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Linear Power Flow Formulation Based on a
Voltage-Dependent Load Model
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Abstract—The power flow (PF) solution is a fundamental
tool in power system analysis. Standard PF formulations are
based on the solution of a system of nonlinear equations which
are computationally expensive due to the iterations needed. On
the other hand, distribution system (DS) automation algorithms
should be fast enough to meet real-time performance. The
conventional load representation, as constant P-Q, becomes less
accurate as we get closer to the actual load’s level. In this
paper, a new load model is proposed which represents the loads’
voltage dependency. A simple curve-fitting technique is used to
derive a voltage-dependent load model which splits the load as
a combination of an impedance and a current source. With
this representation and some numerical approximations on the
imaginary part of the nodal voltages, it is possible to formulate
the load flow problem as a linear power flow (LPF) solution which
does not require iterations. The approximation has been tested
in systems up to three thousand nodes with excellent results.
The LPF formulation is particularly important in the context
of optimization algorithms for automated smart distribution sys-
tems. The extension of the technique to unbalanced distribution
systems will be presented in future work.

Index Terms—Distribution system, linear power flow analysis,
voltage-dependent load model.

I. INTRODUCTION

THE present movement towards distribution systems au-
tomation involves the deployment of an automatic mea-

suring infrastructure (AMI) which will make vast amount of
information available for improved system operation. This
information will make it possible to have a better under-
standing of the load’s voltage dependency. An essential part
of DS automation is to provide computationally efficient
calculations for online real-time automated actions. Power flow
solutions are an essential part of these calculations. There has
been a large effort throughout the years towards enhancing
power flow calculations in terms of computational speed and
convergence characteristics. At the transmission system level,
fast and reliable methods such as Gauss-Seidel [1], Newton-
Raphson [2] and fast decoupled PF [3] have been used for
many years. Distribution systems, however, are different from
transmission systems in a number of aspects, such as the X/R
ratio, the line’s length, the use of underground cables, radial
structures, and the unbalance of the phase currents. Due to
these differences, PF algorithms developed for transmission
systems often fail [4] or lose efficiency when applied to distri-
bution systems. A number of PF solution methods have been
developed to account for the specific nature of distribution
systems, including the backward/forward sweep method [5]
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and the ladder network theory [6] method.
The backward/forward sweep method is an iterative al-

gorithm which is relatively time-demanding, especially for
real-sized distribution systems. An improved version of this
method is presented in [7] for radial DS in which the linear
proportional principle is adopted to find the ratio of the real
and imaginary components of the specified voltages with
respect to the calculated voltage at the substation bus during
the forward sweep. Using this method in a typical test system,
the execution time has been reduced by 35.7% compared to the
conventional backward/forward sweep. The PF problem has
also been formulated as biquadratic equations in [8], which
is still based on iterative computations of backward/forward
sweeps. A direct method for PF solutions is proposed in [9]
in which the loads are treated first as current source injections,
and simple matrix calculations and iterative computations are
used to find the bus voltages. A recursive formulation is
proposed in [10] which includes three nonlinear equations for
each branch, called DistFlow equations, that can be solved
using Newton’s method. By defining new variables in the PF
formulation, the problem is converted in [11] into a convex
optimization problem, or specifically, a conic quadratic prob-
lem; such problems can be solved by interior point methods.
Some other methods for PF analysis in DS are also available
in the literature, e.g. [12]-[15].

In all the mentioned references on PF calculations, the loads
are modeled as constant P-Q. However, as the system gets
closer to the loads voltage levels, the voltage dependency of
the actual loads becomes more important in the representation.
For example, in the framework of Voltage VAR Optimization
(VVO), the load voltage dependency plays an inevitable role
and the performance of the VVO algorithms are highly de-
pendent on the accuracy of load modeling [16]. In addition,
the introduction of distributed generation (DG) in distribution
systems may change the unidirectional characteristics of the
power flow, on which some of the previous methods have been
built. Also, there might exist weakly-meshed DS in addition
to the radial ones, which creates an additional limiting factor
for some of the aforementioned approaches.

