ELEC 344 Applied Electronics and Electromechanics

Fall 2016

Instructor: Dr. Hamid Atighechi My Webpage: www.ece.ubc.ca/~hamida

Class Webpage: TBD

NOTE: Class notes are originally prepared by Dr. Juri Jatskevich

Major Topics Covered

- Principles of electromagnetics, inductance and reluctance
- Magnetic circuits & magnetically coupled systems
- Linear and rotating electromechanical devices
- Electromechanical energy conversion, developed forces and torques
- AC power, three-phase system, connections and applications
- Rotating magnetic field, poly-phase systems
- Induction motor, operation, equivalent circuit
- Synchronous motor, operation, steady-state equivalent circuit
- Brushless dc motors, operation, steady-state characteristics
- Stepper motors, principle of operation, full-step, microstepping, driver circuits
- Single phase AC motors

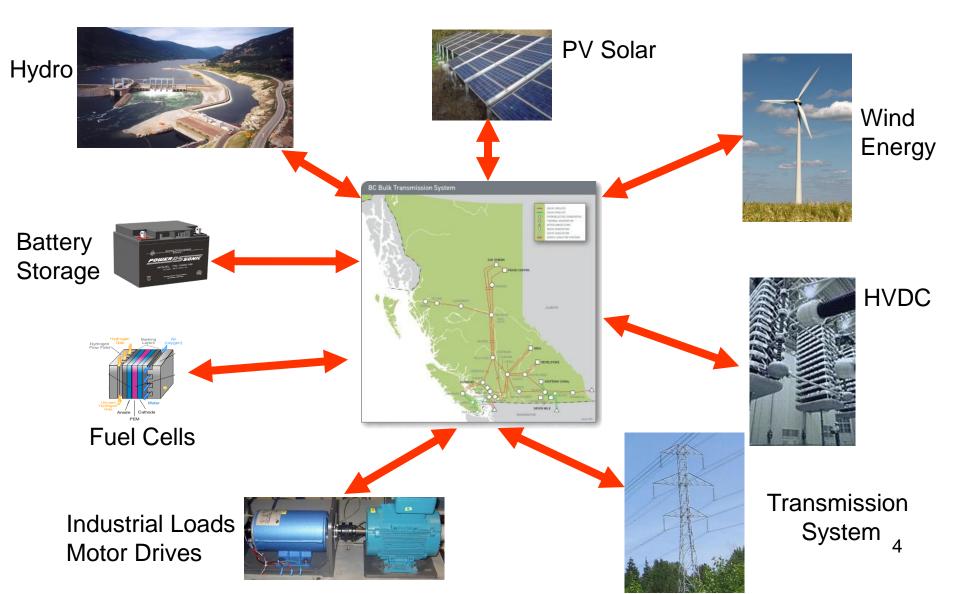
Module 1, Part 1 Introduction & Magnetic Circuits (Read Chapter 1)

Most Important Topics

- Applications of Electromechanics
- Fundamentals of Electromagnetics, Maxwell's Equations
- Sign & direction conventions
- Basic magnetic circuits, concepts, analogies, calculations
- Flux, flux linkage, inductance
- Magnetic materials, saturation, hysteresis loop
- Coil under ac excitation, type of core losses

Applications of Electromechanics

Production of Electric Energy & Modern Electric Grid



Applications of Electromechanics

Electric Cable Shovel

Electric Dragline

AC and DC Electric Drives

Applications of Electromechanics Heating and Melting

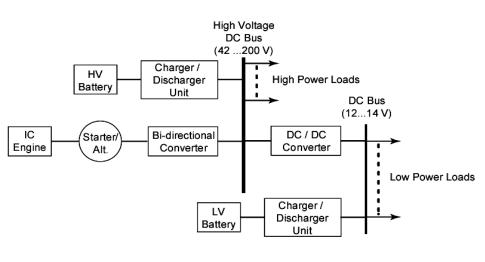
Induction Furnace

Induction Heater

No Flame Heater for Dental Instrument

Applications of Electromechanics

Modern Transportation



Diesel-Electric

Liebherr T282B earthhauling truck 2.7MW AC Propulsion

Tesla Roadster, Induction Motor, Hybrid

Toyota Hybrid, operates at 288V, reaches 30kW

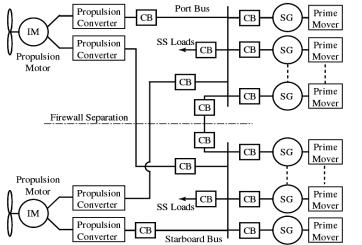
All-Electric => Zero Emission Transportation

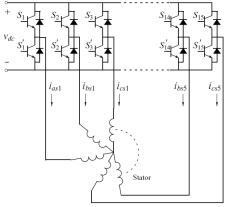
Canada Line (Richmond-Airport-Vancouver Line) SNC-Lavalin & Rotem Company

Vancouver TransLink reaches 200 kW Trolley Bus New Flyer Industries

All-Electric

Applications of Electromechanics





Fifteen-phase induction motor drive system

High-Phase Count Motor Drives

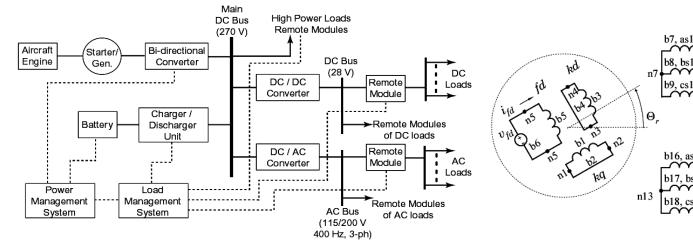
20MW, 15-Phase Induction Motor

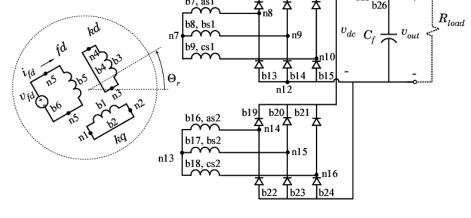
Future Canadian Ship: Joint Support Ship (JSS) 30.4MW Electric Propulsion

HMCS Windsor Diesel-Electric, 2x5MW motorgenerators

Carnival Liberty Cruise Ship 2 x 20MW Electric Propulsion

Applications of Electromechanics Modern Aircraft





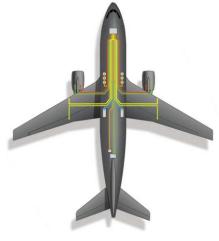
n11

b12

b25

n17

b10 b11



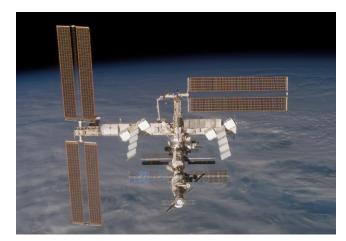
Airbus A380

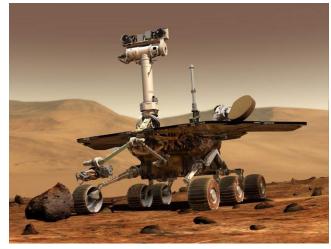
Antares 20E 42kW BLDC Propulsion High-Speed, Low-Weight, High-Phase-Count Motors, Generators and Converters

Electric Toys BLDC Propulsion

Applications of Electromechanics

High & Low



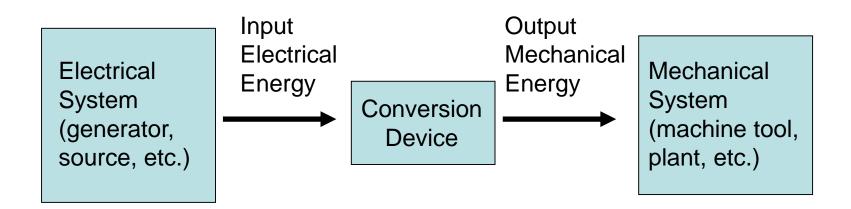


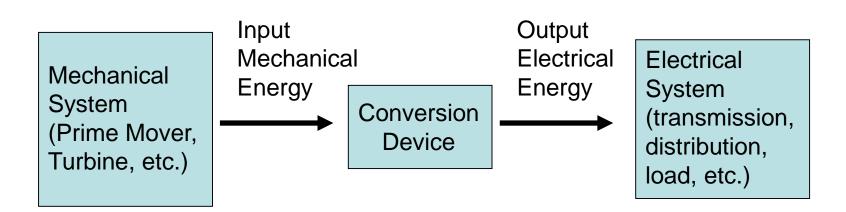
BChydro P**WWER SMART**

Electromechanical Devices

- Industrial
- Manufacturing
- Automotive
- Aircraft
- Ships
- Computers Office
- Household

