide stream into multiple narrow streams. Input banked vector
buffer (BVB) modules (bvb 0 to bvb 7) are used for storing
input vector banks and for the multiplication operation. The
accumulator (ACC) modules (acc 0 to acc 7) are used for



Fig. 2: Decomposing SpMV Pipeline into Modular Blocks communicating over Elastic Channels (Ready-Valid Handshake).

storing the output vector banks and for the accumulation
operation. The concatenation module (concat 0) is used for
packing results entries into a wide stream. The monitor (MON)
module (monitor 0) is used for counting the non-zero packets
flowing through the pipeline so that we can start draining the
result as soon as the last non-zero gets processed. This modular
accelerator design lets us extract very high performance out
of the FPGA device (see Section IV-A). In other words, our
method is similar to looking at the canvas and saying that we
can implement this building block (compute or communica-
tion) optimally. Next, we discuss these blocks in detail.

1) Network-on-chip (NoC): Switching networks coupled
with banked vector buffers can allow very high throughput
irregular indexing by keeping the vector elements on-chip. But
the complexity of generally used crossbar networks and their
inefficient mapping on FPGA fabrics [25], [26] is one of the
factors that limit the performance of SpMV accelerators. We
present an approach where we replace the crossbar with a
multi-stage switching network-on-chip (NoC) which is built
using simple switches and achieves high-frequency imple-
mentation. By doing that, we avoid the switching network
becoming the performance bottleneck. Fig. 3 shows the high-
level diagram of our NoC built around 2×2 switches. It shows
how we construct a multi-ported memory using the streaming
switches and URAM banks, denoted as S and B in Fig. 3,
respectively.

As non-zeros are provided at the input ports, the network
routes the non-zeros as packets through multiple switch stages
according to the column indices. The non-zero at any input
port can have any column index, and the network routes it
to the appropriate one of the output ports. In our design,
8 URAM banks (bank 0 through bank 7) are provided for
storing the vector. The switching network can route the non-
zero according to the 3 least significant bits of the 2 bytes
that specify the column. In the 2-byte example, bits [15:3] are
used as the read address (bits [2:0] are used in routing).

We choose to develop a buffered 2×2 switch architecture
built around latency-insensitive dataflow units. These include
elastic buffers (EBs) [27], 2-way split units, and 2-way merge
units. Each 2×2 switch uses 2 split units, 2 merge units and 4
EBs. The EBs in our NoC architecture make use of a specific
implementation, full bandwidth 2-slot EB [28], to avoid stalls
and pipeline bubbles.

Fig. 3: Multi-stage Switch Network using Elastic Buffers.

2) Load Store Adaptor (LSA): Control of data-movement is
critical for the flexibility of our design approach. To keep the
design highly flexible and customizable, we resort to HLS for
describing the load-store adaptor. Fig. 4 shows the composition
of compute pipeline in which LSA is the bridge between HBM
channels and the SpMV accelerator. The pipeline includes
high-speed NoCs (block B and block D), Vector multipliers
(MUL, block C) and accumulators (ACC, block F).

During execution, the LSA requests input vector elements
from one of the HBM channels and fills the input vector buffer
within block C. Then, it requests 8 non-zeros every cycle from
both HBM channels (4 non-zeros from each 32 Byte channel)
and feeds them to the NoC (block B) for routing the non-zeros
to their corresponding vector banks. After reaching the correct
bank, the column index from the non-zero is used to read the
vector entry which gets multiplied by the non-zero value. The
results of multiplication are then routed by the second NoC
(block D) to their corresponding accumulators. After all of the
accumulations are done, the LSA stores the result back to one
of the HBM channels.

3) Banked Vector Buffer (BVB): For input BVBs and multi-
plications (input BVB-MUL), output BVBs and accumulations
(output BVB-ACC), we choose to describe the hardware in
C/C++ and used Vivado HLS to synthesize the IP blocks. The
simplicity of HLS code allows customization opportunities.
For example, the size of BVB can be selected based on the
matrix dimensions. HLS program allows 8K FP32 entries
for each BVB based on which the kernel can handle up to
64K×64K matrices using 8 BVBs. HLS pragma is used to
specify that the URAM should be used to hold vector entries.
This allows URAM cascading for large BVB sizes.



Fig. 4: System-level Diagram for Data Movement between
HBM Channels and SpMV Building Blocks.

4) Hazard Resolving Backpressure unit (HRB): Once the
non-zeros get routed to the input vector banks using the
NoC and multiplied with the corresponding vector entries,
the results of the multiplications have to be routed to the
output vector banks using a second NoC for accumulation
purpose. A major challenge in achieving high performance
comes from the need to accumulate values that are delivered
in consecutive clock cycles into a deeply-pipelined FP32 adder.
This is because subsequent accumulations on incoming data
cannot be performed until the previous accumulation has been
completed due to possible data dependency.