The load voltage dependency has an important impact on
the load power consumption. It is shown in the B.C. Hydro
system that decreasing the substation voltage by 1%, the
active and reactive demand decrease by 1.5% and 3.4%,
respectively [17]. The first author has studied different types
of loads, both experimentally [18] and theoretically [19], to
assess their voltage dependency. In the traditional approach,
the voltage-dependent behavior of the load for voltages around
the operating point has been approximated by exponential
or polynomial functions [20]. From a modeling perspective,
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this is a problem of fitting an appropriate curve to a plot
of active power versus voltage and a plot of reactive power
versus voltage, with data collected from measurements along
the time line. This paper proposes a synthesis of the voltage
dependency of the loads using an impedance (Z) in parallel
with a current source (I). In a real-time application, the values
of the impedance and current source are recalculated as the
load demand changes.

Choosing the values of Z and I adequately results in
a voltage-dependent characteristic that matches very closely
(with a mean relative error less than 0.5% over a voltage range
from 0.9-1.1 in per unit in the tests described in this paper)
the actual load’s behavior. Mathematically, this synthesis leads
to a linear power flow (LPF) solution. In the past, current
injection models have also been proposed, for example, in
[21]-[23]. The superior performance of the current injection
method against the backward/forward sweep method is shown
in [24]. The model proposed in the present paper combines the
current source in parallel with an impedance to better match
the load’s voltage dependency and leads to a linear formulation
to solve the PF problem. As the load composition changes
during the day, a new current and a new impedance need
to be calculated by the curve-fitting routine. However, this
calculation only adds an insignificant overload to the overall
system solution. Distributed generation can be included in
the proposed linear PF formulation using a standard constant
P-Q model. In the most common contractual obligations of
DGs [25] in North America, there are no reactive power
requirements. In some specific contracts, a fixed amount of
reactive power or a fixed power factor may be required. As
an example, in Germany’s new Grid Code [26], the system
operator should be able to control a DG using one of the
following schemes:
(a) A fixed power factor (cos(φ) = Constant)
(b) A fixed reactive power value (Q = Constant)
(c) A voltage regulation characteristic (Q = f(V ))

Since the active power of the DG is known, for control
schemes (a) and (b) the proposed method is able to model the
DG as a negative constant P-Q load. For control scheme (c),
if f(V ) can be expressed as a sum of a quadratic function and
a linear function of V , we can still model the DG as a current
source in parallel with an impedance as proposed in the LPF
framework.

The rest of the paper is organized as follows. In Section II,
the proposed load modeling and approximation techniques are
explained. The LPF formulation is described in Section III.
In Section IV, simulation results on a number of distribution
systems of various sizes are presented. The paper concludes
by summarizing the main findings of the study.

II. LOAD MODELING

A. Conventional Load Models

Power system loads present different behavior to grid
voltage variations. For example, active and reactive power
consumption by fluorescent lamps are highly affected by the
voltage magnitude, while personal computers are less sensitive
to voltage variations [18]. A common way of describing the

dependency of active and reactive power consumption on the
voltage magnitude is the exponential model [20], as follows:

P (V )

P0
=

(
V

V0

)α
(1)

Q(V )

Q0
=

(
V

V0

)β
(2)

where P and Q are the load’s active and reactive power
consumption; V is the terminal voltage magnitude and the zero
subscript means the nominal value; α and β are the active and
reactive power exponents, respectively, which can be extracted
from measurements. Some typical values for these exponents
are given in [18], [27] and [28].

In addition to the exponential load model, the polynomial
model (ZIP model) has also been widely used in power system
studies. This model consists of three major parts: a constant-
impedance (Z), a constant-current (I) and a constant-power
(P). Mathematically, this model describes the load variation
with voltage as [20]:
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(
V

V0
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where constants F and F ′ are fractions; the subscripts Z,
I and P stand for constant-impedance, constant-current and
constant-power contributions, respectively. Note that there are
only two independent parameters in (3) and (4) because
FZ + FI + FP = 1 and F ′Z + F ′I + F ′P = 1.