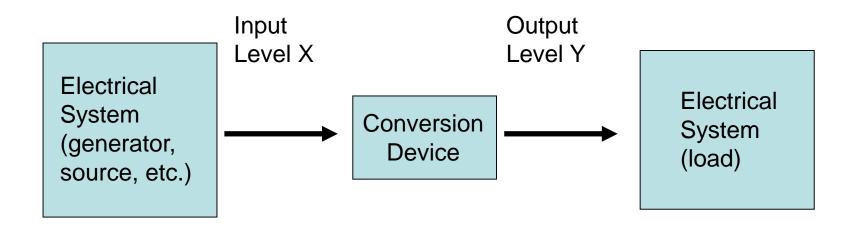
Electromechanical Energy Conversion





Electromechanical Energy Conversion

Transformation of Electrical Energy



Electromechanical Energy Conversion

- Electrical Machines
 - Stationary
 - Transformers
 - Rotating
 - Motors, generators
 - Linear Devices
 - Solenoids, linear motors, other actuators
- Power Electronics (Switched Mode PSs, Motor & Actuator Drivers, ...)
 - Rectifiers
 - AC to DC
 - Converters
 - DC to DC
 - Inverters
 - DC to AC

Very broad & interesting area, requires its own course!

Magnetic Circuits: Basic Units

E – electric field intensity $\begin{bmatrix} V \\ m \end{bmatrix}$ B – magnetic flux density $\begin{bmatrix} Tesla = \frac{Weber}{meter^2} \end{bmatrix}$ $\begin{bmatrix} T = \frac{Wb}{m^2} \end{bmatrix}$ H – magnetic field intensity $\begin{bmatrix} A \\ m \end{bmatrix}$ Φ – magnetic flux $\begin{bmatrix} Wb = T \cdot m^2 \end{bmatrix}$

B-H Relation

- Current produces the H field (see Ampere's law)
- H is related to B

 $B = \mu H = \mu_0 \mu_r H$

 μ – permeability (characteristic of the medium)

$$\mu_0$$
 – permeability of vacuum = 4 · π · 10⁻⁷[H/m]

 μ_r – relative permeability of material

magnetic materials $\mu_r = 100 \cdots 100,000$

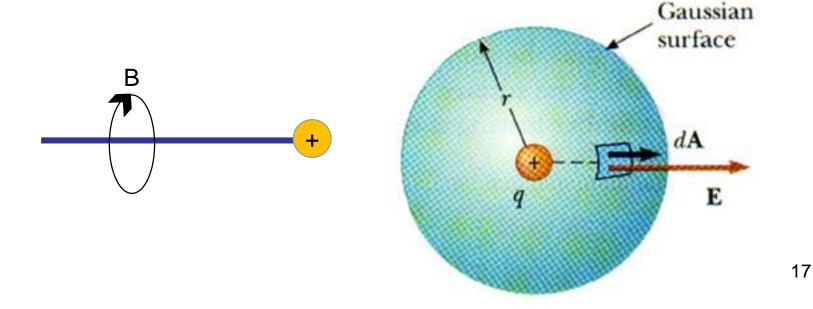
$$\left[\frac{T \cdot m}{A} = \frac{Henry}{meter} = \frac{H}{m}\right]$$

• Maxwell's equations are a set of partial differential equations that, together with the Lorentz force law, form the foundation of classical electrodynamics, classical optics, and electric circuits [Wikipedia].

Summarized in Maxwell's Equations (1870s) 1) Gauss's Law for Electric Field

$$\oint_{s} \mathbf{E} \cdot d\mathbf{a} = \frac{q}{\varepsilon_{0}} = \Phi_{e} = \int E \cos\theta da$$

Electric flux out of any closed surface is proportional to the total charge enclosed

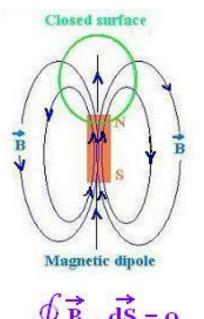


Summarized in Maxwell's Equations (1870s) 2) Gauss's Law for Magnetic Field

$$\oint_{s} \mathbf{B} \cdot d\mathbf{a} = \Phi_{m} = 0$$

Magnetic flux out of any closed surface is zero

There are no magnetic charges



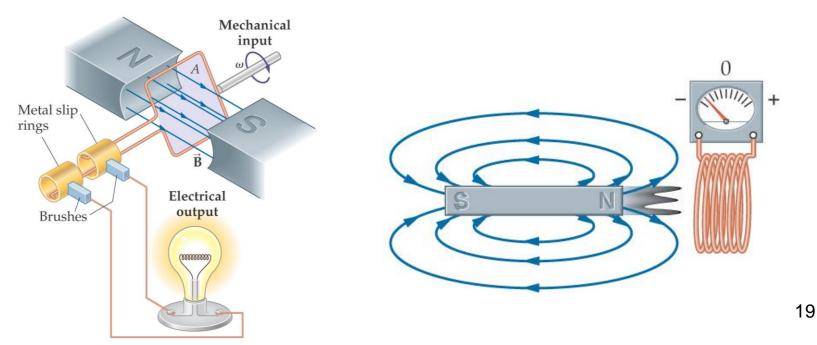
Summarized in Maxwell's Equations (1870s)

3) Faraday's Law

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{a} = -\frac{d\Phi}{dt} = emf$$

ElectroMotive Force (emf)

The line integral of the electric field around a closed loop/contour C is equal to the negative of the rate of change of the magnetic flux through that loop/contour

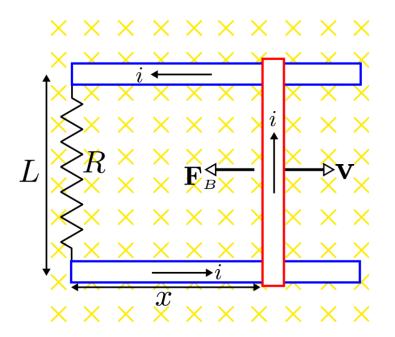


Summarized in Maxwell's Equations (1870s)

$$\int_{s} \mathbf{B} da = \Phi_{m} \quad \begin{bmatrix} Wb \end{bmatrix}$$

Induced emf:

$$emf = -\frac{d\Phi_m}{dt} [V]$$



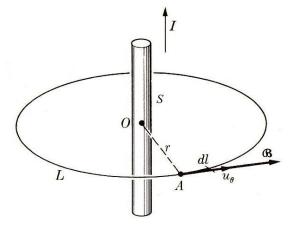
➤ Lenz's Law:

The direction of the voltage induced will produce a current that opposes the original magnetic field. This gives the negative sign, which we do not always include

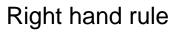
Summarized in Maxwell's Equations (1870s)Ampere's Law (for static electric field)

$$\oint_C \mathbf{B} \cdot d\mathbf{l} = \mu_0 \int_S J \cdot da = \mu_0 I_{net}$$

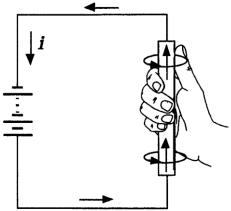
The line integral of the magnetic field B around a closed loop C is proportional to the net electric current flowing through that loop/contour C

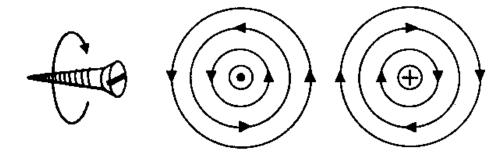


Conventions

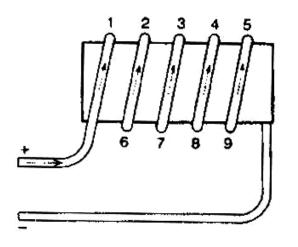


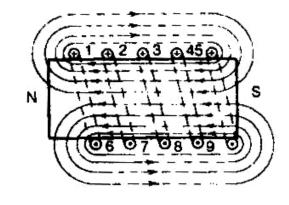
Right-screw rule Dot and cross notations





Magnetic field produced by coil (solenoid)





Flux Lines:

- form a closed loop/path
- Lines do not cut across or merge
- Go from North to South magnetic poles

Some Definitions

Magnetic Flux

$$\Phi = \int_{S} \mathbf{B} \cdot \mathbf{da} = B_c A_c$$

Flux is always continuous

Recall Faraday's Law - Electromotive Force (emf)

$$\oint_{C} \mathbf{E} \cdot d\mathbf{l} = -\frac{d}{dt} \int_{S} \mathbf{B} \cdot d\mathbf{a} = -\frac{d\Phi}{dt}$$

