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Abstract—Power flow analysis is one of the tools that is
required in most of the distribution system studies. An important
characteristic of distribution systems is the load unbalance in the
phases and a three-phase power flow analysis is needed. In this
paper, a three-phase linear power flow (3LPF) formulation is
derived based on the fact that in a typical distribution system,
voltage angles and magnitudes vary within relatively narrow
boundaries. The accuracy of the proposed 3LPF is verified
using several test cases. Potential applications of the proposed
method are in distribution systems state estimation and volt-VAR
optimization.

Index Terms—Unbalanced power flow, voltage dependence.

NOMENCLATURE

Y Network admittance matrix.
G Network conductance matrix.
B Network susceptance matrix.
P,Q Active/reactive power demand.
I Load equivalent current injection.
V re, V im Real/imaginary parts of nodal voltages.
CZ, C I, CP ZIP load model parameters.
α Tap position for voltage regulators.

I. INTRODUCTION

A. Motivation

The modern Distribution Management System (DMS) pro-
vides decision support in near-real-time to optimize the per-
formance of the system. Many of the computations done
inside the DMS, such as state estimation, power flow analysis,
volt-VAR optimization, network reconfiguration, etc., require
power flow solutions. Since these computations need to be
done at near-real-time, a fast and robust power flow solution
method is needed. The authors have previously proposed the
Linear Power Flow (LPF) formulation, assuming a balanced
network [1]. This formulation is suitable for some of the
optimization problems controlling three-phase equipment. For
instance, when optimizing the network configuration, available
switches are opened/closed to alter the network topology
[2]. Since distribution system switches are often three-phase
units (gang-operated), the LPF is an efficient alternative to
other power flow analysis methods, e.g., the Newton-Raphson
method, which are nonlinear and non-convex. In some cases,
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however, the unbalance between the phases cannot be ne-
glected. For example, some of the voltage regulators are
independent units installed on each phase. Distribution system
state estimation (DSSE) also requires a full consideration of
unbalances in the system model. In such cases, a three-phase
power flow solution is needed.

The main purpose of this paper is to extend the application
of the LPF method to unbalanced distribution systems. The
3LPF source codes are available to the power systems com-
munity under the GNU General Public License agreement at
[3].

There are several well-known methods for power flow
analysis in the literature. Newton-Raphson and Fast Decoupled
are the most common methods for transmission systems,
while the Backward/Forward Sweep is one of the widely
used methods for distribution systems. There are, however,
some key differences between transmission systems and dis-
tribution systems, such smaller X/R ratios, mixed overhead-
underground cable sections, shorter lengths, phase unbalances,
and often radial configuration and single point of supply.
These special characteristics sometimes cause difficulties in
applying conventional power flow analysis methods developed
for transmission systems to distribution systems. Often, a
balanced case is considered in distribution systems planning
since the unbalances may not highly affect the decisions in the
long-term planning stage. In addition, the computation time
may not be an important factor in system planning studies.
Therefore, the nonlinear and non-convex formulation of the
balanced power flow problem is sufficient for most of the
cases in system planning. When it comes to the near-real-time
analysis and optimization, on the other hand, computation time
and robustness become binding factors. The proposed 3LPF
algorithm in this paper addresses these needs.

B. Related Literature
A three-phase version of the Newton-Raphson power flow

analysis was formulated in [4] in complex form. Comparing
the solution proposed in [4] with the balanced case revealed
that this method takes 6 iterations to converge when the
maximum tolerance is 10−5, while the balanced case takes
only 4 iterations to reach the same tolerance. Normally, op-
timization algorithms have difficulties with complex numbers
and having the equations in complex form may not be suitable
for optimization routines. The Fast-Decoupled method, when
applied to distribution systems, may not perform well due to
high R/X ratios in some cases. A method was proposed in [5]
that uses a complex impedance base, as opposed to the conven-
tional magnitude base, to calculate the per-unit impedances.
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By doing so, the R/X ratio can be deliberately altered to avoid
convergence problems. This method has been shown to work
for balanced networks in [5]. Sequence networks, namely the
positive, negative, and zero sequences, were adopted in [6] and
[7] to solve the unbalanced power flow. Sequence networks
have some advantages in modeling DGs and transformers of
various configurations [8] in the power flow framework.

The Backward/Forward Sweep method, originally devel-
oped for radial systems, was improved in [9] and [10] to
account for networks with loops and laterals. A load-stepping
technique was proposed in [11] to address the convergence
issue of sweep-based methods in heavily loaded feeders. It
should be noted that the sweep-based methods do not admit
a closed form formulation of the power flow problem to be
embedded in an optimization algorithm. Three methods were
compared in [12] in terms of computational burden, namely the
Newton, Dishonest Newton, and Fixed-Point Iteration (FPI)
methods. A modified-augmented-nodal analysis method was
used to construct the system of power flow equations. It was
shown that the FPI method is faster than other competitors,
especially the Forward/Backward Sweep method. In the FPI
method of [12], loads are first represented as parallel R-
L elements at the nominal voltage and in the consecutive
iterations, appropriate current injections are added to the right-
hand side to compensate for the mismatch.