B. Proposed Load Model

The constant P-Q load model, as well as the voltage-
dependent load models of (1)-(4) above introduce nonlinearity
in the solution of the PF equations. The load model proposed
in this paper is an alternative to the voltage-dependent load
models of (1)-(4) that allows for a linear formulation of the
power flow equations (this modeling approach will be referred
to as LPF load modeling from now on). The proposed model
is a “fitted” ZI model, as follows:
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Q(V )

Q0
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(
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)
(6)

in which constants C and C ′ are calculated by a curve-fitting
procedure. Note that there is only one independent parameter
in (5) and (6) because CZ + CI = 1 and C ′Z + C ′I = 1.
From a mathematical synthesis point of view, exponents α
and β in the model given by (1)-(2) can be calculated with
a fitting procedure, while in the model described by (3)-
(4) the polynomial coefficients are to be determined. The
proposed synthesis of (5)-(6) is of the same type as (3)-(4)
but without the zero-order term in the voltage; this eliminates
the constant P-Q term in the synthesis and, as it is shown next,
the nonlinearity in the power flow equations.
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The proposed model approximates the load voltage de-
pendency using an impedance Z, representing the quadratic
voltage dependency, and a current source I , representing the
linear voltage dependency. As shown in the paper, coefficients
CZ , CI , C ′Z , C ′I can be found for a very good fit to the
measured data. The fitting process can be formulated in terms
of a simple convex quadratic optimization problem. The fitting
objective for the active and reactive power is to minimize the
difference between the fitted approximation and the measured
data for a finite number of voltage points within a range of
operating voltages (e.g. ±10%). For example, for the active
power in per unit values (writing in per unit allows for
dropping V0 and P0),

Minimize
Nv∑
i=1

[
CZV

2
i + CIVi − P (Vi)

]2
(7a)

subject to
CZ + CI = 1 (7b)

and similarly for the reactive power Q. In (7), Nv is the num-
ber of points selected within the voltage range;

(
Vi, P (Vi)

)
is the ith pair of measured (voltage, active power); CZ and
CI are the unknown variables to be calculated. Note that
at V = V0, one has P = P0. Hence, (7b) is implicitly
considered in the problem. The constraint in (7b) reduces the
number of variables to one. The solution of this problem is
straightforward and is provided in Appendix.

The data for the synthesis in (7) can be obtained directly
from load measurements or previous synthesis by (1)-(4).
The ZIP model, exponential model and the LPF load model
obtained by fitting a curve to experimental measurements for
a 3-phase induction motor [18] are depicted in Fig.1. Figure 1
also shows the parameters for the fitted curves. As can be seen,
the difference between the LPF and the exponential model
is negligible. Also, the ZIP model provides slightly tighter
approximation compared to the LPF and exponential models.
For other types of loads that show stronger dependency on
voltage, even tighter fits have been achieved using the LPF
method. The parameters for some commonly-used types of
loads are calculated through measurements [18] and are given
in Table I. It should be noted that since the ZIP model has 2
independent variables (since FZ + FI + FP = 1) for fitting
while the proposed LPF load model and the exponential model
have only one, more accurate fittings may be achieved by the
ZIP model. However, the differences between the resulting
curves are minor. Depending on the load type, it sometimes
happens that negative values are obtained for F in (3)-(4), or C
in (5)-(6). These negative values do not affect the mathematical
solutions, although they do not have a physical meaning.

III. PROPOSED POWER FLOW FORMULATION

Conventionally, the power flow equations have been for-
mulated based on a constant P-Q load model. This makes
the equations nonlinear and iterative methods are required
to find the solution. It is possible, however, with the load
model proposed in this paper, to reformulate the PF problem
and make the equations very close to linear for distribution

Table I
PARAMETERS REPRESENTING THE VOLTAGE DEPENDENCY OF SOME

SPECIFIC LOADS OBTAINED THROUGH MEASUREMENTS [18]

Load
Type

Compact
Fluorescent
Lamp

Incandescent
Lamp

Electric
Stove

Personal
Computer

CZ -0.394 0.578 0.967 -0.984

C′
Z -1.857 -5.012 0.960 -1.351
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Figure 1. Comparison of the exponential, ZIP and proposed LPF load models
for a 3-phase induction motor (Motor ratings: 460 V, 3-phase, 1.4 HP, 1725
RPM) [18].

systems. A similar attempt was made in [23] by replacing the
loads with current source injections. In this method (implicit
Z-bus method), however, an iterative procedure is still required
to update the injected currents at every iteration. The updating
mechanism for current injections at a generic node at iteration
k is