- voltage induced in one turn due to the changing magnetic flux

For coil with *N* turns:
$$e = N \cdot \frac{d\Phi}{dt}$$

Flux Linkage $\lambda = N \cdot \Phi$ [*Wb* · *t*]

flux scaled by the number of turns

Total induced emf
$$e = \frac{d\lambda}{dt}$$
 [V] 23

Some Definitions

Inductance

Need a function that relates Flux Linkage to the Current

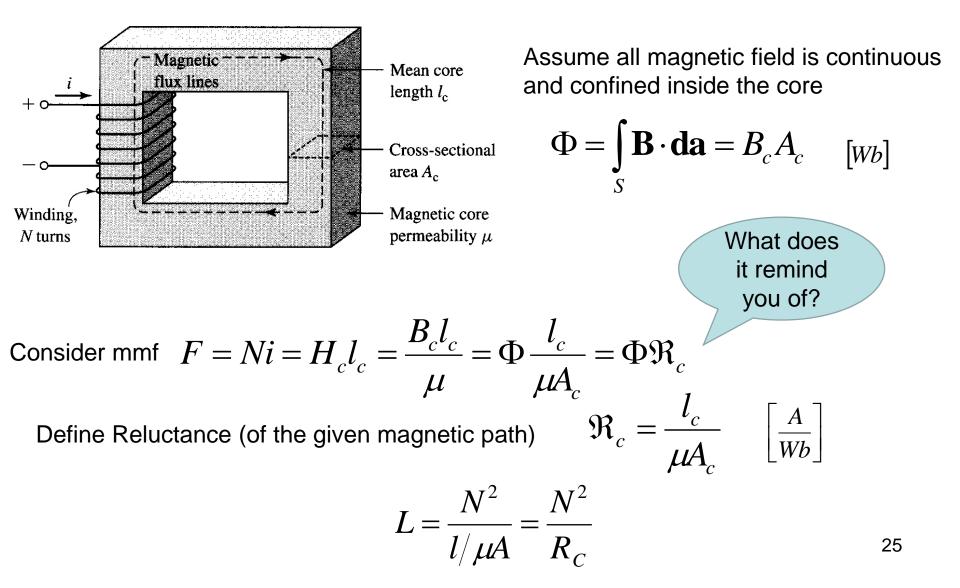
Consider
$$\lambda = f(i) = L(\cdot) \cdot i$$
 $L = \frac{\lambda}{i} \quad \left[\frac{Wb \cdot t}{A} = H\right]$

Then

$$L = \frac{\lambda}{i} = \frac{N \cdot \Phi}{i} = \frac{N \cdot B \cdot A}{i} = \frac{N \cdot \mu \cdot H \cdot A}{i}$$
$$i = \frac{Hl}{N}$$
$$L = \frac{N^2}{l/\mu A}$$

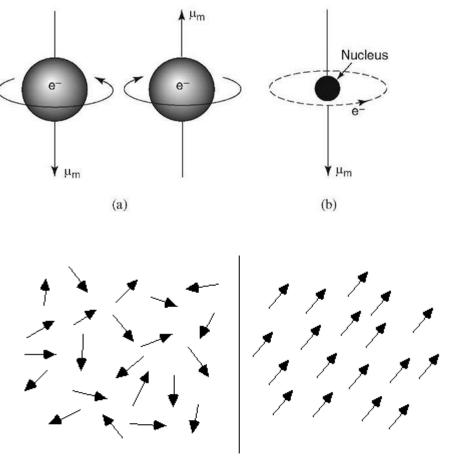
Magnetic Circuits

Basic magnetic circuit



Ferromagnetism

- Magnetic moment:
 - ✓ Orbital motion of electrons✓ Spin of an electron
- In most of the materials, the net magnetic moment of one atom <u>if exists</u> is cancelled out by the other atom
- The five ferromagnetic elements are:
 - ✓ Iron, Nicle, Cobalt, Dysprosum, and Gadolinium

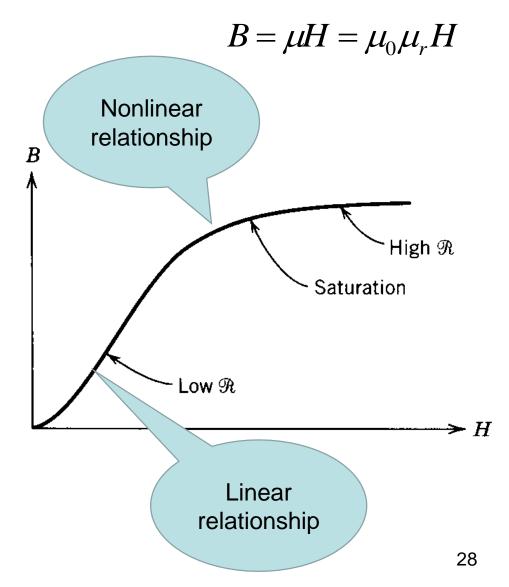


Classes of Magnetic Materials

- Diamagnetism
- Paramagnetism
- ➢ Ferromagnetism
- Ferrimagnetism
- Antiferromagnetism

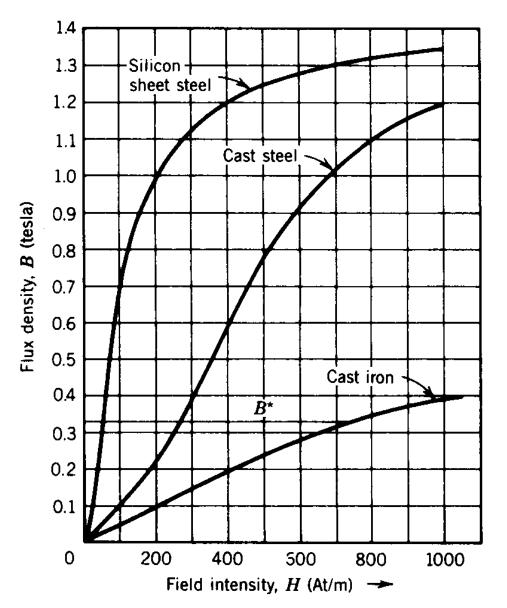
Magnetization Curve

- The magnetic material shows the effect of saturation
- The reluctance is dependent on the flux density



Magnetization Curve

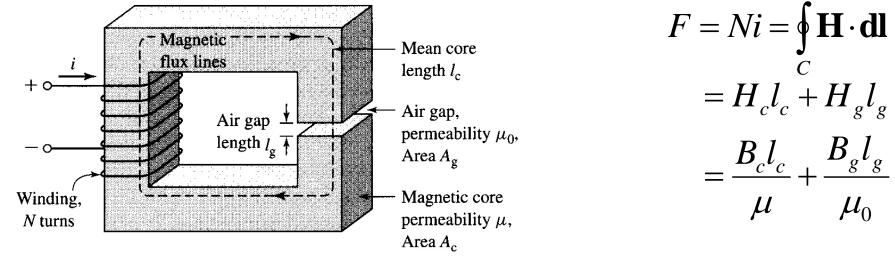
 Depending on the applications, material with specific magnetization curve is selected



Magnetic Circuits

Magnetic circuit with air gap

Consider mmf

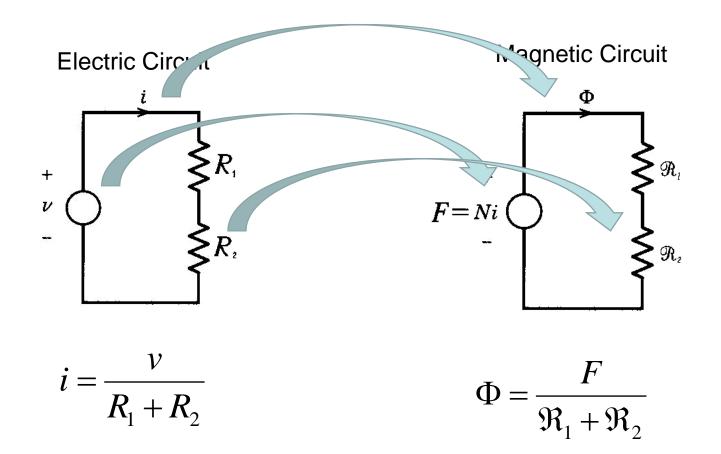


Assuming all magnetic flux is confined inside the core

$$B_c = \frac{\Phi}{A_c}$$
 and $B_g = \frac{\Phi}{A_g}$

$$F = \Phi\left(\frac{l_c}{\mu A_c} + \frac{l_g}{\mu_0 A_g}\right) = \Phi\left(\Re_c + \Re_g\right) = \Phi\sum_i \Re_i = \Phi\Re_{total}$$