The implicit ZBus Gauss method was introduced in [13] for
power flow analysis. Loads and capacitor banks are replaced
by equivalent current injections and a fixed admittance matrix
is then factorized once to find the solution of a system of
linear equations for which only the right-hand side changes
at each iteration. Branch voltages, i.e. the difference between
the voltages at the two ends of a branch, were taken as state
variables to form the power flow equations in [14]. By doing
so, the authors of [14] reached better performance than the
implicit ZBus method.

The current injection method (CIM) for power flow analysis
was previously proposed by the authors of [15] for single-
phase balanced systems and was extended to the three-phase
unbalanced cases in [16]. The CIM was adopted in [17],
considering loops in the network instead of nodes, to form
the power flow equations. The CIM was also employed in
[18] and the impedance matrix was formed using an upper
triangular matrix that relates the branch currents to nodal
current injections.

There have been a few linear approximations of power flow
equations in the literature. One linear approximation is the so-
called DC power flow, in which all voltage magnitudes are
assumed to be one per-unit, line resistances are ignored, and
voltage angles are assumed to be small. In a DC power flow
model, only active power flows can be approximated and reac-
tive power flows are not considered [19]. The assumptions of
DC power flow does not hold for a typical distribution system
since the resistive and reactive parts of the line impedances
are comparable. One recent study proposed the linearization
of the nonlinear power flow manifold [20]. The power flow
equations are linearized around the no-load solution using a
first-order approximation method in [20]. A linear power flow
approximation for a balanced distribution system was proposed

in [21] which introduces a relatively large error in the solution
but provides an upper and lower bound on nodal voltages.

In this paper, two methods are discussed for power flow
analysis. The first method, which is based on the fixed-point
iteration method, was obtained by slight modifications to the
previously proposed current injection method and is discussed
for comparison purposes only. The second method, called
the 3LPF, is the main contribution of this paper and is a
linear approximation of the first method. A modified version
of the CIM is described that does not require the formation
and updating of the coefficient matrix at every iteration. This
method is used later as a reference to determine the error of the
3LPF. The modified version of the CIM used here was inspired
by the implicit ZBus method of [13]. The algorithm starts by
replacing loads by their equivalent complex current injection.
At every iteration, the corresponding current injections are
updated according to the nodal voltages calculated in the
previous iteration. This way, the coefficient matrix of the
system of linear equations is constant at all iterations and,
therefore, the computational requirements are reduced. This is
an FPI method for solving the power flow problem using the
CIM. The FPI-based CIM is used as a reference to calculate
the error of the 3LPF solution proposed in this paper.

The rest of the paper is organized as follows. In Section
II, the FPI-based CIM for three-phase power flow analysis
is described. The derivation of the 3LPF is explained in
Section III. Simulation results are provided in Section IV,
demonstrating the accuracy of the 3LPF solution. The main
findings of this study are summarized in Section VI.

II. THE CLASSICAL CURRENT INJECTION METHOD

A. Branch Models

Distribution systems involve three-phase, double-phase, and
single-phase branches and loads. Four-wire sections can be
replaced by their three-phase equivalent obtained by applying
Kron’s reduction technique [13]. The branch admittance matrix
can be found by taking the inverse of the branch impedance
matrix. The line capacitance (also referred to as line charging)
can be considered based on the π-model representation of the
line. Half of the line total capacitance is added to one end and
the other half to the other end.

B. Load Models

The analysis in this paper is limited to the primary distri-
bution system, i.e. from the substation transformer to the dis-
tribution transformers. There is usually minimal information
available to the utilities regarding the secondary distribution
system in terms of exact load values, length and type of service
cables, etc. A common practice is to assume a typical voltage
drop on the secondary system and limit the power flow analysis
to the primary distribution system. Loads may appear in Y or
∆ connections. When loads are connected in Y-grounded, the
equivalent current injection in complex form can be calculated
as:

Īph =

(
Pph + j Qph

V re
ph + j V im

ph

)∗

(1)
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where ph ∈ {A,B,C} stands for the phases. In rectangular
coordinates, (1) can be expressed as:

I re
ph =

Pph V
re

ph +Qph V
im

ph

|V re
ph |2 + |V im

ph |2
, I im

ph =
Pph V

im
ph −Qph V

re
ph

|V re
ph |2 + |V im

ph |2
(2)