Fig. 5a shows a simple adder with a latency of N cycles
(3 in this example). It means that 3 cycles are required for
the adder to finish the add operation. Also, the adder is
deeply-pipelined and inside the adder, there are 3 stages of
pipeline which means the adder can accept a set of inputs
every clock cycle and produce an output every clock cycle.
Fig. 5b shows an accumulator with the same adder. Although
the adder technically can accept inputs each cycle, due to
the data dependency of the accumulator, we need to wait for
the adder to finish the operation and then accept the next
input (as it was shown in the waveform). Due to the data
dependency in the accumulation, we are not fully using the
adder’s capabilities and the adder pipeline is technically not
busy N-1 cycles out of N cycles (2 cycles out of 3 cycles in this
example). Using resource sharing, we are able to assign those
unused cycles to parallel accumulations if there are no data
dependencies between separate accumulations. Fig. 5c shows
the time-shared accumulator.

As discussed before, we accumulate based on the row index.
It means that the inputs associated with the same row index
should be added to each other. In other words, there are no
data dependencies between inputs with different row indexes
so it is possible to resource share the accumulator for rows
with a different index. On the other hand, it is hazardous to
push inputs with the same row index to the accumulator in
consecutive clock cycles.

(a) Adder with a latency of 3.

(b) Accumulator with 3 stages of pipeline.

(c) Resource sharing an accumulator.

Fig. 5: Adder and accumulators with a latency of 3 cycles.

FPGA FP32 adders have certain latency L (4-8 clock cycles)
to run at high frequencies and it could lead to data hazard
where the value from the incoming row index is read before
the result of previous accumulation is written back to that row
index. It happens when incoming data packets have the same
indexes within a time window of L clock cycles.

To avoid these hazards, one possibility is to stall the
incoming stream for L cycles after each accumulation (similar
to Fig. 5b). This results in poor performance of the SpMV
pipeline since the peak throughput now gets reduced by L
times. To solve this problem, we design a special back-pressure
system referred to as Hazard-resolving back-pressure (HRB)
unit (block E in Fig. 4).

HRB keeps track of all the indexes in flight by using a
shift register. It compares any incoming index with all of the
shift register values and if there is no match, the index-value
pair is safe to move forward for accumulation purposes. But
if there is a match, the HRB would not accept any incoming
index-value pair by simply asserting back-pressure. As soon
as the conflicting index moves through the shift register, HRB
would start accepting new index-value pairs. This way, HRB
can reduce the effective initiation interval (II) of the compute
pipeline from L to 1 as shown in Fig. 6.

Fig. 6: Effect of HRB on II of SpMV accelerator pipeline.



5) Accumulator (ACC): Each of the 8 ACC blocks is
coupled to receive the output product-row tuple from one of
the 8 HRB blocks, and each ACC block accumulates totals of
the products by row. The ACC blocks have respective memory
banks for storing the totals as the totals are accumulated. The
current totals in the memory banks are addressed by the row
indices of the tuples. For example, ACC 0 has a memory bank
that stores totals for rows 0, 8, 16, ...; ACC 1 has a memory
bank that stores totals for rows 1, 9, 17, ...; etc.

We represent our SpMV accelerator as being composed of
modular building blocks. Table I shows the resource utiliza-
tion. Each 2×2 switch requires approximately 350 LUTs and
700 FFs. NoC uses 12 switches and hence a total of 4200
LUTs and 8400 FFs. Compared to the 2D-mesh NoC in [29]
which uses 192 EB, 64 split, and 64 merge units, our NoC
is much more area-efficient as it requires 4× fewer EBs (48),
2.6× fewer split and merge units (24).

Atoms LUTs FFs DSPs BRAMs URAMs

NoC (2) 4200 8400
BVB (8) 228 967 3 1
ACC (8) 530 1226 2 0.5 2
HRB (8) 336 379
LSA (1) 4419 9572 12
MON (1) 86 243

TABLE I: Resource Utilization of Building Blocks.

To understand the resource saving with our new building
blocks, we compare our SpMV accelerator design with our
previous work [29]. The SpMV accelerator in [29] focuses
more on designing the performance-oriented kernel (minimiz-
ing stalls in the pipeline and maximizing bandwidth utiliza-
tion) at the expense of high resource requirements. The kernel
uses an expensive network (2D-mesh) and heavy-duty adder
trees, referred to as HRT units, for dealing with hazards. As the
kernel is performance-oriented and resource hungry (LUT/PC
= 3%), it does not scale well on the Alveo U280 HBM
platform. In this paper, we design a new kernel by proposing
a lean switch network and a lean hazard unit (HRB). Our new
kernel results in 3× fewer LUTs and FFs, 5× fewer DSPs, and
2× fewer BRAMs. The lean nature of the kernel (LUT/PC =
1%) allows us to scale it better (up to 16 kernels).

IV. IMPLEMENTATION FLOW ENHANCEMENTS

In this section, we discuss mapping our SpMV accelerator
on FPGA fabric and the various optimizations during imple-
mentation. Current implementation tools work in phases where
each phase takes inputs/solution from the previous phase,
processes it, and sends the solution to the next phase. In our
approach, we carefully design and guide the tools by passing
information between each of the phases of the flow.

