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Abstract—The changes in branch flows and nodal voltages
with respect to a change in current injection at a particular
node, defined as current transfer distribution factors (CTDF),
are useful sensitivity factors for distribution system analysis. In
addition, the changes in branch flows due to the outage of a
particular branch, defined as branch outage distribution factors
(BODF), are useful in many distribution system analysis and
optimization applications. This paper uses a set of linear power
flow (LPF) equations to derive both the CTDFs and BODFs
for distribution systems. Applications of the proposed sensitivity
factors are discussed through illustrative examples in optimal
placement of distributed generation/capacitor banks as well as
minimum-loss network reconfiguration.

I. INTRODUCTION

The idea of sensitivity analysis in power systems has been
widely used to avoid recalculation of the power flow solution.
In transmission systems, the parameters used in these analyses
are the power transfer distribution factors (PTDF) and the
line outage distribution factors (LODF). PTDFs are defined
as the changes in the line power flows due to a change in
power injection at a particular bus. LODFs are defined as the
changes in the line power flows due to the disconnection of a
particular line [1]. The calculation of these sensitivity factors
has gained more interest recently due to the need for fast on-
line readjustments in modern power systems.

There are generally two approaches to calculate sensitivity
factors for power systems. Considering a more realistic model,
power flow equations form a nonlinear system of equations.
In order to find sensitivities, one need to find the Jacobian
matrix at a particular solution of the network, which yields
sensitivity factors that are only valid for small variations
around the operating point [2], [3]. The second approach
is to find an approximate linear model that describes the
system for relatively large variations in operating point and
find the sensitivity factors for the approximate linear system.
The decoupled power flow equations, for instance, are used
in [4] to find the sensitivity of reactive power flows to
transmission line and power transformer outages. The Fast
Decoupled power flow method was adopted in [5] and [6] to
derive AC distribution factors for transmission systems. These
factors were then used to formulate a re-dispatch optimization
problem for congestion management. The assumptions of Fast
Decoupled power flow are not as strongly hold for distribution
systems as they are for transmission systems (X/R ratio is
smaller in distribution systems ). Also, those factors depend
on the operating condition of the system and, therefore, are
valid for small changes in power flow patterns.

A linear approximation of the power flow equations is the
so-called DC power flow, in which all voltage magnitudes
are assumed to be one per-unit, line resistances are ignored,
and voltage angles are assumed to be small enough so that
their sines are approximately equal to the angles. Based on

the linear DC power flow equations, the PTDFs and LODFs
can be derived for a transmission system [1]. The assumptions
of DC power flow are not valid for distribution systems since
the voltage magnitude plays an important role and cannot be
dismissed. Besides analytical studies, there have been some
efforts recently to derive the sensitivity factors based on real-
time data provided by phasor measurement units. For example,
in [7], sensitivity factors are derived without the need for a
power flow model.

Sensitivity factors have many applications in transmission
systems, such as optimal transmission switching [8], (N − 1)
security assessment [9], congestion management [10], genera-
tion rescheduling, etc. Using sensitivity factors, it is possible to
calculate the changes in other system quantities such as losses
and generation cost.

Despite broad discussions on derivations and applications
of sensitivity factors at the transmission level, there is rather
limited work on the distribution system counterpart. Distribu-
tion systems have high R/X ratios, radial configurations, a
mixture of cables and overhead lines, and unbalanced loads.
Due to these unique features, the power flow algorithms and
sensitivity analysis derived for transmission systems are not
always valid for distribution systems. Power flow algorithms
specifically designed for distribution systems have been pro-
posed in the literature, e.g., the linear power flow (LPF)
[11]. Using the adjoint network method, which is based on
the application of Tellegen’s theorem to power systems, the
authors of [12] derived the sensitivities of power losses and
voltage magnitudes with respect to power injection at any node
in the system. However, this method is only valid for radial
distribution systems. Also, it does not consider the voltage de-
pendence of the loads, which is an important consideration in
distribution systems. These factors cannot be used to calculate
the branch outage distribution factors (BODF).

Similar to the case of transmission systems, there are many
applications for sensitivity factors in distribution systems. The
problem of distributed generation (DG) placement usually
requires a knowledge of the impact of power injection at each
node on certain quantities of the network, e.g., power losses or
voltage profile. Capacitor placement, as an example of reactive
power sources, also relies highly on the sensitivity of nodal
voltages and system losses to the reactive power injection at
each particular node. Network reconfiguration also benefits
from the BODFs, as shown later in this paper.