Loads are voltage-dependent elements. Conventionally, the
voltage dependence of loads is characterized by the so-called
ZIP model, given by

Pph = CZ
ph

(
Vph

V 0
ph

)2

+ CI
ph

(
Vph

V 0
ph

)
+ CP

ph (3a)

Qph = C̃Z
ph

(
Vph

V 0
ph

)2

+ C̃I
ph

(
Vph

V 0
ph

)
+ C̃P

ph (3b)

where the parameters Cph are obtained using a curve-fitting
technique. Some typical values for these parameters were
obtained in, e.g., [22], for different load types. For instance,
a heater can be modeled as CZ = 1, with other parameters
equal to zero. Values for Pph and Qph in (3) are substituted
in (2), rendering the current injections as functions of the real
and imaginary parts of the corresponding nodal voltages.

Modeling of the Y-connected loads is straight forward.
However, in some cases loads are connected in ∆ configura-
tion, as in Fig. 1(a). In such cases, equivalent current injections
for each phase can be obtained using the following equation: ĪA

ĪB
ĪC

 =

 1 0 −1
−1 1 0

0 −1 1

 Īab
Ībc
Īca

 (4)

where

Īab =

(
Pab + j Qab

V re
ab + j V im

ab

)∗

(5)

and similar equations can be written for Ībc and Īca. Using
these equivalent current injections, a ∆-connected load can
be represented by Y-connected current sources. Note that the
sum of these three currents is zero, which immediately follows
from (4). Load voltage dependence can also be considered for
∆-connected loads. The voltages in this case are line-to-line
voltages.

Distributed generation units can be modeled in the 3LPF
framework as either constant-power (power factor control) or
constant-current elements (negative loads). The current version
of the 3LPF is not able to model PV nodes (voltage-controlled
nodes) in the network.

C. Ideal Voltage Regulator

Figure 2 shows the diagram of a Y-connected voltage
regulator. Due to the daily and seasonal load variation, feeder
voltage profiles need to be regulated to ensure all voltages
along the feeder are within the standard range. Also, voltage
drop on long feeders may exceed the standard values and a
voltage regulator can be placed in an appropriate location to
adjust the voltage. A common type of voltage regulator is
the Y-connected type, with independent operation on each
phase. The voltage buck/boost level applied by an ideal
regulator to each phase is shown by αph here, which is
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(b) Equivalent current injection

Fig. 1. A ∆-connected load and its equivalent Y-connected current injection.
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Fig. 2. The equivalent model of a Y-connected voltage regulator.

the ratio of the secondary voltage over the primary voltage,
i.e. αph = |V̄ s

ph|/|V̄ p
ph|. When the line drop compensation

(LDC) is activated, the control mechanism of the regulator
adjusts the voltage magnitude at an electrical distance, given
by the user-defined values for RLDC

ph and XLDC
ph for each

phase. Therefore, the monitored voltage for each phase is
V̄ s

ph − (RLDC
ph + j XLDC

ph ) Īsph.
In order to consider the regulator model within the nodal

analysis, the primary and secondary sides are treated as
separate nodes. Dependent current sources are added to the
Kirchhoff’s Current Law (KCL) equations written for the pri-
mary node. Extra variables are then introduced to the problem,
i.e. Īsph, and extra equations for V̄ p

ph. The new admittance matrix
is sometimes referred to as the augmented admittance matrix.

An alternative method for modeling voltage regulators was
discussed in [23], in which voltage buck/boost control is
imposed by appropriate current injections at each end. Any
other component which can be modeled as current injections or
equivalent series/shunt admittance can be incorporated into the
3LPF framework. Modeling aspects of different transformer
configurations within the power flow algorithm have been dis-
cussed in [24]. These models can be readily incorporated into
the 3LPF framework since they are based on the admittance
matrix representation of the system.

D. Fixed-Point Iteration

The current injection method (CIM) is based on applying
the KCL at each node in the system. The sum of the currents
drawn from a node by the loads should be equal to the
sum of the currents injected into that node from the rest
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of the network. Using load equivalent current injections, the
following general formulation can be reached for a system
with n nodes (including all the existing phases):

Ȳ V̄ = Ī(V̄ ) (6)

where Ȳ ∈ Cn×n is the admittance matrix; Ī(V̄ ) ∈ Cn is
the load equivalent current injections as a nonlinear function
of the nodal voltages V̄ ∈ Cn. Starting from an initial guess
V̄0, under the condition that Ȳ is invertible, (6) can be treated
as a fixed-point iteration (FPI) problem. The iteration method
is described in Algorithm 1. The process continues until the
difference between the two consecutive solutions is less than
the predefined tolerance ε.