Magnetic and Electric Circuits Analogy



Magnetic and Electric Circuits Analogy

Electric Circuit

- Voltage (emf), V, V, V
- I, [Amps]Current,
- Resistance, $R = \frac{l}{\sigma A}, [\Omega]$

- Conductance,
$$G = \frac{1}{R}$$
, [Siemens]

- Conductivity,
$$\sigma, \left[\frac{Siemens}{m}\right]$$

For loop

For node $\sum i_n = 0$

onductance,
$$G = \frac{1}{R}$$
, [solution]
onductivity, σ , $\left[\frac{Sien}{R}\right]$

Magnetic Circuit

- $F, [A \cdot t]$ mmf,
- $\Phi, [Wb]$ Flux

Reluctance, $\Re = \frac{l}{\mu A}, \left\lceil \frac{A}{Wb} \right\rceil$

Permeance,

$$\rho = \frac{1}{\Re}, \left[\frac{Wb}{A}\right]$$

Permeability,

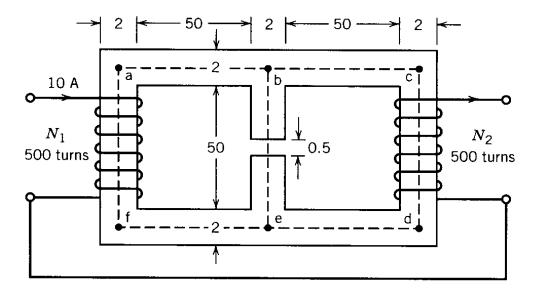
$$\mu, \left[\frac{H}{m}\right]$$

For loop For node

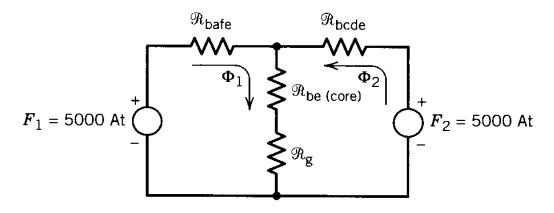
$$F = \sum_{n} H_{n} l_{n}$$
$$\sum_{n} \Phi_{n} = 0$$

Inductance: Example

Consider the following electromagnetic system (device)



Equivalent Electric Circuit



33

$$\begin{aligned} \Re_{bcde} &= \Re_{bafe} \\ \Re_{g} &= \frac{l_{g}}{\mu_{0}A_{g}} \\ &= \frac{5 \times 10^{-3}}{4\pi 10^{-7} \times 2 \times 2 \times 10^{-4}} \\ &= 9.94 \times 10^{6} \text{ At/Wb} \\ \Re_{be(core)} &= \frac{l_{be(core)}}{\mu_{c}A_{c}} \\ &= \frac{51.5 \times 10^{-2}}{1200 \times 4\pi 10^{-7} \times 4 \times 10^{-4}} \\ &= 0.82 \times 10^{6} \text{ At/Wb} \\ \Phi_{1}(\Re_{bafe} + \Re_{be} + \Re_{g}) + \Phi_{2}(\Re_{be} + \Re_{g}) = F_{1} \\ \Phi_{1}(\Re_{be} + \Re_{g}) + \Phi_{2}(\Re_{bcde} + \Re_{be} + \Re_{g}) = F_{2} \\ &= \Phi_{1} = \Phi_{2} = 2.067 \times 10^{-4} \text{ Wb} \end{aligned}$$

The air gap flux is

$$\Phi_{\rm g} = \Phi_1 + \Phi_2 = 4.134 \times 10^{-4} \, \rm Wb$$

34

Inductance: Example

Consider the following electromagnetic system

$$L = 1A, N = 400$$

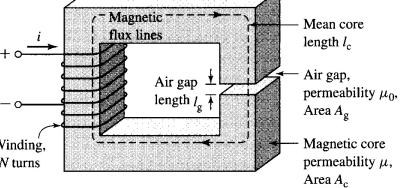
$$l_{c} = 50 cm, l_{g} = 1 mm$$

$$A_{c} = A_{g} = 15 cm^{2}$$

$$M_{r} = 3000$$
Find inductance $L = \frac{N^{2}}{R_{c} + R_{g}}$

$$Winding,$$

$$N turns$$



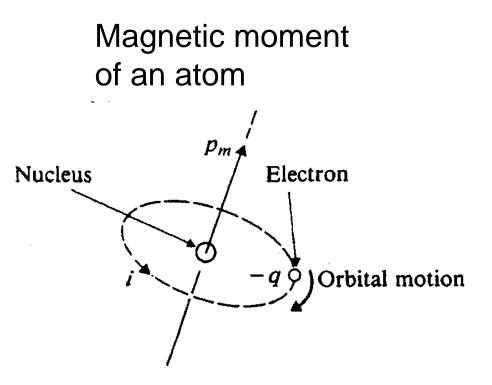
$$R_{c} = \frac{l_{c}}{M_{r}M_{o}A_{e}} = \frac{50e-2}{3000 \cdot 4\pi \cdot 1e-7 \cdot 15e-4} \approx 88.42e+3 A_{M}$$

$$R_{g} = \frac{l_{g}}{M_{o}A_{g}} = \frac{1e-3}{4\pi \cdot 1e-7 \cdot 15e-4} \approx 530.515e+3 A_{M}$$

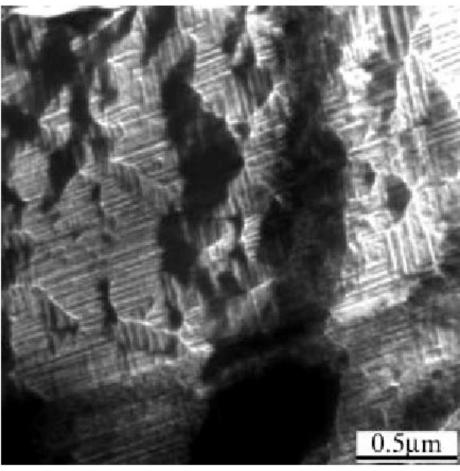
$$L = \frac{406^{2}}{(88.42+530.515)\cdot e+3} = 258.52e-3 H$$