A. Front-End Optimizations
We make the design of the accelerator aware of the im-

plementation and mapping by taking an iterative approach
through the current flows. Each of the building blocks is
initially designed in HLS and taken through all the im-
plementation steps of the flow. Then we analyze the post-
routed implementation and trace back the critical paths and

congestion bottlenecks back to the original HLS code at
the atomic level. We iterate this process to tweak the high-
level design and make it more amenable for back-end tools.
Where appropriate, we also convert HLS into manually written
verilog to further optimize the critical paths. We focused our
optimizations on the HRB, Monitor, and ACC blocks as these
were the identified bottlenecks in the fully integrated kernel
implementation. Table II shows the resource utilization of
these blocks before and after optimizations.

Atoms Pre-Opts Post-Opts Improvement

LUTs FFs LUTs FFs LUTs FFs

ACC (8) 530 1226 312 475 1.7× 2.6×
HRB (8) 336 379 79 322 4.2× 1.2×
MON (1) 86 243 46 166 1.9× 1.5×

TABLE II: Resource Utilization of Building Blocks Before
and After Optimizations.

Fig. 7 shows the post-implemented fmax achieved for each
of the building blocks before and after these optimizations.
Each of the blocks is implemented out-of-context in isolation
targeting 500MHz. The end result of these optimizations led
to a fully integrated kernel implementation that met 465 MHz.
Compared to our previous work in [30], this work optimizes
the building blocks within the kernel so that it can reach a
high operating frequency. We observe a 37% improvement by
pushing the fmax from 340 MHz to 465 MHz. The fully
integrated SpMV kernel uses 50K FFs (1.6%), 20K LUTs
(2%), 40 DSP (0.44%), 16 BRAM (0.8%), 24 URAM (2.5%).

LSA BVB HRB Monitor ACC

0

200

400

600

800

522

589

416

482 459
522

589
534 511

567

Po
st

Im
pl

em
en

ta
tio

n
f
m
a
x

(M
H

z)

Pre-Opts
Post-Opts

Fig. 7: Post Implementation fmax of SpMV Building Blocks.

Since the communication between the building blocks are
elastic, as we improve the critical paths within each of the
building blocks, we can see significant benefits on a fully
implemented kernel. Note that the kernel frequency is still
lower than the worst atom frequency because the blocks are
optimally placed in overlapping regions along with the HBM
Memory Subsystem (HMSS) IP block (required as a bridge
between kernels and HBM PCs), which leads to a more
challenging placement problem and congested regions for the
router.



B. Passing High-Level Design Semantics
With the mixed-IP optimization approach described above,

we are able to synthesize highly optimized building blocks.
There are several high-level semantics that we want to consider
during back-end implementation. Each kernel of the SpMV
implementation is designed to saturate two HBM pseudo-
channels (PCs) and can therefore be individually optimized.
Since the HMSS IP is pipelined and elastic, it is not critical
and therefore can be implemented after prioritizing the kernels.
The information about replicable kernels and their boundaries
is useful for back-end tools as each kernel can then be
individually (and parallelly) optimized without considering the
other kernels. There are several heuristics used to manage
runtime and design scalability that come into effect when
design sizes become large. With knowledge of this semantic,
each kernel of 100K instances can be implemented without
worrying about design size and scalability. We evaluate this
by individually implementing each kernel in a non-overlapping
region, managed with area constraints, then merging the solu-
tion and using it to implement a full 16-kernel solution. We
evaluate this by creating 16 1-kernel designs each targeting
a different HBM channel and constrained to a different non-
overlapping region. Then the physical location of each instance
is extracted from the post-implemented design. The same
locations are then copied to create a merged 16-kernel solution.
Since there is currently no interface to extract the routing
information from a post-routed netlist, the larger 16-kernel
design is routed again. With this approach, we see that each
individual kernel is able to achieve an fmax greater than
420MHz, which should then be theoretically achievable for
the 16-kernel design.

C. Floorplanning
The device composition and floorplan of the platform are

very important and need to be considered at the beginning of
the design cycle. Having an idea of the resource requirements
of each kernel and the connectivity requirements can impact
the way we design them. For instance, the U280 device has a
wide HPIO column bisecting the device into left and right
halves. Any connection that requires crossing this column
will incur a large delay penalty. This means that the kernels
connecting to HBM channels must remain on their respective
halves to minimize connections that cross this column. Pre-
liminary implementations of the SpMV design without this
consideration showed critical paths crossing these signals with
delay penalties of 400-600ps. Since each kernel is indepen-
dent, we are able to constrain all kernels communicating to
an HBM at their respective halves. This minimized the HPIO
crossing nets resulting in a much higher fmax.