Algorithm 1 CIM using Fixed-Point Iteration
1: procedure FIXED–POINT ITERATION
2: k = 0
3: while E ≥ ε do
4: Update current injections Ī(V̄k)
5: Solve Ȳ V̄ = Ī(V̄ ) for V̄k+1

6: E = ‖V̄k+1 − V̄k‖
7: k = k + 1
8: end while
9: end procedure

The nodal voltages in the unloaded case are considered as
the initial guess, i.e. all the voltages are equal to the substation
voltage. The FPI algorithm used here is different from the
one used in [12] in the sense that loads are converted to R-
L equivalents in [12] while they are considered as equivalent
current injections here. As reported in [12], the FPI method
is about three times faster than the Newton method and about
two times faster than the Dishonest Newton method for the
IEEE 8500-Node system.

III. THE LINEAR POWER FLOW METHOD

The CIM, compared to the Newton-Raphson equations,
takes the complexity and nonlinearities from the power flow
equations and places them in the load modeling part. It is more
effective to perform linearization on the load models where the
impacts on the solution accuracy are relatively small. Having
a closer look at (6) reveals that the only nonlinearity arises
from the right-hand side of the equations, i.e. the equivalent
current injections Ī(V̄ ). Since (6) is written in complex form,
a decomposed version is considered here which is in the real
form: [

G −B
B G

] [
V re

V im

]
=

[
I re(V re, V im)
I im(V re, V im)

]
(7)

in which G ∈ Rn×n and B ∈ Rn×n are the real and imaginary
parts of the augmented admittance matrix Ȳ ; V re ∈ Rn and
V im ∈ Rn are the real and imaginary parts of the three-phase
nodal voltages V̄ , respectively; I re ∈ Rn and I im ∈ Rn are
the real and imaginary parts of the three-phase nodal current
injections Ī(V̄ ), respectively. The terms in the right-hand side
of (7) were derived in (2) for Y-connected loads and can be
similarly derived for ∆-connected loads using (4) and (5).

Using these equivalents for I re and I im, all the nonlinear terms
turn out to be functions of V re

ph and V im
ph . Substituting the

corresponding values of Pph and Qph from (3) into (2), and
assuming V 0

ph = 1 p.u., the following relations can be derived:

I re
ph = CZ

phV
re

ph +CI
ph

V re
ph√

|V re
ph |2 + |V im

ph |2
+CP

ph

V re
ph

|V re
ph |2 + |V im

ph |2
+

ĈZ
phV

im
ph + ĈI

ph

V im
ph√

|V re
ph |2 + |V im

ph |2
+ ĈP

ph

V im
ph

|V re
ph |2 + |V im

ph |2
(8a)

I im
ph = CZ

phV
im

ph +CI
ph

V im
ph√

|V re
ph |2 + |V im

ph |2
+CP

ph

V im
ph

|V re
ph |2 + |V im

ph |2
−

ĈZ
phV

re
ph − ĈI

ph

V re
ph√

|V re
ph |2 + |V im

ph |2
− ĈP

ph

V re
ph

|V re
ph |2 + |V im

ph |2
(8b)

Depending on the load voltage dependence characteristics,
four nonlinear terms appear in (8), as follows:

f1,ph =
V re

ph

|V re
ph |2 + |V im

ph |2
, f2,ph =

V im
ph

|V re
ph |2 + |V im

ph |2
(9a)

f3,ph =
V re

ph√
|V re

ph |2 + |V im
ph |2

, f4,ph =
V im

ph√
|V re

ph |2 + |V im
ph |2

(9b)

These nonlinear functions fi,ph can be approximated with their
linear equivalents using a curve-fitting technique when V re

ph
and V im

ph vary within a certain range. The approximated linear
functions f̂i,ph are then expressed as

f̂i,ph = Kph
1iV

re +Kph
2iV

im +Kph
3i , i ∈ {1, 2, 3, 4} (10)

The linearization process for fi,ph is explained in Appendix
A. The parameters Kph

1i and Kph
2i are taken to the left-hand

side and added to the appropriate elements in the coefficient
matrix in (7). The resulting system of linear equations yields
the exact solution when all the loads are modeled as constant-
impedance. In other cases, a small error is introduced. The
error associated with these approximations is evaluated in
Section IV for different scenarios.

The nonlinear terms for ∆-connected loads need to be
further elaborated on. The terms resulting from decomposing
(5) into its real and imaginary parts have phase-to-phase
voltages as variables rather than phase-to-ground voltages. In
this case, the variables x and y in Appendix A are, e.g., V re

ab

and V im
ab , respectively. The phase-to-phase voltages can then be

expressed as the difference between the corresponding phase-
to-ground voltages, e.g., V re

ab = V re
a − V re

b . The domains of
variation for each phase voltage and phase-to-phase voltage
are shown in Fig. 3. The filled areas show the variation of
the arrow tips for each variable. Phase voltage magnitudes are
assumed to vary ±12% and the phase angles to vary ±10
degrees.