Ī(k) =

(
S̄(k)

V̄ (k)

)∗
(8)

where values with a bar on top are complex numbers. The
LPF load model suggested in the present paper introduces
the modification that S̄ is not constant but voltage-dependent.
Considering in (8) that P and Q are voltage-dependent and
separating the real and imaginary parts of S̄ and V̄ , we can
write

Ī(k) =
P (k)(V (k))− jQ(k)(V (k))

V
(k)

re − jV (k)
im

(9)

where Vre and Vim are the real and imaginary parts of the
voltage, respectively. Substituting the values of P and Q from
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(5)-(6) into (9), and temporarily dropping the iteration index
yields:

Ī =
P0CZVre +Q0C

′
ZVim

V 2
0︸ ︷︷ ︸

Impedance

+
P0CIVre +Q0C

′
IVim

V0V︸ ︷︷ ︸
Current

+ j
[ P0CZVim −Q0C

′
ZVre

V 2
0︸ ︷︷ ︸

Impedance

+
P0CIVim −Q0C

′
IVre

V0V︸ ︷︷ ︸
Current

]
(10)

In distribution systems, taking the voltage angle of the
feeding substation as reference (zero value), the imaginary part
of the voltage Vim is smaller than the real part Vre by several
orders of magnitude, as is also assumed in [8]. This feature
allows us to eliminate the imaginary part of the voltage in the
current parts of (10). There are two common nonlinear terms
in the current parts of (10), which are reproduced here for
simplicity:

Vre

V
=

Vre√
V 2

re + V 2
im

(11a)

Vim

V
=

Vim√
V 2

re + V 2
im

(11b)

Applying the assumption Vim ≈ 0 to (11), we can write

Vre

V
≈ 1 (12a)

Vim

V
≈ 0 (12b)

With these approximations, (10) can be simplified to its real
and imaginary parts as

Ire = <{Ī} ≈ Q0C
′
Z

V 2
0

Vim +
P0CZ
V 2
0

Vre +
P0CI
V0

(13a)

Iim = ={Ī} ≈ P0CZ
V 2
0

Vim −
Q0C

′
Z

V 2
0

Vre −
Q0C

′
I

V0
(13b)

As it is shown next, these approximations eliminate the need
for iterations in the PF solutions.

A. Power Flow Formulation in Rectangular Coordinates

Many software packages for system optimization are avail-
able that work with real variables. To use these packages, it is
required to keep the real and imaginary parts of the complex
voltages and currents separate. Writing the current drawn by a
constant-impedance load as Ī = Ȳ V̄ and separating real and
imaginary parts of V̄ and Ȳ yields

Ī = Ȳ V̄ = (G+ jB)(Vre + jVim)

= (GVre −BVim) + j(BVre +GVim) (14)

It can be seen from (14) that the voltage-dependent part of the
drawn current given by (13a)-(13b) can be synthesized by an
equivalent admittance with the following parameters:

G =
P0CZ
V 2
0

(15a)

B = −Q0C
′
Z

V 2
0

(15b)
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Figure 2. Generic part of a DS obtained based on the LPF load synthesis.

while the rest of the terms in (13a)-(13b) can be represented as
a constant-current source. Eventually, the proposed load model
for LPF analysis is a mixture of the constant-impedance and
constant-current parts introduced. The LPF load model can
then be represented by circuit elements as shown in Fig. 2.
The quantities for the constant-current sources Ip and Iq are
given by the last terms in (13a)-(13b), respectively, i.e.:

Ip =
P0CI
V0

(16a)

Iq = −Q0C
′
I

V0
(16b)

Applying Kirchhoff’s Current Law to a generic distribution
system, considering the substation(s) as voltage source(s) and
representing the loads using the LPF load model yields, in
complex numbers form[

ȲAA ȲAB
ȲBA ȲBB

] [
V̄A
V̄B

]
=

[
ĪA
ĪB

]
(17)

in which Ȳ , partitioned into four sub-matrices, is the system
admittance matrix which includes the equivalent admittances
of the loads given by (15) in the diagonal elements; V̄A is the
vector of known voltages and ĪA is the unknown vector of
corresponding nodal current injections at the substation(s). ĪB
is the constant-current part of the load given by (16). V̄B is
the vector of unknown voltages, which can be computed as:

[V̄B] = [ȲBB]−1[ĪB]− [ȲBB]−1[ȲBA][V̄A] (18)

Separating the real and imaginary parts of (17), the proposed
PF equations in rectangular coordinates can be represented by
the following partitioned matrix equation:



[
G1,1:n −B1,1:n

B1,1:n G1,1:n

]
[
G2,1:n −B2,1:n

B2,1:n G2,1:n

]
...[

Gn,1:n −Bn,1:n
Bn,1:n Gn,1:n

]






Vre,1
Vre,2

...
Vre,n


Vim,1
Vim,2

...
Vim,n




=



Ip,1
Iq,1
Ip,2
Iq,2

...
Ip,n
Iq,n


(19)

in which G and B are the real and imaginary parts of Ȳ ,
respectively. The same matrix reduction technique used in (17)
and (18) can be used here to eliminate the known variables.
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By rearranging the rows in (19), a more compact form can be
obtained as [

Ĝ −B̂
B̂ Ĝ

] [
V̂re

V̂im

]
=

[
Îp
Îq

]
(20)

in which the hat sign (̂.) indicates a matrix/vector form of
the corresponding variables. The system of linear equations in
(20) yields the power flow solutions.

In order to include distributed generation (DG) in the
proposed formulation, we assume in the present work that
the active power generation of the DG unit is given and that
the DG has the contractual obligation of being reactive power
neutral (or to generate only a predefined amount of reactive
power). A similar assumption was made in [23]. Systems with
large DG penetration under different contractual obligations
will need additional considerations. With the indicated as-
sumption, DGs can be modeled as a constant negative P-Q
load. Since each nodal load is an aggregation of different
types of loads, even if a constant P-Q load exists at that
node, there are usually other loads which can be modeled as
voltage-dependent and the coefficients in (5) and (6) can still
be derived.

IV. SIMULATION RESULTS

In this section, the proposed method is applied to sample
test systems with 14, 70, and 135 nodes, described in [29],
[30], and [31], respectively. A larger system consisting of 3249
nodes was also tested by combining the 135-node and 70-
node systems, 16 times each. These test systems are indicated
in Table II. For simplicity, the voltage dependency of all the
loads is assumed to be identical. Also, both active and reactive
power are considered to have the same voltage-dependency.

A comparison between the results obtained using the im-
plicit Z-bus method of [23], assuming a voltage-dependent
load model, and the proposed method was carried out. The
performance of the proposed method was evaluated based on
the average error between the voltage magnitudes calculated
by our LPF method and the implicit Z-bus method as:

η =
1

n

n∑
i=1

|V ′i − Vi|
V ′i

(21)

where the primed voltages are obtained from the implicit Z-
bus method and the unprimed voltages are obtained from
the proposed method. The histogram of errors for the 70-
node and the 3249-node test systems are shown in Fig. 3.
For the 70-node system, the maximum relative error is about
0.01% which happens when CZ = 1. For other values of CZ
the maximum error is even less than 0.01%. For the 3249-
node system, the relative error does not exceed 0.15% for
considered values of CZ . Figure 4 shows the variation of η
as a function of CZ for different test systems (C ′Z is assumed
equal to CZ for the test). Note that each value of CZ leads to
corresponding values for CI using (7b). As can be seen in Fig.
4, the errors are very small (less that 0.11%) over the range
of values considered for CZ . In the especial case of CZ = 1,
i.e. constant-impedance (no current source in the model), the
error is zero. It is worthwhile mentioning that, depending on
the value of CZ , the Z-bus method needs at least 4 iterations

Table II
DIMENSIONS OF THE EMPLOYED TEST SYSTEMS

Test Case Nodes Branches Feeders Load(MVA)

14-node 14 13 3 28.70 + i17.30

70-node 70 69 4 4.47 + i3.06

135-node 135 134 8 18.31 + i7.93

3249-node 3249 3248 192 364.50 + i175.86

Table III
CPU TIMES FOR 20 TIMES POWER FLOW CALCULATIONS USING THE

LPF AND THE IMPLICIT Z-BUS METHODS

Test System Method Iterations CPU Time (s)

3249-node
Implicit Z-Bus 4 1.142

LPF 1 0.244

70-node
Implicit Z-Bus 5 0.0511

LPF 1 0.0075

to reach a tolerance of 1e-4 p.u. in the magnitude of all nodal
voltages. Increasing the value of CZ , the number of required
iterations increases. This result is consistent with the results
found in [32]. In terms of iterations, the proposed LPF model
requires only one solution and it is, therefore, at least four
times faster. A comparison between CPU times and number
of iterations is given in Table III.