II. CALCULATION OF SENSITIVITY FACTORS

In this section, the linear power flow (LPF) formulation
proposed in [11] is used to derive the sensitivity factors. Loads
are modeled as voltage-dependent elements, based on curve-
fitting routine described in [11]. Based on this load model, and
assuming small voltage angles in distribution systems, the LPF



can be formulated as
Ȳ V = I (1)

in which Ȳ is the modified admittance matrix. All elements
are complex numbers.

A. Current Transfer Distribution Factors

Suppose the voltages are obtained for an initial case using
(1). Suppose also that a change occurs in the current injection
at Node k. The aim here is to find the changes in the branch
flows without having to solve (1) again. Since (1) is linear,
one can write

∆V = Z̄∆I (2)

where Z̄ is the inverse of Ȳ . It should be noted that Z̄ is
independent of the system loading condition and only depends
on the system configuration and branch impedances. Now,
suppose it is desired to find the changes in the branch currents.
The current flowing through the branch connecting Node i to
Node j is calculated as

fij = (vi − vj)yij (3)

Therefore, the changes in fij due to the changes in the current
injection at Node k can be calculated as

∆fij = (∆vi −∆vj)yij (4)

Substituting ∆vi and ∆vj from (2) into (4), one has

∆fij = dij,k∆Ik (5)

where dij,k is the CTDF given as

dij,k = (z̄ik − z̄jk)yij (6)

The CTDFs are calculated off-line and stored in a m by n
matrix D ∈ Cm×n, where m is the number of branches and
n is the number of nodes. The concept can be easily extended
to multiple injections. For instance, if two current injections at
two different nodes are considered simultaneously, say Nodes
k and l, then the changes in the voltage at Node i is calculated
as:

∆vi = z̄ik ∆Ik + z̄il ∆Il (7)

substituting (7) into (4), the changes in the current of Branch
i-j is:

∆fij =
(

(z̄ik − z̄jk)∆Ik + (z̄il − z̄jl)∆Il
)
yij (8)

This analysis shows that superposition can be applied to the
CTDFs. In other words:

∆fij = dij,k∆Ik + dij,l∆Il (9)

B. Branch Outage Distribution Factors

Assume a branch is disconnected from a network. In order
to find the new power flow solution, (1) has to be solved with
a modified Ȳ . In a radial distribution system, disconnection
of a particular branch leads to the disconnection of all the
subsequent nodes and branches that are connected to the
substation through that particular branch. In order to find
the power flow solution under such circumstances, a careful
modification is required to form a new admittance matrix for
the rest of the network that is still connected to the substation.

Ix

0

f ′ij = Ix yij
Ix

0Node i Node j

Figure 1. Modeling of a branch outage using fictitious nodal current
injections.

In a weakly-meshed network, a branch disconnection may not
always lead to two isolated networks. Sensitivity factors can
be used to calculate a new solution with respect to the initial
solution, in order to avoid rebuilding Ȳ , for both radial and
weakly-meshed networks.

In order to model the outage of Branch i-j, an appropriate
fictitious current (Ix) can be injected into Node i and be drawn
from Node j, such that the resulting current through Branch i-j
(f ′ij) is only circulating between the two added current sources,
i.e. Ix = f ′ij . Under these conditions, this branch is considered
as “disconnected” from the rest of the network, which can be
verified by applying the Kirchhoff’s Current Law (KCL) to
Nodes i and j. This concept is illustrated in Fig. 1. It is also
important to note that by adding the new current sources to
Nodes i and j, the flows in the rest of the network are also
affected, which is equivalent to the disconnection of Branch i-
j. The new flow in Branch i-j due to the added current sources
can be calculated as

f ′ij = (v′i − v′j)yij = fij + ∆fij (10)

in which the variables with a prime stand for the new quantities
in the modified network. Substituting the value of ∆fij from
(9) resulting from the two current injections shown in Fig. 1,
the new flow becomes

f ′ij = fij + (dij,i − dij,j)Ix (11)

Remember that the aim is to have f ′ij = Ix. Therefore, the
appropriate fictitious current injections at Nodes i and j are

Ix =
1

1− (dij,i − dij,j)
fij (12)

By injecting the calculated Ix at both ends of Branch i-j,
this branch can be considered as isolated from the rest of the
network. Finally, the change in the current flowing through the
other branches l-r is calculated using (9) as

∆flr = hij,lrfij (13)

where hij,lr is the branch outage distribution factor (BODF)
given as

hij,lr =
dlr,i − dlr,j

1− (dij,i − dij,j)
(14)

The new flows in the remaining branches after the outage of a
particular branch are calculated by adding the changes obtained
in (13) to the initial branch currents. For a network with m
branches, all the hij,lr form a m × m matrix, H ∈ Cm×m,
with −1 in the diagonal elements.