It is important to notice the difference between a linear
approximation of a function obtained at one point using its first
derivative (truncated Taylor series expansion) and its linear
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approximation over a bounded domain centered by that same
point. For example, consider f(x) = x3, 0 < x < 1. The
first-order approximation of f obtained around x = 0.5 is
0.75x− 0.25 and its linear approximation within this range is
0.9x−0.2. The sum of squared errors for these approximations
over the given domain are 3.2 and 1.35, respectively. This also
helps understanding the difference between using the Jacobian
matrix versus the linearization technique applied here. The
first-order approximation of a nonlinear function is only valid
for a small variation around an operating point, whereas a
linearized version over a bounded region allows for larger
variations of variables by distributing the approximation error
over the given region [25].

A. Transmission Systems Versus Distribution Systems
The Canadian Standard Association (CSA) indicates the

voltage ranges for normal operation and extreme conditions,
as given in Table I. Based on these values, the range of voltage
variation used in the linearizations is justifiable. To understand
the range of variation of the voltage angle, a simple example
is analyzed here. Assume a load connected to a source via an
impedance. The vector diagrams of voltages and currents for
this simple two-bus system are shown in Fig. 4.

It is important to understand the differences between a
transmission system and a distribution feeder. In a transmission
system, lines are usually long with high X/R ratio. Also,
the amount of power being transferred through the line is
relatively large. In a distribution feeder, on the other hand,
lines are shorter with smaller X/R ratio and the amount of
power being transferred is relatively small. A common base
for voltage and power is used to find the per-unit values of the
parameters shown in Fig. 4. As can be seen, voltage angles
are smaller in distribution systems. Voltage angles depend on
the value of load and its power factor as well as the length of
the line and its X/R ratio. The considered ranges for voltage
angles and magnitudes are derived here based on studying
several operating conditions and line configurations typical for
distribution feeders.

Another important difference between transmission and
distribution systems is related to the voltage drop contribution
from the resistive and reactive parts of the line impedances.
As shown in Fig. 4, voltage drop is mostly caused by the
line reactance in a transmission system while both the line
resistance and reactance contribute to the voltage drop in a
distribution system. This is one of the reasons for the DC
power flow method not to be applicable to distribution systems.

IV. SIMULATION RESULTS

In order to demonstrate the performance of the 3LPF, a
simple 3-Node test system is used here. This system is shown

TABLE I
STANDARD VOLTAGE RANGES FOR DISTRIBUTION SYSTEMS [26]

Vmin(%) Vmax(%)
Normal Operating Range -8 +4
Extreme Operating Range -12 +6

−2 −1 1 2

−1

1

~Va

~Vb

~Vc

~Vab
~Vbc

~Vca

Vre

Vim

Fig. 3. Ranges of variation for phase and phase-to-phase voltages for ±10%
change in magnitudes and ±10 degrees change in the angles.

~V2

~I
R~I

j X~I

~V1

(a) Transmission System

~V2~I R~I

j X~I

~V1

(b) Distribution System

Fig. 4. Phasor diagram of voltages in a two-bus system for a typical
transmission and distribution line.

in Fig. 5. The branch impedances and loads are given in
Appendix C. Several parameters can affect the accuracy of
the 3LPF, including the R/X ratio, length of the lines, feeder
loading (λ), load power factor (cos(φ)), and load voltage
dependence (Z, I , and P portions). The errors associated
with the 3LPF results are calculated with respect to the results
obtained using the CIM method. Let the voltage magnitudes
obtained by the 3LPF be VLPF and those obtained by the CIM
be VCIM. The relative error, µ in %, is then calculated as

µ = 100× |VCIM − VLPF|
VCIM

(11)

In each simulation, only one factor is altered and other
parameters are fixed at the original values given in Appendix
C. The first parameter to be considered is the feeder loading,
which is altered by scaling the load P and Q by a factor λ.
Figure 6 shows the errors for each node in the system. In
the same figure, the system minimum voltage is also shown
on the right vertical axis. The loads are scaled up until the
minimum voltage falls below 0.90 per-unit. The maximum
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error in this case is less than 0.24%, associated with Phase
A at Node 3. With normal feeder loading, i.e. λ = 1, the
maximum error is less than 0.05%. It is worthwhile mentioning
that the unbalance caused by the non-existing phase C at Node
3 contributed significantly to the voltage unbalance, about
5% difference in magnitudes in phases A and B, urging the
application of a three-phase analysis.

