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Abstract—Nonlinear functions are often encountered in power
system optimizations. In this paper, an effective piecewise linear
(PWL) approximation technique is introduced which shows
promising performance in linearizing the nonlinear functions.
This method uses a series of linear functions, called max-affine
functions, to linearize a multivariate function over a bounded
domain. The important advantage of this method is its ability to
decide on the size of the subspaces, which other methods are not
capable of. It is also shown that using the PWL approximation,
significant efficiency is achievable in computation burden of most
power system optimizations, such as unit commitment.

NOMENCLATURE

B̄ Network susceptance matrix.
D̄ Matrix product of the susceptance and node-

incident matrices.
a, b, c Quadratic cost function coefficients.
CSDn Shutdown cost.
CSUp Startup cost.
CT System total cost.
Nb, Ng Sets of buses and generators, respectively.
Nl, Nt Sets of lines and time horizon, respectively.
P Generator active power.
Pmax, Pmin Upper/lower limits on generator active power.
Pd Active power demand.
PLi Active power flow limit of Line i.
P SDn Generator minimum power limit at shutdown.
P SUp Generator maximum power limit at startup.
RDn Generator power ramp-down limit.
RUp Generator power ramp-up limit.
s Number of PWL partitions.
SDn,SUp Auxiliary variables for shutdown/startup cost.
u Generator status (0:’Off’, 1:’On’).
δ Bus voltage angle.

I. INTRODUCTION

The increasing demand on real-time operation of power
systems has led to numerous research studies on enhancing the
power system analysis methods. Due to large-scale problems
that need to be solved for real-size power systems, special
numerical methods have been developed and utilized by power
system experts. Amongst most computationally expensive
problems in power system analysis, optimization of system

operation is of crucial importance.
Most of the optimization problems in power systems are

basically nonlinear, thus nonlinear programming (NLP) tech-
niques have been widely applied to these problems. As an
example for continuous optimization, the optimal power flow
problem considering AC constraints is an NLP problem,
for which a variety of methods have been proposed in the
literature, e.g. Interior Point Method [1] and Trust-Region
Method [2]. However, due to the nonconvexity of the original
problem, most of the methods would probably get trapped in a
local minimum. As an example of combinatorial optimization,
the unit commitment problem is nonconvex due to the binary
variables associated with the generators’ status (on/off). Hav-
ing a quadratic cost function and nonlinear constraints, one has
to deal with a mixed-integer nonlinear programming (MINLP)
problem, which is NP-hard, and up to now, there is no efficient
method for solving large-scale MINLP problems.

Various versions of the unit commitment problem have
been formulated in the literature, focusing on linearizing the
constraints as well as the objective function, e.g. [3], [4].
In [3], the quadratic cost functions are linearized within the
generator’s output power limits which leads to 2s + 2 new
constraints and s + 1 new variables (s is the number of
sections assumed for linearization). Beside increasing the size
of the problem, it is not clear how to choose the intervals
and, therefore, it might not lead to the best possible piecewise
linear (PWL) approximation of the function. In [4], the convex
envelope of the quadratic function is obtained and using the
perspective cut, the linear parts are added to the problem. The
problem with this method is that a dynamic constraint has
to be added to the original problem which slows down the
solution process. In addition, a linearization technique is used
in [5] to iteratively solve the MILP problem by replacing the
objective by its linear approximation. The method is known as
the Kelley’s theorem on the cutting plane method for convex
programs. However, many iterations and cuts are required to
reach to the solution and the number of required cuts is not
predictable beforehand.

In a more recent work, a mathematical approach is em-
ployed to find the PWL approximation of the quadratic cost
functions [6]. Using this method, the length of the intervals can



be selected optimally so that a good PWL approximation is
obtained. Although this is believed to be a tighter approxima-
tion comparing to the previous methods, it is not necessarily
the best PWL approximation.

In addition to the quadratic cost functions of generators,
there are more instances of nonlinear functions in power
system studies, many of which could be a multi-variable
function. The problem of fitting a PWL approximation to a
multi-dimensional set of data (possibly obtained by evaluating
a nonlinear function at different points) has been studied
before. The least-squares and Neural Network methods are
among the most-used approaches in curve-fitting. In order
to find the best PWL approximation with a fixed number
of segments available, Magnani and Boyd have proposed a
convex PWL fitting technique which is based on the so-called
Max-Affine function [7]. This method is capable of providing
PWL approximations for multivariate functions. This approach
has specific application in convex optimization.

To the best of authors’ knowledge, this is the first time
in power system studies that the Max-Affine functions are
used for PWL applications. The capabilities of this method
are shown through numerical examples. This is the starting
point for the numerous possibilities of these family of PWL
approximations in mathematical programming and optimiza-
tion of power systems. The rest of the paper is organized as
follows.