C. Power Injections and Power Losses

In distribution systems, determining the location for in-
stalling distributed generation (DG) or capacitor banks has
been of interest for both academia and industry. CTDFs derived
in Section II-A are not directly applicable when active/reactive
power injections are to be considered instead of current
injections. Nevertheless, it is possible to derive equivalent
current injections that closely mimic the active/reactive power
injections. When a current Ik is injected to Node k, the
resulting power injection is calculated as:

Sk = Vk I
∗
k = (V re

k I re
k +V im

k I im
k )+ j(V im

k I re
k −V re

k I im
k ) (15)

in which the superscripts indicate real and imaginary. The
equivalent active and reactive power injections are:

Pk = V re
k I re

k + V im
k I im

k , Qk = V im
k I re

k − V re
k I im

k (16)

Assume now that an active power Pk is injected at Node k with
zero reactive power Qk = 0. The equivalent current injections
can be found from (16) as:

I re
k =

V re
k

|Vk|2
Pk, I

im
k =

V im
k

|Vk|2
Pk (17)

The voltages in (17) are the final voltages after injecting
Ik. By applying Ik the values of V re

k and V im
k will change

from their initial values. Since the final values are not known
beforehand, an estimation is used here. Assuming V re

k ≈ 1 and
V im
k ≈ 0 gives a good approximation for the final values of the

voltages at the nodes where a power injection is introduced.
The accuracy of these approximations is illustrated in Section
III.

A similar analysis can be done for reactive power injection
Qk with zero active power Pk = 0. From (16), the equivalent
current injections can be calculated as:

I re
k =

V im
k

|Vk|2
Qk, I

im
k = − V re

k

|Vk|2
Qk (18)

The previous assumptions for the final values of voltages, i.e.
V re
k ≈ 1 and V im

k ≈ 0, apply equally here.
The total active power losses in a distribution system when

a new current injection is applied can be calculated as:

P ′L =
∑
i,j

Rij |f ′ij |2 (19)

in which Rij and |f ′ij | are the resistance and the new current
magnitude of Branch i-j, respectively. When the changes in
branch currents are due to a change in power injection at Node
k, the proposed CTDFs can be readily used to find the new
branch flows without requiring a new power flow solution.
Using (5), the power losses due to the new injection at Node
k, I re

k + j I im
k , can be calculated as:

P ′L,k =
∑
i,j

Rij |fij + dij,k (I re
k + j I im

k )|2 (20)

where fij is the initial flow in Branch i-j.
A similar analysis can be conducted to find the losses when

a branch outage occurs, using the proposed BODFs. This is
very useful when trying to find the best radial network from an
initially meshed network that generates the minimum losses.
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Figure 2. Initial configuration of the 33-node system [13]. The dotted-lines
indicate open switches.

III. SIMULATION RESULTS

Multiple studies are done in this section to show different
applications of the proposed sensitivity factors. In Section
III-A, the problem of DG/capacitor placement in a distribu-
tion system for loss reduction/voltage profile improvement
is considered. In Section III-B, the problem of network re-
configuration for loss reduction/voltage profile improvement
is considered. For the purpose of illustration, the 33-node
system of [13] is used here. The topology of this system is
reproduced here, for reference, in Fig. 2. In order to bring
the simulation results close to the constant-power load model,
for the sake of comparison with traditional methods, and
without loss of generality, the parameters defining the load
voltage dependence in [11] are chosen as CZ = C ′Z = −1
and CI = C ′I = 2. These parameters basically define a
voltage-dependent load which is very insensitive to voltage
variations within the normal operating ranges (±10%). Using
these parameters, the voltages obtained by the LPF and the
Newton-Raphson method have a maximum relative difference
of 0.08%. All the simulations are done in MATLAB platform.

A. DG/Capacitor Placement

Placing a DG/capacitor in a radial network has two aspects
that need to be determined: location and size. To optimally
locate a DG/capacitor is usually more sophisticated than its
sizing since, in a general formulation, it involves discrete
variables representing its location. One consideration in de-
termining the best location for new DG/capacitor is its effect
on losses and/or voltage profile. The voltage profile improve-



ment is quantified here by calculating the variance of voltage
magnitudes with respect to 1 p.u., represented by ξ.