The effect of the load power factor, cos(φ), is shown in Fig.
7. Here, the value of load active power is kept fixed and the
reactive power is determined based on the value of φ in Fig.
7. For instance, φ = 0, φ = π/4, and φ = −π/4 correspond
to Q = 0, Q = P lagging, and Q = −P leading, respectively.
The maximum error in this case is about 0.09%. As the load
becomes more capacitive (negative values for φ), the voltage
magnitudes get closer to 1 p.u., increasing the accuracy of the
3LPF solution.

Loads are voltage-dependent elements, i.e. the amount of
active and reactive power demand changes as the voltage level
varies. In the standard IEEE test systems, loads are modeled
as constant-impedance (Z), constant-current (I), or constant-
power (PQ) [27]. The errors of the 3LPF solution for these
three cases are shown in Fig. 8. All loads, including their active
and reactive power components, are assumed to have the same
voltage dependence in these simulations. Note that the 3LPF
is capable of modeling any combinations of components of
the ZIP model described in (3). The highest error occurs for
the constant-power load model and the error of the constant-
impedance model is zero.

The R/X ratio of the branches varies in distribution sys-
tems, depending on the phase arrangement, type of conductors,
overhead lines or underground cables, voltage levels, etc. The
values for X are kept constant in the test system and the
values for R are calculated based on the R/X ratio. It should
be noted that all the 9 elements of the three-phase resistance
matrices are scaled by the given R/X factor. The impact of
the R/X ratio on the error of the 3LPF solution is shown in
Fig. 9. The maximum error in this case is about 0.11%.

The feeder length is another important factor that can impact
the error of the 3LPF solution. The effect of the feeder length
on the accuracy of the 3LPF solution is shown in Fig. 10.
The feeder length is increased to the point that the maximum
voltage drop almost exceeds the standard limits. In this case,
the maximum error is about 0.16%. Due to the relatively large
hypothetical values chosen for the line parameters, the voltage
limits are reached at 6 km. This happens while the voltage
angles deviate from the nominal values, i.e. (0◦,−120◦, 120◦),
by less than 3◦. Adding a voltage regulator brings the voltage
magnitudes within the standard limits, and the voltage angles
may grow larger. In our approximations, ±10◦ is considered
for voltage angles, which was derived based on numerous
analyses of real and hypothetical distribution systems.

The IEEE 13-Node, the IEEE 123-Node, and the IEEE
8500-Node test systems, described in [27] and [28], are also
used here to evaluate the accuracy of the 3LPF solution.
The following modifications are made to the IEEE 13-Node
system: Transformer XFM-1 is replaced by a 3000 ft long
L602 line; The distributed load between Nodes 632 and 671 is
assumed to be connected at Node 632. The power flow solution
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Fig. 7. Relative error of the 3LPF versus loads power factor.

for this test system is provided in Table II. The histogram of
error µ given by (11), considering all the phases and nodes,
is shown in Fig. 12. The error in this case is less than 0.03%.
This system was also adopted in [20] to numerically evaluate
their proposed linearization method, referred to as the 1st

Order method here. A comparison is made in terms of the
solution accuracy between the 3LPF and the 1st Order method.
Figure 11 shows the error for each node and phase. In the
first scenario, shown in Fig. 11(a), the voltage regulator taps
are adjusted at [1.0625, 1.05, 1.0687]. The maximum relative
errors (µ) in this case for the 1st Order method and the 3LPF



7

Z I PQ

0.00

0.01

0.02

0.03

0.04

Load Type

µ
(%

)

V a
2 V b

2 V c
2 V a

3 V b
3

Fig. 8. Relative error of the 3LPF versus loads voltage dependence.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4
0.00

0.02

0.04

0.06

0.08

0.10

R/X

µ
(%

)

0.92

0.93

0.94

0.95

0.96

0.97

0.98

0.99

V
m
in
(p
.u
.)

V a
2 V b

2 V c
2

V a
3 V b

3 Vmin

Fig. 9. Relative error of the 3LPF versus R/X ratio of lines.

1 2 3 4 5 6
0.00

0.04

0.08

0.12

0.16

Feeder Length (km)

µ
(%

)

0.90

0.92

0.94

0.96

0.98

1.00

V
m
in
(p
.u
.)

V a
2 V b

2 V c
2

V a
3 V b

3 Vmin
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are 0.57% and 0.03%, respectively. In the second scenario,
shown in Fig. 11(b), the tap changer is set at [1, 1, 1]. The
maximum µ in this case is 1.44% and 0.21% for the 1st Order
method and the 3LPF, respectively.

In the IEEE 123-Node system, the transformer between
nodes 61 and 610 is removed. The histogram of error µ for
this system is shown in Fig. 12. The error in this case does
not exceed 0.025%.