In Section II, the PWL techniques are reviewed and illus-
trative examples are presented. In Section III the application
of the PWL technique in unit commitment problem and its
impact on the solution quality and computational efficiency
are evaluated. The paper is concluded by highlighting the main
contributions and findings of the present study.

II. PIECEWISE LINEAR APPROXIMATION OF
MULTIVARIATE FUNCTIONS

Assume a function of multi variables, say f(x) with x ∈
Rn, is defined within a bound on x, say x ∈ D = {x|x ≤
x ≤ x}. Depending on the level of precision required, f(x)
can be approximately expressed as PWL functions over small
sub-intervals inside D. For instance, considering s intervals,
one can derive the following as a PWL approximation of f(x):

f̂(x) =


aT1 x+ b1 , x ∈ D1

aT2 x+ b2 , x ∈ D2

...
aTs x+ bs , x ∈ Ds

(1)

in which ai ∈ Rn, bi ∈ R and the following holds:⋃
1≤i≤s

Di = D and
⋂

1≤i≤s

Di = ∅ (2)

and on the borders of sequential Di, the linear segments are
connected, which means that f̂(x) is continuous.

Although (1) sounds interesting, there are real challenges
in deriving f̂(x). The first challenge is how to mesh D into
its subspaces Di. The second possible challenge is how to
choose the smallest s while still maintaining a good accuracy

in the approximation. In order to clarify this and without loss
of generality, let the dimension of x be one. In the following,
the mentioned challenges are discussed in more details.

A. PWL Approximation for Convex Quadratic Functions

In this section, the dimension of the problem is reduced to
one for illustrative purposes. Assume that f(x) is a convex
quadratic function of the form

f(x) = ax2 + bx+ c , a > 0, x ≤ x ≤ x (3)

1) Mathematical Background: It is obvious that the most
interesting PWL approximation of f is the one with the
fewest linear parts and highest accuracy. It is also clear that
having more accuracy requires greater number of linear parts.
However, if the PWL approximation is going to be used in,
for example, an optimization problem, fewer segments is more
interesting. Therefore, practical purposes limit the maximum
number of segments one can use in the PWL approximation.
Now, the question that remains is “having a limit on s, what
is the best f̂(x)?”

In order to answer the above question, it should be recalled
that f̂(x) can be expressed in more compact form as (referred
to as Max-Affine function in [7])

f̂(x) = max
1≤i≤s

{αix+ βi} (4)

which surprisingly has no constraints on the subspaces on
which the linear approximations are defined. The best f̂(x),
with fixed s and m point-wise function evaluations, can then
be obtained using the following least-squares problem:

min
αi,βi

m∑
k=1

(
max
1≤i≤s

{αixk + βi} − f(xk)
)2

(5)

Unfortunately, this problem is not convex [7]. However, an
efficient method is proposed in [7] to find the solution of (5).
This method is based on choosing the initial subspaces (i.e. Di)
and updating them iteratively to find the best possible mesh
on D. Beside that algorithm, there are commercial solvers
capable of handling these types of problems, which are usu-
ally categorized as non-smooth problems. Some instances are
CONOPT, MINOS, LGO and IPOPT, all available in GAMS
under the option “nonlinear programming with discontinuous
derivatives” [8]. The discussion on the algorithms for solving
non-smooth optimization problems is beyond the scope of this
paper and the reader is referred to the software user manual.

2) Numerical Example: Here, a numerical example for
PWL approximation of a cost function for a thermal generation
unit is presented. The coefficients in (3) are assumed to be
a = 0.9, b = 10, c = 200, x = 10, x = 200. Assume that
only two segments are allowed, i.e. s = 2. Figure 1 shows
the original quadratic function, the PWL upper approximation
(e.g. used in [3]) obtained by halving the space, and the
PWL max-affine approximation. The following remarks are
observed:



• Halving the available space is not the optimum way of
meshing (Points A and B in Fig. 1 are not equal).

• The PWL upper approximation has no intersection with
the original function within the intervals but on the two
ends.

• The PWL max-affine approximation has 2 intersections
with the original function within each interval (P1, P2 in
the first interval and P3, P4 in the second one in Fig. 1).

• The average of the relative absolute errors for the PWL
upper approximation is 32% while this value for the PWL
max-affine approximation is 20%.
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Figure 1. Comparison between the PWL upper and max-affine approximation
techniques.
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Figure 2. Histograms of relative errors between the linearized and original
functions obtained using the PWL max-affine approximation.
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Figure 3. Histograms of relative errors between the linearized and original
functions obtained using the PWL upper approximation.