$$= 258.52 \text{ mH}$$

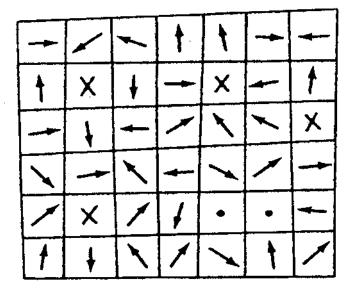
Magnetic Materials



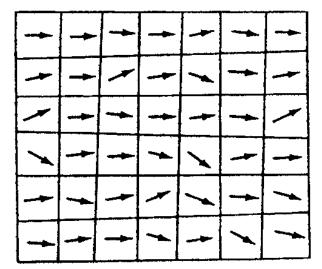
Magnetic Domain Structure



Magnetic Material Domain Model



demagnetized



magnetized

Η

н

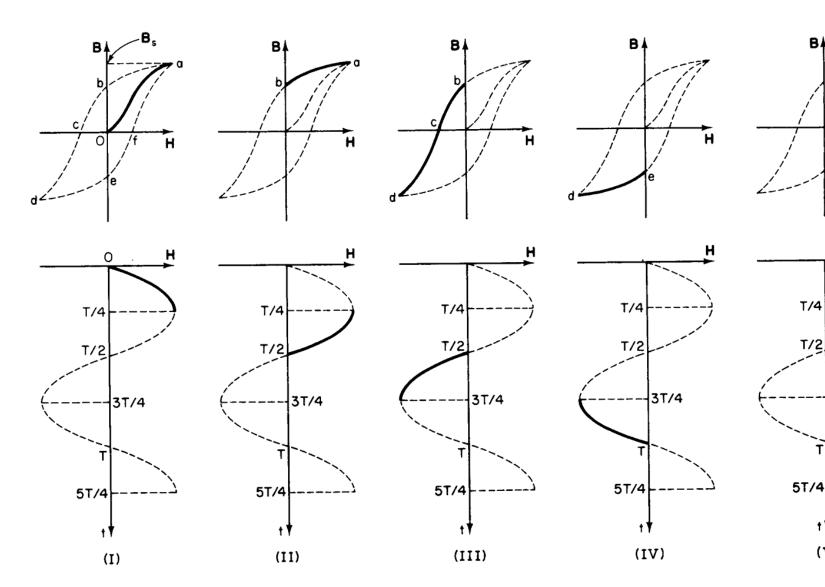
37/4

1

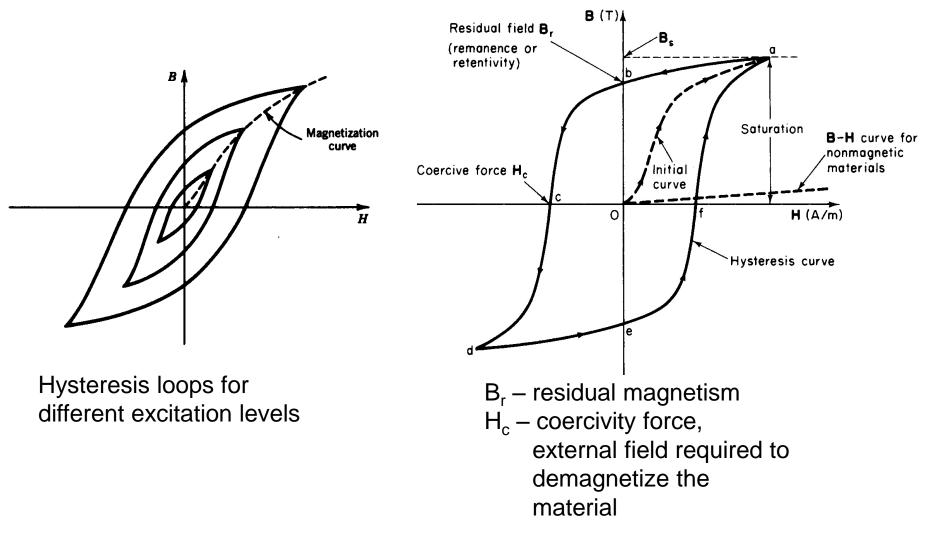
(V)

B∔

Hysteresis Loop

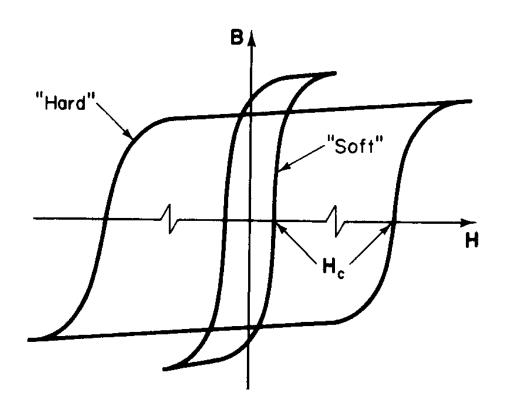


Hysteresis Loop



Magnetic Materials

Classes of Magnetic Materials



Soft mag. materials $H_c \sim 0.1 \cdots 100 \left[A/m \right]$

Hard mag. materials

 $H_c > 100 \left[A / m \right]$

Permanent magnets (PM)

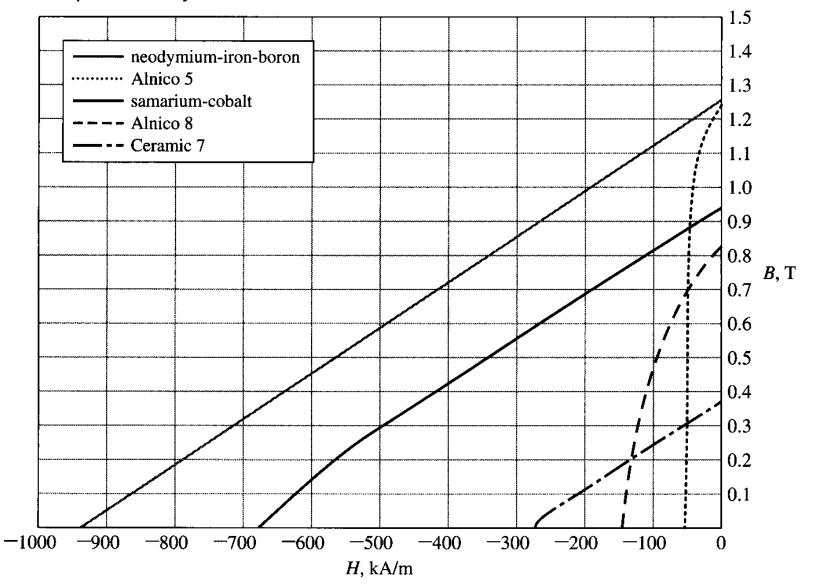
 $H_c \sim 10^4 \cdots 10^6 \left[A/m \right]$

Types of PMs

- Neodymium Iron Boron (NdFeB or NIB)
- Samarium Cobalt (SmCo)
- Aluminum Nickel Cobalt (Alnico)
- Ceramic or Ferrite, very popular
 Iron-oxide, barium, etc. compressed powder

Magnetic Materials

Second quadrant hysteresis curve for some common PM materials

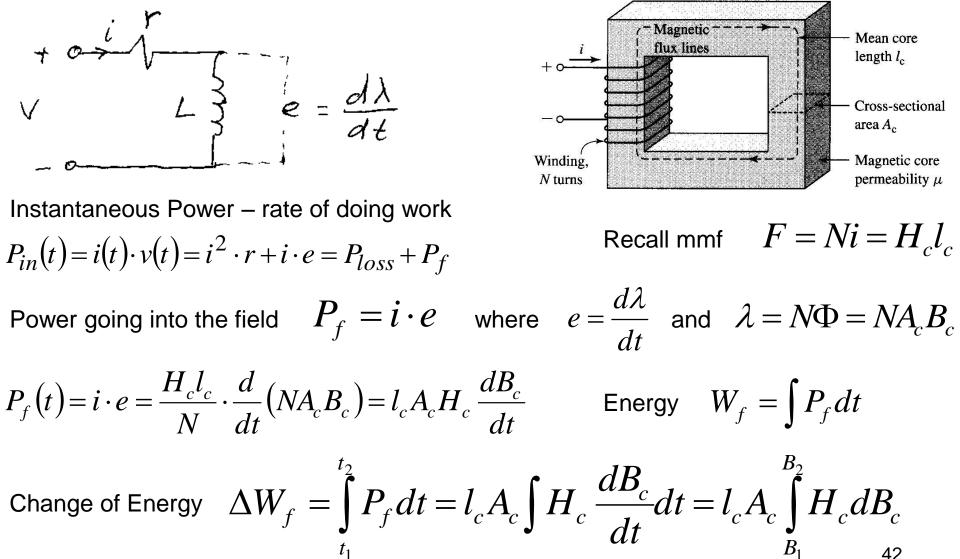


41

ELEC 344, F-16

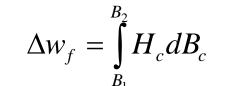
Energy Stored in Inductor

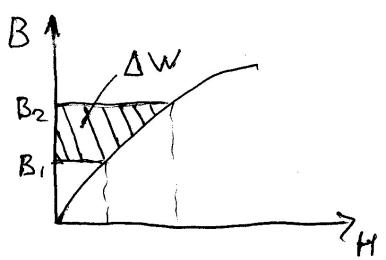
Consider the following electromagnetic system



Energy Stored in Inductor

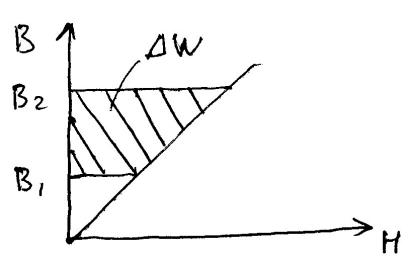
Energy per-unit-volume $\Delta w_f = \int_{-\infty}^{0} \Delta w_f$





Magnetically Nonlinear System

$$\Delta W_f = l_c A_c \int_{B_1}^{B_2} H_c dB_c$$



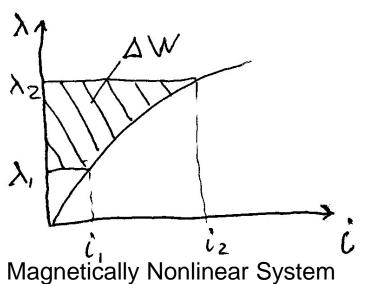
Magnetically Linear (Approximate) System

$$B = \mu H; \mu = const$$

$$\Delta W_f = \frac{l_c A_c}{\mu} \int_{B_1}^{B_2} B_c dB_c = \frac{l_c A_c}{2\mu} \left(B_2^2 - B_1^2 \right)$$