To implement each kernel in a non-overlapping region, we
need to carefully consider the resource utilization of the kernel
and the capacity of the region where it is constrained. The
U280 device has 5 columns of URAM (2 on the left half, and
3 on the right half), where each column contains 64 URAMs
per SLR, while the remaining resources are ubiquitous in
the device. Therefore, the area constraint for the region must
include at least 24 available URAMs. Since each clock region
contains 16 URAMs, we constrain the kernel to 2 clock

(a) Option 1 (b) Option 2

Fig. 8: Kernel Floorplanning Options.

regions. We explored several floorplanning configurations for
the 16-kernel design. Fig. 8 illustrates two of the compelling
options that were considered. Option one constrained each
kernel to its own half, while spanning 4 clock regions wide
by 1 clock region tall. This configuration is advantageous
especially in a columnar architecture since a single kernel
PnR solution can be exactly replicated at a vertical offset. All
8 kernels on the left half can be identical implementations of
each other (similarly on the right half). On the right half of the
HPIO, the capacity is reduced since the static region required
for communication with the host PC requires FPGA resources,
therefore we are unable to implement 4 kernels on 1 SLR on
the right half. We can instead implement 3 kernels together,
then replicate it to create 6 and 8 kernel implementations.
Regardless of this capacity reduction, note that we cannot copy
the left placements to the right since the column composition
is different. It would indeed be beneficial for this use case to
have a fabric composition that is regular and repeating such
as those supported by more modern FPGA fabrics [31]. The
second configuration option constrained the kernels to a 2×2
clock region area, where PnR in each column can be replicated
vertically. Option 2 showed much better QoR because the
2×2 configuration created a tighter wirelength picture and
a better balance between horizontal and vertical resources.
Furthermore, horizontal connections incur larger (and more
variable) delay penalties due to crossing the wider BRAM,
URAM, and DSP columns. Vertical resources are faster and
have a much tighter distribution of delays. We have found
that critical paths tend to occur on paths that span horizontally
more often than vertically. Fig. 9 shows the fully implemented
16-kernel SpMV design on the U280 platform using the option
2 configuration.

Fig. 9: Scaling the SpMV Accelerator Architecture with Mul-
tiple HBM Channels and Floorplanning at the kernel level.



D. CAD Flow Directives
Commercial implementation tools expose several algorith-

mic directives to the user that we can use to customize aspects
of the flow. Each directive guides the heuristic and algorithmic
choices in a certain way to produce different implementation
results. It is non-trivial to identify the combination of directives
that is ideal for a certain netlist due to their complex behaviors
and interaction. Recent work has explored using machine
learning techniques to identify the directives leading to optimal
QoR for a given netlist [32]. In this work, we run the tools
in ‘ALL’ implement strategies mode, which simultaneously
launches various combinations of directives. We then choose
the directive combination based on the achieved results on
the 16-kernel SpMV implementation. “ExtraNetDelay” during
placer, “AggressiveExplore” during Physical Optimization and
“NoTimingRelaxation” mode in Router showed the better
result achieving an fmax of 310MHz on the 16-kernel de-
sign. All subsequent experiments were performed with this
combination of directives.

V. EVALUATION AND BENCHMARKING

We implemented and benchmarked the SpMV accelerator
on the Alveo U280 using Vivado and Vivado HLS 2021.1. The
Alveo U280 supports 8 GB of HBM, with 32 AXI channels
supporting an aggregate peak bandwidth of 460 GB/s.

A. SpMV Accelerator Evaluation
We initially construct a design with a single kernel to

observe how much bandwidth can be utilized from two
HBM pseudo-channels (peak = 28.8 GBps). Compared to
other SPMV accelerator designs which are able to achieve
a performance of around 100-250 Mhz [33], [34], [35], [25],
our implementation achieves 465Mhz. We evaluate the perfor-
mance of the kernel using sparse matrices from the University
of Florida Sparse Matrix collection. We use a set of matrices
from [33]. Similar to [33], we report GFLOPS numbers and %
Peak Bandwidth Used and compare our results with the results
of other SpMV accelerators, as shown in Fig. 10 and Fig. 11.
For the benchmark set of matrices, our SpMV accelerator
shows the bandwidth utilization ranging between 38 − 74%
while the bandwidth utilization is 10 − 18% for BEE3 [33],
13 − 29% for HC-1 [34], 10 − 75% for CASK [35], and
28− 40% for GEMX SpMV engine [25].

The improved BW utilization is mainly due to minimizing
the stalls and bank conflicts in the design. For example, the
load-store adaptor efficiently supplies read requests to memory
without getting many stalls from the pipeline. This is because
the HRB within the pipeline guarantees very few stalls from
the accumulation stage. The switching network also exhibits
minimal stalls as the back-pressure due to bank conflicts get
absorbed in distributed elastic buffers. Also, since we use
COO-encoded matrix and store non-zeros in random order,
there are relatively fewer bank conflicts compared to row-
major/column-major traversal. If we sort the matrix by column,
the bank conflicts would be at the scatter stage and if we sort
the matrix by row, the bank conflicts would be at the gather
stage. The coordinate list (COO) encoded format allowed us
to store the matrix in random order resulting in minimal

BEE3 [33
]

HC-1
[36

]

Tesl
a [36

]

CASK
[35

]

GEM
X

[25
]

This
work

0

2

4

6

8

10

Pe
rf

or
m

an
ce

in
G

FL
O

PS

dw8192
t2d q9
epb1
raefsky1
psmigr 2

Fig. 10: Performance (in GFLOPS) comparison of different
accelerators for a set of matrices.