Figure 5 shows the voltage profile of the distribution feeders
in the 70-node system, as one moves away from the substation
(Node 1). The figure compares the results obtained using the
Z-bus method and the LPF method. Part (a) is for a load model
with CZ = C ′Z = −0.5 and part (b) is for CZ = C ′Z = 0.5.
Both the Z-bus solution and the LPF solution are basically
identical while the LPF method as about six times faster (see
Table III). The value of CZ affects the voltage profile. But
this effect is ignored in the traditional constant P-Q model. The
significance of the effect of CZ on the voltage profile depends
on the system under study. In Fig. 6, a linear function is fitted
to each average voltage curve along the feeders (the actual
curve is, for the 70-node system as an example, as in Fig. 5).
Average voltage curves are plotted in Fig. 6 as a function of
CZ for the various test systems. In general, the system average
voltage increases as the value of CZ increases. It can be seen
that the 70-node system is more sensitive to the value of CZ
compared to the other systems.

A. Parameter Selection of Voltage-Dependent Load Models

In existing distribution systems, the load’s voltage depen-
dency characteristics are usually not directly known. However,
the conventional classification of loads into residential, com-
mercial and industrial, recommended by the IEEE [33], is a
good guide to obtain an estimate of voltage-dependent load
models. An example is the study conducted by Ontario Hydro
to obtain the parameters for a ZIP load model for different
load types [34]. In our paper, we will refer to this approach
as “composite” load model.

It is the objective of the advanced measuring infrastructure
(AMI) deployment in the so-called smart grids to collect exten-
sive measurements of the load demand and the loads’ behavior.
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Figure 3. Histograms of relative errors between nodal voltages obtained by
the LPF method and the implicit Z-bus method for different load types.
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In the future smart distribution systems, it will be possible with
adequate measuring devices to obtain load behavior functions
for specific time spans (for example, every 10 minutes). Even
in the existing systems with no smart devices connected, the
main contributors to the load composition along a feeder are
usually known.

As an example of the effect of the load composition, the 14-
node test system shown in Fig. 7 is studied next. In this system,
a hypothetical load type is assumed for each node. Reference
[34] provides the parameters for the ZIP load model for various
types of loads in real systems. It is simple to compute the
parameters for the LPF load model (i.e. CZ , CI , C ′Z and C ′I )
using the ZIP model parameters through (7). Table IV shows
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Figure 5. Nodal voltages for the 70-node test system obtained by the
proposed LPF method and the implicit Z-bus method.
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Figure 6. System average voltage as a function of CZ for various test
systems.

the parameters for the ZIP and LPF load models for different
load compositions.

It is expected for the test system that because the nodal
voltages are below 1 p.u., the power consumption will be lower
than the nominal value. Figure 8 shows the active and reactive
power consumptions of loads represented by the constant P-Q
model and the composite load model. As expected, using a
composite load model results in a reduced power demand in
all nodes. The voltage profile of the system is shown in Fig. 9.
The composite load model results in an increase in the nodal
voltage magnitudes as compared to the constant P-Q model.

V. DISCUSSION AND FUTURE WORK

The advantages of linearizing the power flow solution are
not limited to the indicated fourfold performance increase in
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Commercial 
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Figure 7. The 14-node test system with hypothetical load composition.