Energy Stored in Inductor

Energy in terms of flux linkage λ



$$\Delta W_f = \int_{t_1}^{t_2} P_f dt = \int_{\lambda_1}^{\lambda_2} i d\lambda$$

Magnetically Linear (Approximate) System

$$i = \frac{\lambda}{L}; L = const$$

$$\Delta W_f = \frac{1}{L} \int_{\lambda_1}^{\lambda_2} \lambda d\lambda = \frac{1}{2L} (\lambda_2^2 - \lambda_1^2)$$
If $\lambda_1 = 0 \implies W = \frac{1}{2L} \lambda^2 = \frac{Li^2}{2}$ 44

Core Losses

Hysteresis Losses



$$\Delta W_{h,cycle} = \oint i d\lambda = \oint \left(\frac{H_c l_c}{N}\right) (NA_c dB_c) = l_c A_c \oint H_c dB_c$$

Power loss can be approximated as

$$P_h = K_h \cdot f \cdot \left(B_{c,\max}\right)^n \qquad n \sim 1.5 \cdots 2.5$$

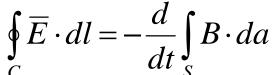
Where the constants K_h and n determined experimentally

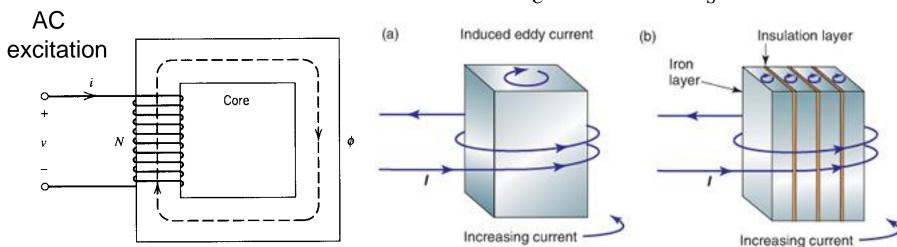
Core Losses

Faraday's law

Eddy Current Losses

Consider





Power loss can be approximated as

$$P_e = K_e \cdot f^2 \cdot \left(B_{c,\max}\right)^2$$

Where the constant K_e depends on lamination thickness and is determined experimentally

EECE 365: Module 1, Part 2 Basic Electromechanical devices and

Energy Conversion Most Important Topics and Concepts (Read Chap. 3)

Basic linear devices with position-dependent reluctance & inductance

- Basic rotating devices with position-dependent reluctance & inductance
- Concept of coupling field
- Energy & Co-Energy
- Graphical interpretation of energy conversion
- Electromechanical force and torque

Basic Electromagnet

Voltage equation (Faraday's law + KVL) $v = ri + \frac{d\lambda}{dt}$

Flux linkage

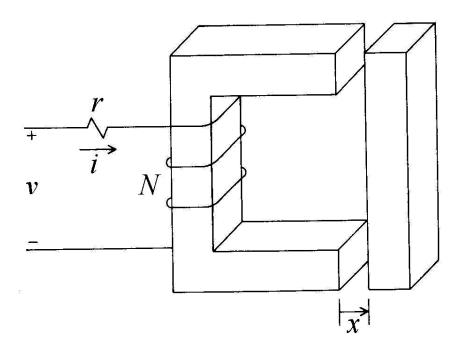
 $\lambda = N\Phi = N(\Phi_m + \Phi_l)$

Magnetizing flux $\Phi_m = Ni/\Re_m$

Flux leakage $\Phi_l = Ni/\Re_l$

Flux linkage & inductances

$$\lambda = \left(\frac{N^2}{\Re_l} + \frac{N^2}{\Re_m}\right) i = (L_l + L_m) i$$



- Leakage inductance (assume constant)
- *L_m* Magnetizing inductance (depends of position *x*)

Consider Magnetizing Path $\Re_m = \Re_c + 2\Re_g$

48

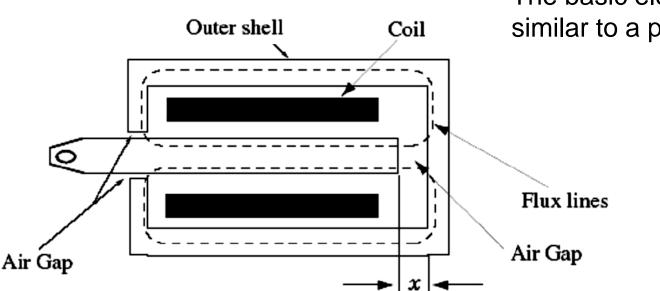
Basic Electromagnet

 $\Re_m = \Re_c + 2\Re_g$ Consider Magnetizing Path $\Re_c = \frac{l_c}{\mu_r \mu_0 A_c}$ - Reluctance of the stationary + movable core $\Re_g(x) = \frac{x}{\mu_0 A_g}$ - Reluctance of the air-gap $|_{x}|$ Assume $A_c = A_g \stackrel{x}{=} A$ we get $\Re_m(x) = \frac{1}{\mu_0 A} \left(\frac{l_c}{\mu_c} + 2x \right)$ Magnetizing inductance $L_m = \frac{N^2}{\Re_m} = N^2 \mu_0 A \frac{1}{(l_c/\mu_c + 2x)} = \frac{k_1}{k_2 + x}$ **Total inductance** where $k_1 = \frac{N^2 \mu_0 A}{2}$ and $k_2 = \frac{l_c}{2\mu_c}$ $L = L_m + L_l = \frac{k_1}{k_2 + r} + L_l$

50

Practical Reluctance Devices

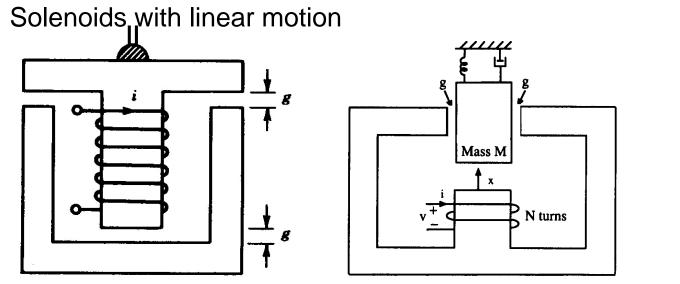
Plunger solenoid (Lab-1)

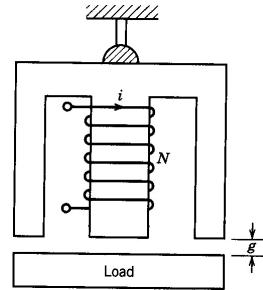


Open-frame solenoid

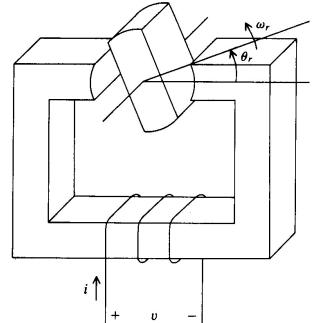
The basic electromagnet is very similar to a plunger solenoid (Lab-1)