The IEEE 8500-Node system is described in [28]. The total
load in the system is about 10.8 MW + 2.7 MVAR. This

TABLE II
POWER FLOW SOLUTION FOR THE IEEE 13-NODE TEST SYSTEM

OBTAINED BY THE 3LPF

Node Va Vb Vc δa δb δc

650 1 1 1 0 -120 120
VR 1.062 1.050 1.069 0.00 -120.00 120.00
632 1.021 1.042 1.018 -2.48 -121.73 117.83
633 1.018 1.040 1.015 -2.55 -121.77 117.82
634 1.015 1.038 1.013 -2.61 -121.81 117.81
645 1.033 1.016 -121.91 117.85
646 1.031 1.014 -121.98 117.90
671 0.989 1.055 0.981 -5.29 -122.35 116.22
680 0.989 1.055 0.981 -5.29 -122.35 116.22
684 0.987 0.979 -5.31 116.12
611 0.977 115.97
652 0.981 -5.24
692 0.989 1.055 0.981 -5.30 -122.36 116.22
675 0.982 1.057 0.979 -5.54 -122.53 116.23

system consists of the primary network (12.47 kV), single-
phase distribution transformers (7.2 kV/120 V/120 V), and a
50-ft service cable that connects the loads to the customer
service transformers. In this study, only the primary network
is considered. The primary network consists of about 3680
nodes. The customer service transformers are replaced by the
equivalent load connected to them. Voltage regulators are set
at tap 1.02 on all phases and are kept fixed. There are four
capacitor banks, all of which are assumed to be connected
since the given loading is for peak load conditions. The
histogram of error µ for this system is shown in Fig. 12. The
error in this case does not exceed 0.06%.

The CIM is an iterative solution method. The maximum
error at each iteration for the three test cases introduced above
is shown in Fig. 13. As can be seen, the maximum error for
the 3LPF is slightly lower than the error for the CIM at its
second iteration. In other words, it takes the CIM up to three
iterations to exceed the accuracy of the 3LPF solution. At
its first iteration, the error of the CIM is about an order of
magnitude larger than the 3LPF method.

V. POTENTIAL APPLICATIONS OF THE 3LPF

While the 3LPF is directly useful in power flow analysis,
its major advantages are more evident when embedded in
optimization routines., where computational efficiency is of the
essence. This becomes especially pressing for on-line appli-
cations that are required to produce fast and robust solutions.
Distribution system state estimation (DSSE) is an important
case, which has received considerable attention due to the new
developments in the advanced metering infrastructure. It has
been shown that the presence of unbalances can significantly
affect the accuracy of the DSSE [29] and, therefore, a three-
phase model of the system should be used. The DSSE has
many applications in the tools provided by the modern DMS,
e.g., volt-VAR control methods [30]. One of the challenges in
the DSSE is the lack of sufficient measurements, which leads
to an unobservable system and causes convergence issues in
the DSSE algorithm. Methods have been proposed to generate
pseudo-measurements to address this issue, e.g., [31]. Since
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the conventional power flow equations are nonlinear and non-
convex, the DSSE problem is numerically intensive to solve
[32]. Computational challenges arising from the inclusion of
pseudo-measurements are likely to be alleviated substantially
by the 3LPF method.

Another challenge in DSSE is the presence of discrete
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Fig. 13. Maximum error in voltage magnitudes per iteration for the CIM
solution for the IEEE 13, 123, and 8500-Node test systems. The 3LPF error
is shown using a red dashed line.

variables, e.g., status of switches, fuses, capacitor banks, and
voltage regulator taps. Besides, introducing integer variables
to the DSSE optimization problem creates a practically in-
tractable problem. It is expected that the proposed 3LPF
formulation paves the path for including the discrete variables
within the DSSE. With the 3LPF, the resulting optimization
problem can be solved using commercially available mixed-
integer programming solvers. Normally, in a typical distribu-
tion feeder, there exist only a few number of voltage regulators
and/or capacitor banks. Also, most of the distribution feeders
are radial, which facilitates the idea of decomposing the
problem into several independent sub-problems, each dealing
only with a single feeder. These specific features of distribution
systems make it possible to take advantage of the fast mixed-
integer programming methods.

The optimal placement of new measurement devices for
DSSE has been a subject of research in several studies [33],
[34]. This problem can be formulated as a mixed-integer
programming problem, where the existence of a measuring
device can be modeled as a binary variable. The 3LPF
formulation allows for the introduction of integer variables
to the optimization problem of meter placement. In addition,
the volt-VAR optimization problem in distribution system re-
quires three-phase power flow analysis when voltage regulators
and/or capacitor banks with single, double, and independently-
operated three-phase units are present. The LPF has been
successfully applied to this problem for a balanced case in
[35]. The proposed 3LPF formulation can be directly applied
to unbalanced cases. It should be noted that the 3LPF is still
applicable even if voltages are outside the standard limits,
although the associated error may be slightly higher.