BEE3 [33
]

HC-1
[36

]

Tesl
a [36

]

CASK
[35

]

GEM
X

[25
]

This
work

0

20

40

60

80

100

%
B

an
dw

id
th

U
til

iz
at

io
n dw8192

t2d q9
epb1
raefsky1
psmigr 2

Fig. 11: % Peak Bandwidth Utilization of different accelerators
for a set of matrices.

bank conflicts. We randomly reorder the matrix non-zero
offline on the host machine. We use random.shuffle() function
from Python. It uses Fisher-Yates shuffle as the underlying
algorithm [37].

Apart from the benchmark set in [33], we have used
several other matrices (from the University of Florida Sparse
Matrix collection) to observe the effect of random, row-major
and column-major traversal. Fig. 12 shows the results in
terms of efficiency numbers. 100% efficiency would mean
the performance of 8 non-zero processed every clock cycle.
Random traversal is showing good results, up-to 90% memory
bandwidth utilization (26.2 GB/s out of 28.8 GB/s), followed
by column-major and finally row-major. The poor performance
in the case of row-major is expected because HRB would
create heavy back pressure when the same row indexes are
coming back-to-back. Fig. 12 proves that the pipeline is getting
stalled heavily in the case of row-major.



0 20 40 60 80 100 120 140
0

20

40

60

80

100

Sparse Matrices

%
Pe

ak
B

W
U

til
iz

at
io

n rand
col
row

Fig. 12: Efficiency results for different traversals.

We now discuss the performance scaling of our accelerator
with multiple HBM channels. We take the benchmark set
in [33], perform partitioning of the matrix in N partitions, and
use N kernels in parallel to process those. N matrix partitions
are the horizontal chunks of the original matrix. Fig. 13 shows
the GFLOPS scaling as we scale the number of kernels on the
device.

1 2 4 8 16

10

100

1,000

Number of Kernels

G
FL

O
PS

Theoretical Maximum
t2d q9
epb1

dw8192
raefsky1
psmigr 2

Fig. 13: Scaling the GFLOPS with Multiple HBM Channels
and Kernels.

B. Scaling the Design
As the number of kernels in the design increases, Fig. 14

shows that the fmax can decrease by upto 35%. In the pre-
optimized version of the design, we start from 340 MHz for 1
kernel, while a 16-kernel implementation can achieve a max of
227 MHz, a 33% drop in performance. Similarly, while the 1
kernel design improves significantly due to the atomic changes
discussed above, at 16 kernels, this improvement diminishes.
With floorplanning, replication, and CAD strategies described
in section IV, we can reduce this performance degradation
and effectively scale the design. The 16-kernel performance of

310 MHz (which translates to a theoretical peak performance
of 80 GFLOPs) is achieved when all of these strategies are
combined. It is interesting that at lower kernel counts, K1 and
K2, we see better performance without any implementation
strategies. This is because the heuristics of the algorithms
can better manage the smaller design sizes and find a more
optimal solution. As the design size grows, guidance from our
implementation strategies becomes essential. At K4 and above,
we see the ‘Post-Opts+Impl.Strategies’ flow outperforming
the ‘Post-Opt’ flow. There is an 8-12% improvement with
implementation strategies for larger designs (K8 and K16).

K1 K2 K4 K8 K16

0

200

400

600

800

339 340
315 308

227

440

398

347
328

287

420
391 382 366

310

Po
st

Im
pl

em
en

ta
tio

n
f
m
a
x

(M
H

z)

Pre-Opts
Post-Opts

Post-Opts+Impl.Strategies

Fig. 14: Post Implementation fmax for SpMV Design with
increasing Kernels.

m
ou

se
ge

ne
cr

an
ks

eg
2

TS
O

PF
R

S
b2

38
3

nd
6k

th
re

ad
ap

pu
sm

e3
D

b
ra

ef
sk

y3
nd

3k
cr

ys
tk

03
ne

m
et

h2
3

ne
m

et
h2

1
m

sc
10

84
8

gy
ro

ol
af

u

0

20

40

60

Pe
rf

or
m

an
ce

in
G

FL
O

PS

310 MHz
227 MHz

Fig. 15: Achieved Performance Results on the Alveo U280 for
a set of sparse matrices.

C. Benchmarking Results
Fig. 15 shows the performance of the baseline 16-kernel

design (227 MHz) and optimized 16-kernel design (310 MHz)
for a set of matrices from the University of Florida Sparse
Matrix collection. We observe a performance of up-to 50.6
GFLOPS using 310 MHz 16-kernel design. In theory, it should
have been possible for the implementation tools to maintain
the highest achieved frequency (465Mhz) irrespective of the
number of kernels we instantiate. If this was achieved in
practice, a performance of 76 GFLOPS (for crangseg 2



sparse matrix) could have been achieved using our K16 design
running at 465 MHz. However, we observe a 50% drop
in fmax when we scale the design size and it translates
directly into SpMV performance (38 GFLOPS). As we apply
our techniques of recovering QoR, we observe a boost of
36% in fmax. Hence, our highest reported performance so
far is 50.6 GFLOPS (25,300 MTEPS) with 310 MHz K16
implementation. It will be a focus of this work in the future
to manage implementation at an even finer level to prevent
this loss of performance.