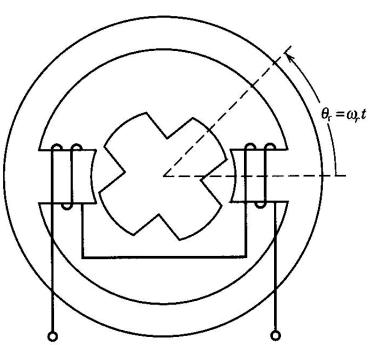
Other Reluctance Devices





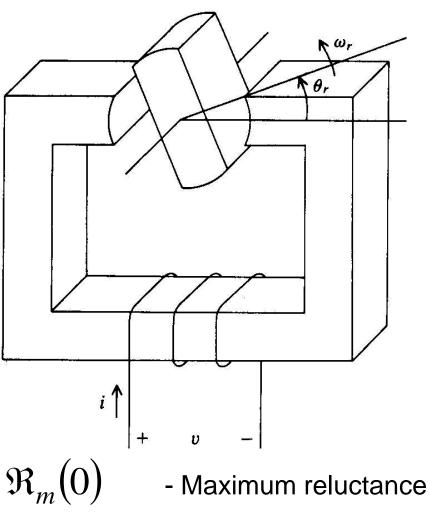
Rotating reluctance devices





51

Rotating Reluctance Devices



 $\Re_m(\pi/2)$ - Minimum reluctance

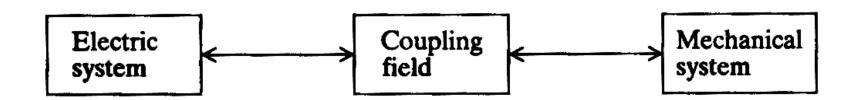
Flux linkage & inductances

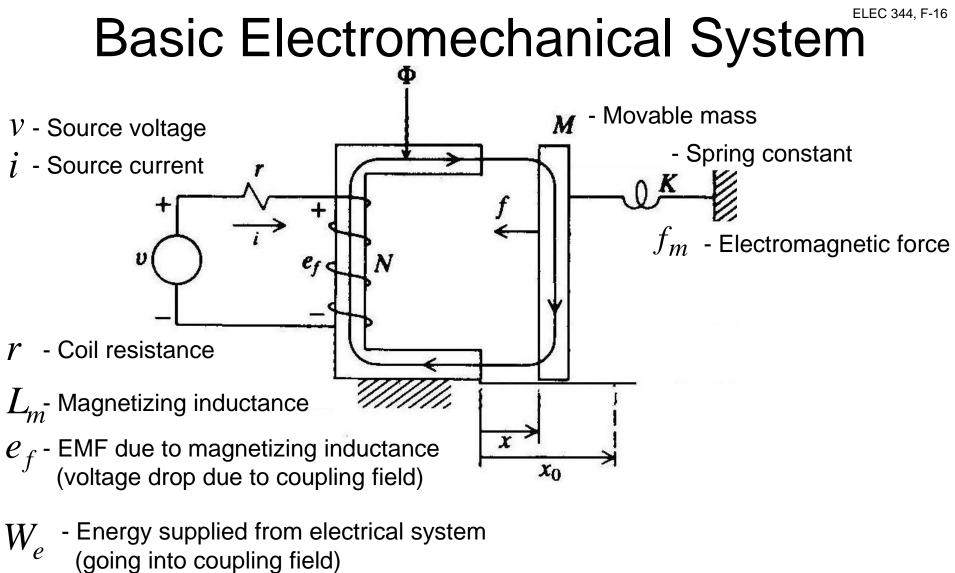
$$\lambda = \left(\frac{N^2}{\Re_l} + \frac{N^2}{\Re_m}\right)i = (L_l + L_m)i$$

Magnetizing inductance

$$L_m = L_m(\theta_r) = \frac{N^2}{\Re_m(\theta_r)}$$

Electromechanical Energy Conversion





- W_f Energy in coupling field
- Energy going into mechanical system (from coupling field)

Electromechanical Energy Conversion

$$W_e \longrightarrow \begin{array}{c} \text{Coupling} \\ \text{Field} \end{array} \longrightarrow W_m$$

Energy Balance $W_e = W_f + W_m = \int e_f i dt = W_f + \int f_m dx$

First, lets consider fixed position, and assume dx = 0

$$W_f = \int e_f i dt = \int \frac{d\lambda}{dt} i dt = \int i d\lambda$$

Energy in Coupling Field

Consider a state of the system

$$i = i_a$$
 $\lambda = \lambda_a$

Energy going in coupling field

$$W_f = \int i d\lambda$$

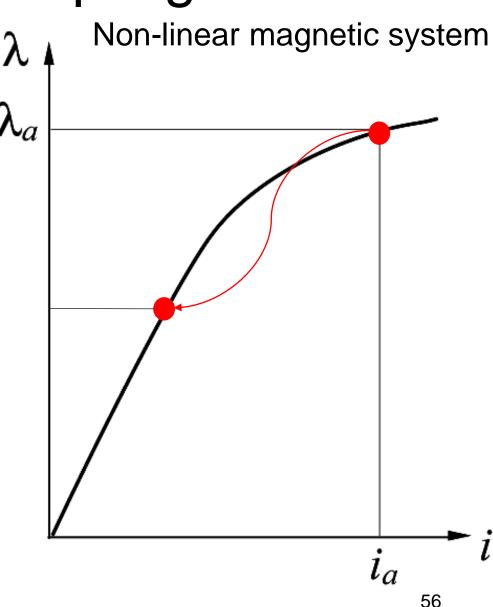
Co-Energy associated with this state

$$W_c = \int \lambda di$$
 , assuming $dx = 0$

Energy and Co-Energy Balance

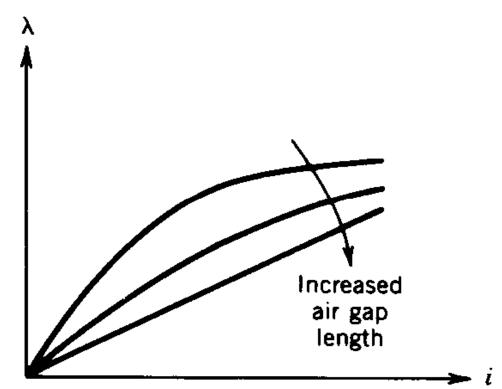
$$\lambda i = W_f + W_c$$

<u>Coupling Field is Conservative</u> – The stored energy does not depend on the history of electromechanical variables, it depends only on their final state/values



Energy in Coupling Field

The characteristic becomes linear by increasing the air gap



Energy in Coupling Field

Consider a state of the system

$$i = i_a$$
 $\lambda = \lambda_a$

Energy going in coupling field

$$W_f = \int i d\lambda$$

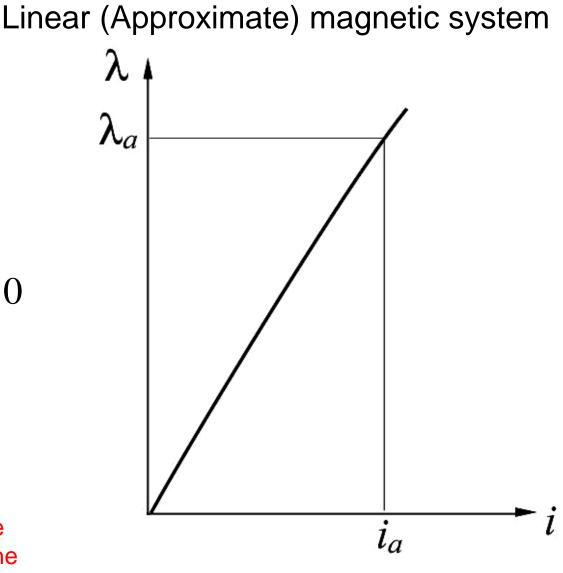
Co-Energy associated with this state

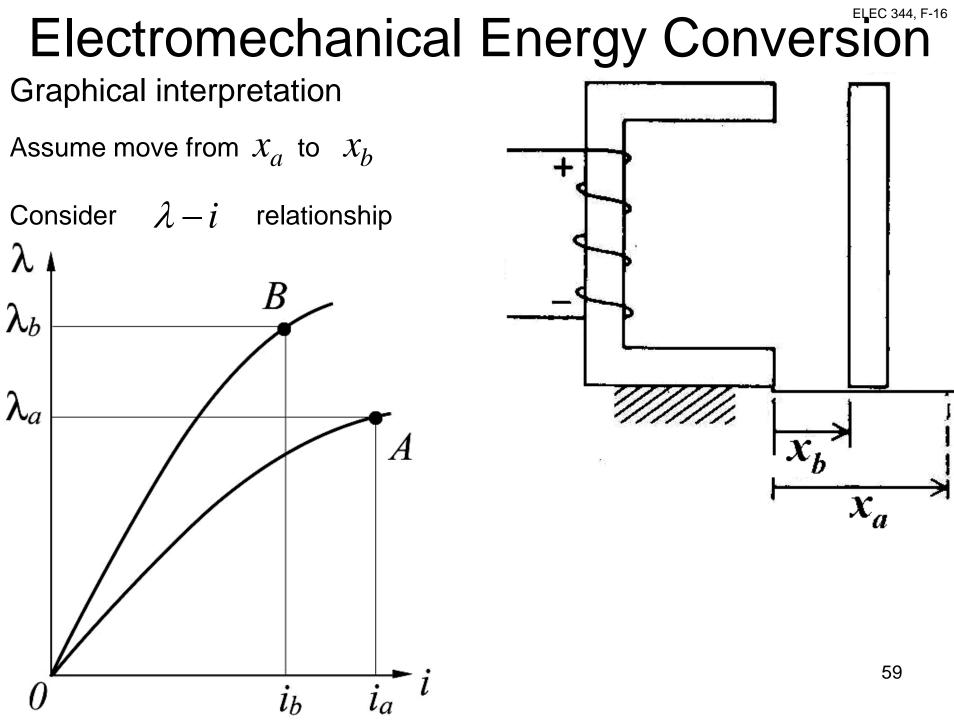
$$W_c = \int \lambda di$$
 , assuming $dx = 0$