Due to the probabilistic and intermittent nature of some
renewable energy resources, e.g., wind and solar, probabilistic
power flow methods have been developed to find the expected
value and variance of the system state variables [36], [37].
There are also elements of uncertainty in load values as well as
load models in a distribution system. The proposed 3LPF is an
efficient alternative to nonlinear formulations for probabilistic
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power flow analysis. The probabilistic power flow analysis
provides a bound for the nodal voltages and branch currents
for given bounds on the expected load/generation scenarios.
This is useful to ensure, with some definable probability, that
the system will operate within the standard limits under dif-
ferent scenarios. The ever-increasing penetration of distributed
energy resources calls for these types of studies.

The error values reported in Section IV are acceptable for
the targeted applications mentioned above.

VI. CONCLUSION

The current injection method for a three-phase distribution
system was described and the fixed-point iteration method was
used to solve the resulting power flow equations. A three-
phase linear power flow (3LPF) formulation was derived based
on the fact that the nodal voltages vary within a bounded
range. The error associated with the 3LPF solution for various
system parameters was illustrated. An important application
of the 3LPF is in distribution system optimization routines,
such as volt-VAR optimization, and distribution system state
estimation. With this linear set of equations, it is possible
to include integer variables to represent switches status, tap
position for voltage regulators, etc.

APPENDIX A
LINEAR APPROXIMATION OF A TWO-VARIABLE FUNCTION

Assume a nonlinear function f(x, y) defined on x ∈ Dx

and y ∈ Dy . A linear approximation of f on the specified
compact domain is f̂ = K1x+K2y+K3. Assume N evenly
distributed points in the function domain, i.e. (xi, yi, fi). In
order to find the best coefficients for f̂ that closely matches
f , the following least-square problem should be solved:

min
K1,K2,K3

N∑
i=1

(K1xi +K2yi +K3 − fi)2 (12)

Applying the Karush-Kuhn-Tucker conditions to the above
problem yields the following solution: ∑x2i

∑
xiyi

∑
xi∑

xiyi
∑
y2i

∑
yi∑

xi
∑
yi N2

 K1

K2

K3

 =

 ∑xifi∑
yifi∑
fi

 (13)

Note that this has to be solved for the four nonlinear func-
tions in (9) and for each phase separately. Therefore, Kph

1i

in (10) represents K1 for fi, i ∈ {1, 2, 3, 4}, and Phase
ph ∈ {A,B,C}.

APPENDIX B
CALCULATED KPH FOR LINEAR APPROXIMATIONS

KA =

 −0.9934 0 0.0064 0
0 0.9965 0 0.9965

1.9863 0 0.9883 0


KB =

 0.4991 −0.8617 0.7490 −0.4287
−0.8617 −0.4959 −0.4287 0.2540
−0.9932 −1.7202 −0.4942 −0.8559



KC =

 0.4991 0.8617 0.7490 0.4287
0.8617 −0.4959 0.4287 0.2540
−0.9932 1.7202 −0.4942 0.8559


KAB =

 −0.1653 −0.2872 0.1466 −0.2475
−0.2872 0.1664 −0.2475 0.4324
0.9932 0.5734 0.8559 0.4942


KBC =

 0.3322 0 0.5754 0
0 −0.3311 0 0.0037
0 −1.1468 0 −0.9883


KCA =

 −0.1653 0.2872 0.1466 0.2475
0.2872 0.1664 0.2475 0.4324
−0.9932 0.5734 −0.8559 0.4942


APPENDIX C

POWER-FLOW DATA FOR THE 3-NODE TEST SYSTEM

Z (R+ jX) is in Ω/ft; B is in µS/ft; active power P is in
(MW); reactive power Q is in MVAR; lengths are in miles.
Zabc = 0.651 0.102 0.104

0.102 0.646 0.100
0.104 0.100 0.649

+ j

 0.652 0.282 0.245
0.282 0.663 0.224
0.245 0.224 0.658


Babc =

 2.607 −0.748 −0.486
−0.748 2.491 −0.304
−0.486 −0.304 2.389


Zab =

[
0.6 0.1
0.1 0.6

]
+ j

[
0.6 0.2
0.2 0.6

]
, Bab =

[
0 0
0 0

]

From To Load Pa Qa Pb Qb Pc Qc Length
1 2 Y-PQ 1 0.1 1 0.1 1 0.1 1
2 3 Y-PQ 1 0.1 1 0.1 - - 1
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