The 33-node system shown in Fig. 2 has a total load
of 3.715 + j2.3 MVA with initial losses of 202.7 kW and
ξ = 0.0596. Assume now that a 1MW DG is to be installed
at one of the nodes in the network. The appropriate current
injection at each node is calculated using (17), and its effect
on voltage profile is shown in Fig. 3(a). The best nodes to
place a DG in this case are Nodes 17 and 18 since they lead
to the smallest ξ. The results obtained by the proposed method
and by performing 32 Newton-Raphson power flow solutions
give the same conclusion.

Assume a 1 MVAR capacitor bank is to be installed in a
node. The values of ξ obtained using the proposed method and
by performing 32 Newton-Raphson power flow solutions are
given in Fig. 3(b). The two candidate nodes are again Nodes 17
and 18. It is important to notice here that adding 1 MW active
power or 1 MVAR reactive power source have very similar
effects on the system voltage profile.

The impacts of installing a DG/capacitor in losses is studied
here. The power losses are calculated using (20) and by
conducting 32 Newton-Raphson power flow solutions. The
results for 1 MW DG and 1 MVAR capacitor bank placement
at each node are shown in Figs. 4(a) and 4(b), respectively. The
best candidate node for installing either a DG or a capacitor is
Node 29, which reduces the losses to 127 kW in the case of
a DG and 146 kW in the case of a capacitor bank. It should
be noted that installing extra active/reactive power supply at
Nodes 20, 21, and 22 increases the losses. This increase in
the losses occurs since the generated power at the mentioned
nodes needs to travel through a longer electric path to reach
the other loads.

B. Network Reconfiguration

One common approach for optimal network reconfiguration
is to first close all the tie switches, forming a meshed network.
The switches are then opened one at a time based on the
reduction in losses [14]. We apply this procedure to the 33-
node system. All the switches are first closed and the BODFs
are calculated for this meshed system. The active power losses
upon disconnection of each branch can then be calculated using
(19), while the new flows are calculated using (13).

In the first iteration, the changes in the total power losses
due to the outage of each branch, i.e. P new

L − P initial
L , is

calculated and reported in Table I, second column. Note
that disconnection of Branch 1 is equivalent to disconnecting
all the nodes in the network and, therefore, is not feasible.
Disconnection of Branches 9 and 10 reduces the losses in
the meshed network. Therefore, Branch 9 is selected as the
first candidate to be opened. By removing Branch 9 from the
network, a new set of BODFs are calculated and the process
is repeated to find the next candidate. It is important to note
that in the second iteration, disconnecting Branches 10 and 11
reduces the losses. However, checking this with Fig. 2 reveals
that disconnecting Branches 10 or 11 leads to isolating part
of network. The next candidate is Branch 14. In the second
iteration, Branches 10-13, 21, and 35 reduce the losses while
isolating part of the network. The next accepted candidate is
Branch 32 in this iteration. In the fourth iteration, opening any
of Branches 8, 10-13, 15-17, 21, 29-31, and 34-36 leads to an
isolated network. The next candidate is, therefore, Branch 7.
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Figure 3. Voltage profile variances (ξ) obtained using the LPF and Newton-
Raphson power flow solutions when a 1 MW/MVAR DG/capacitor is added.

In the fifth and final iteration, Branch 37 is the best candidate.
According to the above analysis, the final configuration has

the following open switches: 9, 14, 32, 7, and 37. This is the
global optimal solution for this network, which reduces the
total losses from 202.7 kW down to 139.6 kW, i.e. 31.1%
reduction. If the BODFs are not used, one needs to run
36 × 35 × 34 × 33 × 32 = 45, 239, 040 power flow routines,
if no intelligent search method is used. Recalculation of the
BODFs at each iteration for the new network requires only
one linear power flow (LPF) solution, which in total requires
5 solutions.

IV. CONCLUSION

Sensitivity factors for distribution systems analysis were
derived based on a linear power flow formulation. It was shown
that the sensitivity factors derived here can be advantageous in
many applications such as DG placement, capacitor placement,
network reconfiguration, etc. Another application, which was
not discussed in the paper, is in the optimal near-real-time
adjustment of active/reactive power sources, which requires an
understanding of the sensitivity of the objective (losses/voltage
profile/generation costs/emissions) to the power injection from
that particular source. In distribution systems where many DGs
are present, a meshed network is more preferable than the
radial one to increase reliability and efficiency of the network.
In such networks, branch outages should be studied, similar to
the N − 1 security criteria in transmission systems, to ensure
the static security limits such as nodal voltages and branch
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Figure 4. Total power losses obtained using the LPF and Newton-Raphson
power flow solutions when a 1 MW/MVAR DG/capacitor is installed.

ampacities. The branch outage distribution factors (BODF)
derived here can be directly applied to such problems.
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