Table I
AVERAGE OF THE RELATIVE ABSOLUTE ERRORS FOR DIFFERENT VALUES

OF s OBTAINED BY TWO PWL TECHNIQUES

PWL Technique
Number of Partitions (s)
1 2 3 4

Average of relative Upper Approximation 95.3 31.8 15.5 9.45
absolute errors (%) Max-Affine Functions 90.5 20.1 9.2 1.3

It is obvious that the PWL max-affine approximation is
more efficient than the other method. Moreover, the method
is able to decide the optimal length of the intervals. Table
I shows the average of relative absolute errors for different
values of s. Also, Figs. 2 and 3 depict the histograms of
the relative absolute errors for different values of s using the
PWL max-affine and upper approximations, respectively. As
can be seen, the average relative error for the PWL max-affine
approximation is significantly less than the same values for the
PWL upper approximation.

III. APPLICATIONS

A. Min-Max Optimization

If the nonlinear function happens to be in the objective of
a minimization programming, the PWL max-affine approxi-
mation leads to a linear reformulation of the objective. This
type of problems is referred to as Min-Max optimization.
Mathematically, it is described as

min
x∈D

max
1≤i≤s

{αTi x+ βi} (6)

By introducing a new variable, z = max{αTi x+βi}, the above
problem is reformulated as

min
x∈D

z (7a)

subject to z ≥ αTi x+ βi , i = 1, . . . , s. (7b)

Therefore, by introducing one extra variable and s extra
inequalities, the problem is reformulated as a linear pro-
gramming (assuming other constraints to be linear). This has
tremendous applications in power system optimization. As
an example, this method is applied to the unit commitment
problem in the following.

B. Unit Commitment Problem

In this section, the linearization technique is applied to
the problem of unit commitment to show the impact of the
linearization on computational efficiency and quality. The unit
commitment problem is formulated here as follows (without
loss of generality, some of the constraints are not considered
here for simplicity).

Minimize CT =
∑
i∈Ng

∑
h∈Nt

(
zi,h + SDni,h + SUpi,h

)
(8)

subject to the following operational constraints:



1) Active Power Flow Equations:

Pi,h − Pdi,h =
∑
j∈Nb

B̄ijδj (9)

2) Line Flow Limits:

−PLi ≤
∑
j∈Nb

D̄i,jδj ≤ PLi , i ∈ Nl (10)

3) Generation Limits:

Pmin
i ui,h ≤ Pi,h ≤ Pmax

i ui,h (11)

4) Shutdown/Startup Costs:

SUpi,h ≥ (ui,h − ui,h−1)CSUp
i , SUpi,h ≥ 0 (12)

SDni,h ≥ (ui,h−1 − ui,h)CSDn
i , SDni,h ≥ 0 (13)

5) Ramp Limits:

Pi,h − Pi,h−1 ≤ [ui,h − ui,h−1]P SUp
i + ui,h−1R

Up
i

+ [1− ui,h]Pmax
i

(14)

Pi,h−1 − Pi,h ≤ [ui,h−1 − ui,h]P SDn
i + ui,hR

Dn
i

+ [1− ui,h−1]Pmax
i

(15)

6) System Reserve:∑
i∈Ng

(
ui,hP

max
i − Pi,h

)
≥ PResh (16)

7) Auxiliary Constraints: These constraints correspond to
the PWL of the quadratic terms in the objective.

zi,h ≥ αi,sPi,h + βi,sui,h (17)

Note that when ui,h = 0, it also follows that Pi,h = 0.
Therefore, all the s inequalities turn to be zi,h ≥ 0, which the
solver chooses the zero value. It is trivial to analyze the case
of ui,h = 1.

C. Numerical Results

In this section, the performance of the PWL approximation
(i.e. the quality of the solution and the efficiency of the
solution process) is presented through two examples. A Six-
bus system and the IEEE 118-bus test system are employed
here for which the unit commitment problem is solved. The
system data can be found in [9]. In the six-bus system,
there are 3 generators and 7 branches. For the IEEE 118-
bus system, there are 54 generators and 186 branches. Two
approaches are used to solve the unit commitment problem.
In the first approach, the problem is formulated using the
original quadratic cost functions, which leads to a mixed-
integer quadratic programming (MIQP) problem. There are
commercial solvers capable of handling MIQP problems,
e.g. CPLEX [10]. In the second approach, the problem is
formulated using the PWL cost functions and associated extra
constraints, as given in Section III-B7. This leads to an MILP

Table II
UNITS’ SCHEDULES OBTAINED BY MIQP FOR THE SIX-BUS SYSTEM.