Fig. 16 shows the comparison of our implementation with
state-of-the-art FPGA-based SpMV accelerators. The Alveo
U280 is the target FPGA platform for all three accelerators,
GraphLily [4], Sextans [14], and our 16-kernel design. Our
design is able to close timing at 310 MHz which is 80% higher
than GraphLily (166 MHz) and 57% higher than Sextans (197
MHz). For crankseg 2 matrix, our design outperforms both
GraphLily and Sextans by 2.5×, by delivering a performance
of 50.6 GFLOPS on Alveo U280. Performance gain in our
case comes from the following aspects: (a) higher operating
frequency (b) using all 32 HBM PCs (c) fewer stalls because
of random traversal.

GraphLily uses Fixed-point arithmetic while Sextans uses
FP32. Our 16-kernel design uses FP32 arithmetic and con-
sumes the following resources on U280: 500K LUTs (38%),
1178K FFs (45%), 644 DSPs (7%), 460 BRAMs (23%),
and 384 URAMs (40%). Table III compares the % resource
utilization of our SpMV accelerator with others. Please note
that our design is the one that uses all 32 HBM PCs while
other designs find it difficult to scale to all PCs.

LUTs FFs DSPs BRAMs URAMs

GraphLily [4] 35 21 8 24 53
Sextans [14] 29 26 36 76 80
This Work 38 45 7 23 40

TABLE III: Comparing % Resource Utilization of different
SpMV Accelerators on the Alveo U280 Platform.

Next, in Fig. 17, we show the comparison of our implemen-
tation with CPU, GPU, and FPGA-based SpMV accelerators
for mouse gene sparse matrix. Our SpMV design on the
Alveo U280 is able to outperform CPU by 3× and GPU by
1.3×. Fig. 17 also shows that we consistently outperform many
different implementations. For example, the latest implemen-
tation of ThunderGP [2] on the HBM-enabled FPGA platform
(Alveo U280) provides 2.3× performance improvement over
ThunderGP implemented on a non-HBM platform (Alveo
U250). Our design is able to outperform ThunderGP-HBM
implementation by 2×.

VI. CONCLUSIONS AND FUTURE WORK

As memory bandwidth on modern FPGA platforms in-
creases, SpMV accelerator design should scale to utilize the
available bandwidth. The proposed approach demonstrates that
with the lean implementation of the kernels, scaling of the
design is possible, and with the modular implementation,
SpMV accelerator can close timing at high frequency. We

mouse gene crankseg 2 TSOPF RS b2383

0

20

40

60

80

20.7 19.4 20.621.3 20.6
23.8

38.2

50.6
47

Pe
rf

or
m

an
ce

in
G

FL
O

PS

GraphLily [4]
Sextans [14]
This Work

Fig. 16: Comparing Performance with GraphLily and Sextens.

X
eo

n
M

K
L

[5
]

G
TX

10
80

Ti
cu

SP
A

R
SE

[5
]

Th
un

de
rG

P
-D

D
R

[2
]

Th
un

de
rG

P
-H

B
M

[2
]

H
iS

pa
rs

e-
R

I
[5

]

H
iS

pa
rs

e-
P

B
[5

]

G
ra

ph
Li

ly
[4

]

Se
xt

an
s

[1
4]

Th
is

W
or

k

0

20

40

60

12.1

29

8.4

19.1

13.1

25
20.7 21.33

38

Pe
rf

or
m

an
ce

in
G

FL
O

PS

Fig. 17: Comparing the Performance of different SpMV im-
plementations for mouse gene matrix.

demonstrated that single instance implementation of the ac-
celerator, running at 465 MHz, can deliver close to peak
bandwidth utilization when connected to two HBM pseudo-
channels. Further, we have scaled the design to utilize all of the
32 HBM pseudo-channels on the Alveo U280 FPGA platform
by floorplanning 16 SpMV blocks. The scaled version of the
design is able to close timing at 310 MHz which is 80% higher
than GraphLily (166 MHz) and 40% higher than HiSparse-
PB (218 MHz). We are able to show up-to 50 GFLOPS
performance on the Alveo U280 FPGA Platform which is 2.5×
of GraphLily performance. As future work, we plan to support
a library of compute and communication atoms designed for
Sparse Linear Algebra and show the benefits of this approach
on a variety of applications. We plan to enhance the replication
strategy by supporting this in implementation tools using open-
sourced tool chains such as RapidWright [38].



REFERENCES

[1] S. Zhou, R. Kannan, V. K. Prasanna, G. Seetharaman, and Q. Wu,
“Hitgraph: High-throughput graph processing framework on FPGA,”
IEEE Transactions on Parallel and Distributed Systems (TPDS), vol. 30,
no. 10, pp. 2249–2264, 2019.