Table IV
PARAMETERS ASSUMED FOR DIFFERENT LOAD COMPOSITIONS [34]

Composition FZ FI FP CZ CI

Active Power
Residential 0.24 0.62 0.13 -0.10 1.1

Commercial 0.16 0.80 0.04 0.12 0.88

Industrial -0.07 0.24 0.83 -0.90 1.90

Reactive Power
Residential 2.44 -1.94 0.50 1.93 -0.93

Commercial 3.26 -3.10 0.84 2.42 -1.42

Industrial 1.00 0 0 1.00 0

power flow analysis of distribution systems. A significant ad-
vantage is also achieved in power system optimization studies.
For example, distribution systems reconfiguration has been a
challenging problem for many years [29]-[31]. The nonlinear
set of PF equations makes the problem of DS reconfiguration
a mixed-integer nonlinear programming problem. This family
of combinatorial optimization is known to be NP-hard and,
generally speaking, there is no solver that can guarantee
reaching a global optima within polynomial time. As a result,
researchers have been focusing on heuristic methods to solve
this problem. However, heuristics are not fully reliable and
there is no guarantee of the globality of the solution.

With a linear set of equations for PF analysis, the DS
reconfiguration problem can be formulated and solved more
efficiently than with conventional nonlinear formulations. The
speed and robustness of convergence of linear optimization
methods can lead to DS automation for more economic and
reliable operation of future smart grids. The authors are cur-
rently developing a mixed-integer linear programming (MILP)
formulation for DS reconfiguration, for which there are well-
developed software capable of solving large-scale problems
efficiently in polynomial time. It is expected that the linear PF
formulation will be able to reduce the computation burdens of
this problem and to allow for online applications. As indicated,
in addition to speed, a major advantage of linear optimization
is that it guarantees a global optima.

The VVO algorithms are also in need of fast and linear
power flow solutions to be used in the optimization problems
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Figure 9. Nodal voltages obtained using the constant P-Q and composite
load models for the 14-node system.

embedded within those routines. These algorithms have to be
solved in near-realtime or even realtime and, therefore, the
proposed LPF has a great potential of being used in those
algorithms. Moreover, the voltage dependency of the loads
significantly affects the accuracy of the VVO algorithms [16],
which the LPF is also capable of representing the loads using
their voltage dependencies.

VI. CONCLUSION

The property of load voltage dependency is utilized in this
study to find a load synthesis that leads to a linear power
flow formulation for electrical distribution systems. The idea
behind the proposed method is a simple curve-fitting algorithm
for the load measurements data. The conventional load-voltage
relationship in the form of exponential or polynomial functions
can be converted into the proposed load synthesis with negli-
gible error over the normal operating range of voltages. Using
this load synthesis and the property of small imaginary parts
in the nodal voltages of distribution systems, the nonlinear
power flow equations are converted into linear equations.
Compared to a traditional constant P-Q load representation,
the advantages of the proposed model can be summarized as
follows:
• A voltage-dependent load model provides more realistic

power flow results than a constant P-Q model by more



8

accurately representing the actual behavior of the loads
in response to voltage variations.

• The proposed voltage-dependent load model leads to a
linear power flow formulation for distribution systems.

• A linear power flow formulation results in an improve-
ment of at least four times in execution speed compared
to the implicit Z-bus algorithm.

• A linear power flow formulation allows the development
of more efficient optimization algorithms with guaranteed
global optima.

• The method is applicable to both radial and meshed
configurations.

The power flow method implemented in this paper assures
balanced conditions. The extension of the power flow solutions
to three-phase unbalanced systems is well-developed in the
literature and will be incorporated in our algorithm in future
work. Also, the range of validity of the proposed model
depends on the range of validity of the load models used.
Therefore, the LPF in its current presentation may not be
suitable for voltage stability studies.

APPENDIX

In order to find the optimum solution of (7), the affine
constraint (7b) is used to drop one dependent variable, say
CI . Assume that the voltage and active power measurements
are in per unit with respect to their nominal values, i.e. V0 and
P0. This allows for dropping the constants V0 and P0 in the
equations. The reduced problem can be written as

Minimize f(CZ) =

Nv∑
i=1

[
CZ
(
V 2
i − Vi

)
−P (Vi)+Vi

]2
(22)

Taking the derivative of f with respect to CZ and putting
it equal to zero (Karush–Kuhn–Tucker conditions for optimal-
ity), one has:

CZ =

Nv∑
i=1

(V 2
i − Vi)(P (Vi)− Vi)

Nv∑
i=1

(V 2
i − Vi)2

(23)

Based on the fact that the objective function is convex
quadratic, this is the global optima. The solution for CI can
be retrieved using (7b).
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