Hour 1 2 3 4 5 6 7 8
G1 104.6 100 100 100 100 100 103.7 106
G2 - - - - - - - -
G6 84.2 78.1 71.1 66.8 67.2 73 83.2 85.5

Hour 9 10 11 12 13 14 15 16
G1 110.9 123.1 146.5 125 128.3 129.1 131.9 135.6
G2 - - - 29.5 32.8 33.6 36.4 40.1
G6 90.4 100 100 100 100 100 100 100

Hour 17 18 19 20 21 22 23 24
G1 135.7 130.7 130.3 125.7 125.7 123.2 115.9 115.7
G2 40.2 35.2 34.8 30.2 30.2 27.7 - -
G6 100 100 100 100 100 100 95.4 95.2

Table III
UNITS’ SCHEDULES OBTAINED BY MILP FOR THE SIX-BUS SYSTEM.

Hour 1 2 3 4 5 6 7 8
G1 100 100 100 100 100 100 100 100
G2 - - - - - - - -
G6 88.9 78.1 71.1 66.8 67.2 73 86.9 91.5

Hour 9 10 11 12 13 14 15 16
G1 101.4 123.1 146.5 124 124 124 124 130
G2 - - - 30.5 37.1 38.6 44.3 46
G6 100 100 100 100 100 100 100 100

Hour 17 18 19 20 21 22 23 24
G1 130 124 124 124 124 124 111.2 110.9
G2 46 42 41.2 31.9 31.8 26.8 - -
G6 100 100 100 100 100 100 100 100

problem, for which there are efficient commercial solvers
available, e.g. CPLEX [10]. All the problems are formulated
in GAMS [8] and solved using CPLEX [10] in this paper.

For the PWL procedure, four segments are chosen, i.e.
s = 4. Table II shows the units’ schedules obtained con-
sidering the exact quadratic cost functions (MIQP). Table III
shows the units’ schedules for the six-bus system obtained
using the linearized objective (MILP). As can be seen, the unit
status (“on”/”off”) for both methods are identical. Also, the
differences between the committed generations are minor. The
computational efficiency of the two methods are compared in
Table IV (obtained using an Intel Core i7-2600 CPU @ 3400
MHz). The “relative gap” is defined as the relative gap between
the best objective achieved up to the current iteration and the
best lower bound. For the MIQP case, the solver could not
reach to the zero relative gap within the time limit of 1000
s, while for the MILP case, the proven optimal solution has
been achieved within a few seconds. The objective value for
the six-bus system obtained using the MILP is higher than the
one obtained by the MIQP. On the other hand, this is the other
way around for the IEEE 118-bus system. These results reveal
that both methods would come up with approximately same
objective values.

It is worthwhile to compare the problem size with the
method proposed in [3]. The number of extra variables re-
quired for PWL approximation for each generator in [3] is
s + 1, while in the min-max formulation, only one extra



Table IV
COMPUTATIONAL EFFICIENCY OF MIQP AND MILP

System Parameter MIQP MILP

Six-bus
CPU Time (s) 0.63 0.13
Objective Value ($/h) 153880 153975
Relative Gap 0 0

118-bus
CPU Time (s) 1000 7.8
Objective Value ($/h) 650433 650387
Relative Gap 0.026 0

variable is needed. In addition, the number of constraints
for each generator in [3] is 2s + 2, while in the min-max
formulation, only s constraints suffice.

The applications of the PWL approximation is not limited to
the unit commitment problem. There are many other problems
in power system optimization which have a nonlinear objective
function subject to some linear constraints. For example, op-
timal power flow with objectives such as minimizing the cost
or active losses is one good example, especially when there
is a need for multiple run [11]. As another instance, optimal
transmission line switching for congestion management could
be another application [12].

IV. CONCLUSION

The nonlinear functions appearing in the objective function
of minimization problems are shown to be efficiently lineariz-
able using a piecewise linearization (PWL) technique. The
superiority of this method over existing PWL techniques are
demonstrated through examples. The main advantages of the
introduced approach can be summarized as follows:
• Higher accuracy in linearization is achieved by applying

the max-affine PWL technique.
• The size of the subspaces (on which the linear approxima-

tions are defined) are selected optimally by this method.
• The method is able to linearize a multivariate function in

multi-dimensional space.
• If the nonlinear function is in the objective, the advantage

can be taken of by minimizing a linear function subject
to a few affine inequalities.

• Significant saving in computation time can be achieved
when transforming a mixed-integer nonlinear program-
ming problem (with only the objective being nonlinear)
to a linear version.

As future work, further research is undertaken to apply this
competent technique to other areas of power system optimiza-
tion.
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