[2] X. Chen, F. Cheng, H. Tan, Y. Chen, B. He, W.-F. Wong, and D. Chen,
“ThunderGP: resource-efficient graph processing framework on FPGAs
with hls,” ACM Transactions on Reconfigurable Technology and Systems
(TRETS), 2022.

[3] X. Chen, Y. Chen, F. Cheng, H. Tan, B. He, and W.-F. Wong, “Regraph:
Scaling graph processing on HBM-enabled FPGAs with heterogeneous
pipelines,” in Proceedings of the IEEE/ACM International Symposium
on Microarchitecture (MICRO), 2022, pp. 1342–1358.

[4] Y. Hu, Y. Du, E. Ustun, and Z. Zhang, “GraphLily: accelerating
graph linear algebra on HBM-equipped FPGAs,” in Proceedings of
the IEEE/ACM International Conference On Computer Aided Design
(ICCAD). IEEE, 2021, pp. 1–9.

[5] Y. Du, Y. Hu, Z. Zhou, and Z. Zhang, “High-performance sparse linear
algebra on HBM-Equipped FPGAs using hls: A case study on SpMV,”
in Proceedings of the International Symposium on Field-Programmable
Gate Arrays (FPGA), 2022, pp. 54–64.

[6] N. P. Jouppi, C. Young, N. Patil, and D. Patterson, “A domain-specific
architecture for deep neural networks,” Communications of the ACM,
vol. 61, no. 9, pp. 50–59, 2018.

[7] E. Chung, J. Fowers, K. Ovtcharov, M. Papamichael, A. Caulfield,
T. Massengill, M. Liu, D. Lo, S. Alkalay, M. Haselman et al., “Serving
dnns in real time at datacenter scale with project brainwave,” IEEE
Micro, vol. 38, no. 2, pp. 8–20, 2018.

[8] P. D’Alberto, V. Wu, A. Ng, R. Nimaiyar, E. Delaye, and A. Sirasao,
“xDNN: inference for deep convolutional neural networks,” ACM Trans-
actions on Reconfigurable Technology and Systems (TRETS), vol. 15,
no. 2, pp. 1–29, 2022.

[9] S. Neuendorffer, A. K. Khodamoradi, K. Denolf, A. K. Jain, and
S. Bayliss, “The evolution of domain-specific computing for deep
learning,” IEEE Circuits and Systems Magazine, vol. 21, no. 2, pp. 75–
96, 2021.

[10] U. Gupta, B. Reagen, L. Pentecost, M. Donato, T. Tambe, A. M. Rush,
G.-Y. Wei, and D. Brooks, “MASR: a modular accelerator for sparse
RNNs,” in Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques (PACT). IEEE, 2019, pp.
1–14.

[11] K. Hegde, H. Asghari-Moghaddam, M. Pellauer, N. Crago, A. Jaleel,
E. Solomonik, J. Emer, and C. W. Fletcher, “ExTensor: an accelerator for
sparse tensor algebra,” in Proceedings of the IEEE/ACM International
Symposium on Microarchitecture. ACM, 2019, pp. 319–333.

[12] M. Hosseinabady and J. L. Nunez-Yanez, “A streaming dataflow engine
for sparse matrix-vector multiplication using high-level synthesis,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, 2019.

[13] P. Holzinger, D. Reiser, T. Hahn, and M. Reichenbach, “Fast HBM
access with FPGAs: Analysis, architectures, and applications,” in Pro-
ceedings of the IEEE International Parallel and Distributed Processing
Symposium Workshops (IPDPSW). IEEE, 2021, pp. 152–159.

[14] L. Song, Y. Chi, A. Sohrabizadeh, Y.-k. Choi, J. Lau, and J. Cong, “Sex-
tans: A streaming accelerator for general-purpose sparse-matrix dense-
matrix multiplication,” in Proceedings of the International Symposium
on Field-Programmable Gate Arrays (FPGA), 2022, pp. 65–77.

[15] T. Oguntebi and K. Olukotun, “Graphops: A dataflow library for graph
analytics acceleration,” in Proceedings of the International Symposium
on Field Programmable Gate Arrays (FPGA). ACM, 2016, pp. 111–
117.

[16] A. K. Jain, S. A. Fahmy, and D. L. Maskell, “Efficient overlay architec-
ture based on DSP blocks,” in Proceedings of the IEEE Symposium on
FPGAs for Custom Computing Machines (FCCM). IEEE, 2015, pp.
25–28.

[17] B. Liu, M. Wang, H. Foroosh, M. Tappen, and M. Pensky, “Sparse
convolutional neural networks,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), 2015, pp. 806–
814.

[18] A. K. Mishra, E. Nurvitadhi, G. Venkatesh, J. Pearce, and D. Marr,
“Fine-grained accelerators for sparse machine learning workloads,” in
Proceedings of the Asia and South Pacific Design Automation Confer-
ence (ASP-DAC). IEEE, 2017, pp. 635–640.

[19] D. Buono, J. A. Gunnels, X. Que, F. Checconi, F. Petrini, T.-C. Tuan,
and C. Long, “Optimizing sparse linear algebra for large-scale graph
analytics,” Computer, vol. 48, no. 8, pp. 26–34, 2015.