For magnetically linear systems Energy and Co-Energy Balance

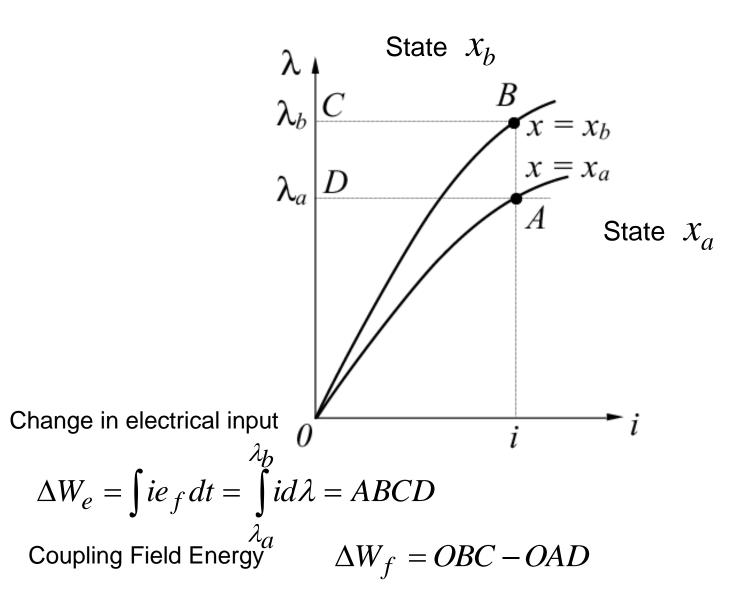
$$W_f = W_c = \frac{1}{2}\lambda i$$

<u>Coupling Field is Conservative</u> – The stored energy does not depend on the history of electromechanical variables, it depends only on their final state/values



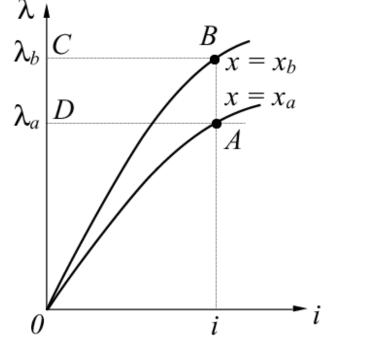


Change in Energy



Change in Energy

Change in Mechanical Energy $\Delta W_m = \Delta W_e - \Delta W_f = ABCD - (OBC - OAD)$



 $\Delta W_m =$

Remember Co-Energy

$$W_c = \int \lambda di$$

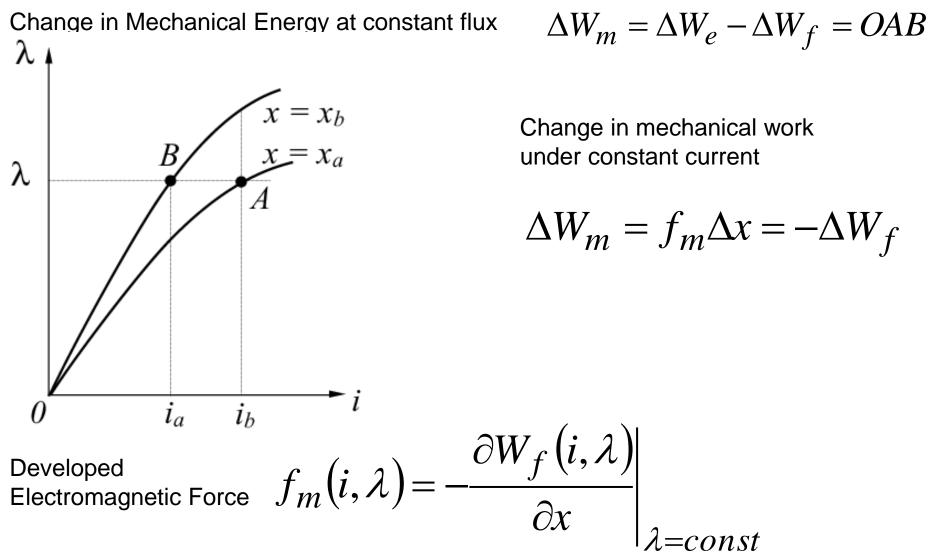
Change in mechanical work under constant current

$$\Delta W_m = \Delta W_c = f_m \Delta x$$

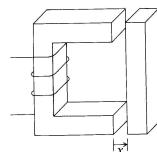
Developed Electromagnetic Force

$$f_m(i,x) = \frac{\partial W_c(i,x)}{\partial x}\Big|_{i=const}$$
⁶¹

Change in Energy



Electromagnetic Forces & Torques



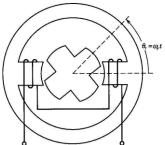
Mechanical Energy/Work

 $W_m = \int f_m dx$

Electromagnetic Force f_m

$$dW_m = f_m dx$$

$$f_e(i,x) = \frac{\partial W_c}{\partial x}$$
 $f_e(\lambda,x) = -\frac{\partial W_f}{\partial x}$



Mechanical Energy/Work

$$W_m = \int T_m d\theta$$

Electromagnetic Torque T_m

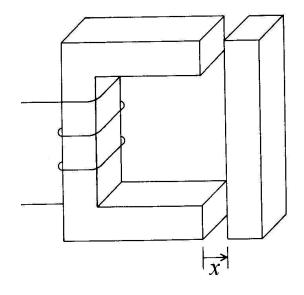
$$dW_m = T_m d\theta$$

$$T_e(i,\theta) = \frac{\partial W_c}{\partial \theta} \qquad T_e(\lambda,\theta) = -\frac{\partial W_f}{\partial \theta}$$

For magnetically linear systems Energy and Co-Energy are the same

$$W_f = W_c = \frac{1}{2}\lambda i = \frac{1}{2}L(x)i^2$$
 63

Linear Devices



Example

Given that

$$\lambda(i,x) = Li = \left[L_l + L_m(x)\right]i = \left(L_l + \frac{k}{x}\right)i$$

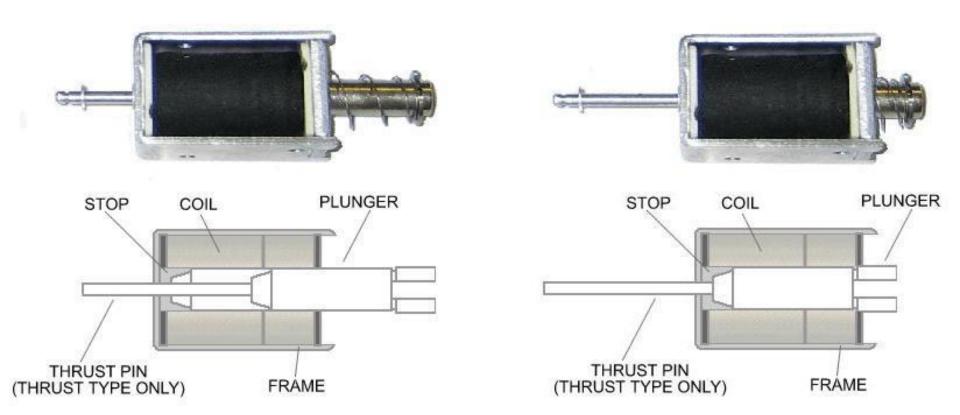
Calculate $f_m(i, x)$ at given current $i = i_a$

$$W_f(i,x) = W_c(i,x) = \left(L_l + \frac{k}{x}\right)i_a^2$$

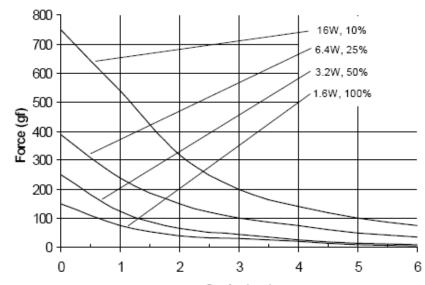
$$f_m(i,x) = \frac{\partial W_c}{\partial x} = \frac{1}{2}i_a^2 \frac{\partial L}{\partial x} = -\frac{1}{2}i_a^2 \frac{k}{x^2}$$

Typical Push-Pull Solenoids

Naturally, solenoid coil pulls in the plunger. To get a push action, a thrust pin is added.



Typical Industrial Push-Pull Solenoids



Stroke (mm) FORCE AND STROKE CURVES