[20] X. Álvarez, A. Gorobets, and F. X. Trias, “Strategies for the heteroge-
neous execution of large-scale simulations on hybrid supercomputers,”
in Proceedings of the European Conference on Computational Fluid
Dynamics, 2018.

[21] P. Grigoraş, P. Burovskiy, W. Luk, and S. Sherwin, “Optimising sparse
matrix vector multiplication for large scale fem problems on fpga,” in
Proceedings of the International Conference on Field Programmable
Logic and Applications (FPL). IEEE, 2016, pp. 1–9.

[22] S. Williams, N. Bell, J. W. Choi, M. Garland, L. Oliker, and R. Vuduc,
“Sparse matrix-vector multiplication on multicore and accelerators,”
Scientific Computing with Multicore and Accelerators, pp. 83–109, 2010.

[23] M. M. Ozdal, S. Yesil, T. Kim, A. Ayupov, J. Greth, S. Burns, and
O. Ozturk, “Energy efficient architecture for graph analytics accelera-
tors,” in Proceedings of the ACM/IEEE Annual International Symposium
on Computer Architecture (ISCA). IEEE, 2016, pp. 166–177.

[24] L. Song, Y. Chi, L. Guo, and J. Cong, “Serpens: a high bandwidth
memory based accelerator for general-purpose sparse matrix-vector
multiplication,” in Proceedings of the ACM/IEEE Design Automation
Conference (DAC), 2022, pp. 211–216.

[25] X. GEMX. (2018). [Online]. Available: https://github.com/Xilinx/gemx
[26] J. Fowers, K. Ovtcharov, K. Strauss, E. S. Chung, and G. Stitt, “A

high memory bandwidth FPGA accelerator for sparse matrix-vector
multiplication,” in Proceedings of the IEEE Symposium on FPGAs for
Custom Computing Machines (FCCM). IEEE, 2014, pp. 36–43.

[27] G. Michelogiannakis and W. J. Dally, “Elastic buffer flow control for
on-chip networks,” IEEE Transactions on computers, vol. 62, no. 2, pp.
295–309, 2011.

[28] G. Dimitrakopoulos, A. Psarras, and I. Seitanidis, “Link-level flow con-
trol and buffering,” in Microarchitecture of Network-on-Chip Routers.
Springer, 2015, pp. 11–35.

[29] A. K. Jain, H. Omidian, H. Fraisse, M. Benipal, L. Liu, and D. Gaitonde,
“A domain-specific architecture for accelerating sparse matrix vector
multiplication on FPGAs,” in Proceedings of the International Confer-
ence on Field-Programmable Logic and Applications (FPL). IEEE,
2020, pp. 127–132.

[30] A. K. Jain, S. Kumar, A. Tripathi, and D. Gaitonde, “Sparse deep neural
network acceleration on HBM-enabled FPGA platform,” in Proceedings
of the IEEE High Performance Extreme Computing Conference (HPEC).
IEEE, 2021, pp. 1–7.

[31] B. Gaide, D. Gaitonde, C. Ravishankar, and T. Bauer, “Xilinx adaptive
compute acceleration platform: Versal architecture,” in Proceedings of
the ACM/SIGDA International Symposium on Field-Programmable Gate
Arrays, 2019, pp. 84–93.

[32] N. Kapre, B. Chandrashekaran, H. Ng, and K. Teo, “Driving timing
convergence of FPGA designs through machine learning and cloud
computing,” in Proceedings of the IEEE International Symposium on
Field-Programmable Custom Computing Machines (FCCM), 2015, pp.
119–126.

[33] S. Kestur, J. D. Davis, and E. S. Chung, “Towards a universal FPGA
matrix-vector multiplication architecture,” in Proceedings of the IEEE
Symposium on FPGAs for Custom Computing Machines (FCCM).
IEEE, 2012, pp. 9–16.

[34] L. Zhuo and V. K. Prasanna, “Sparse matrix-vector multiplication
on FPGAs,” in Proceedings of the International Symposium on Field
Programmable Gate Arrays (FPGA). ACM, 2005, pp. 63–74.

[35] P. Grigoras, P. Burovskiy, and W. Luk, “CASK: open-source custom
architectures for sparse kernels,” in Proceedings of the International
Symposium on Field Programmable Gate Arrays (FPGA). ACM, 2016,
pp. 179–184.

[36] K. K. Nagar and J. D. Bakos, “A sparse matrix personality for the convey
hc-1,” in Proceedings of the IEEE Symposium on FPGAs for Custom
Computing Machines (FCCM). IEEE, 2011, pp. 1–8.

[37] F. P. Juniawan, H. A. Pradana, D. Y. Sylfania et al., “Performance
comparison of linear congruent method and fisher-yates shuffle for data
randomization,” in Journal of Physics: Conference Series, vol. 1196,
no. 1. IOP Publishing, 2019, p. 012035.

[38] C. Lavin and A. Kaviani, “Rapidwright: Enabling custom crafted imple-
mentations for fpgas,” in Proceedings of the IEEE International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM),
2018, pp. 133–140.


