
Mathematical Representation of Radiality Constraint in
Distribution System Reconfiguration Problem

Hamed Ahmadia,∗, José R. Martía

aDepartment of Electrical and Computer Engineering, The University of British Columbia,
2332 Main Mall, Vancouver, BC, Canada V6T 1Z4.

Abstract

Distribution systems are most commonly operated in a radial configuration for

a number of reasons. In order to impose radiality constraint in the optimal net-

work reconfiguration problem, an efficient algorithm is introduced in this paper

based on graph theory. The paper shows that the normally followed methods of

imposing radiality constraint within a mixed-integer programming formulation

of the reconfiguration problem may not be sufficient. The minimum-loss network

reconfiguration problem is formulated using different ways to impose radiality

constraint. It is shown, through simulations, that the formulated problem using

the proposed method for representing radiality constraint can be solved more

efficiently, as opposed to the previously proposed formulations. This results in

up to 30% reduction in CPU time for the test systems used in this study.

Keywords: Distribution system reconfiguration, planar graph, dual graph,

minimum spanning tree, radiality constraint, mixed-integer programming.

1. Introduction

Optimizing the operation of distribution systems (DS) has been an active

topic for years with added emphasis recently with the smart gird initiatives.

In many utilities, simplicity and reliability of operation has usually been given

higher priority than its optimality. In order to keep operation and protection
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as simple as possible, radial configurations are usually preferred. Despite the

simplicity provided by radial topologies, the continuity of power supply may

suffer by having only one point of supply. To impose supply continuity for

critical loads, redundant feeders are often built, while radial structure is still

maintained.

In the course of DS automation, the reconfiguration of the network for a

number of purposes has been vastly studied. Objectives such as service restora-

tion, loss reduction, load balancing, and voltage profile improvement are com-

monly used goals in the network reconfiguration problem. There are control-

lable switches (automated/manual) throughout the network which allows the

operator to change the topology of the system. The number of switches in

real systems is relatively large and optimization routines are required to de-

termine optimal switching actions to satisfy particular objectives. There are

excellent methodologies proposed in the literature to solve the network recon-

figuration problem, with pioneering work by [1]-[3]. Deterministic mathematical

approaches have been proposed for this problem, e.g., Benders Decomposition

[4], and mixed-integer programming [5]-[7]. Heuristic approaches have also been

proposed, such as Hyper-Cube Ant Colony Optimization [8], Bacterial Forag-

ing Optimization Algorithm [9], Particles Swarm Optimization [10], Dynamic

Switches Set Heuristic Algorithm [11], Artificial Immune Systems [12], Adap-

tive Imperialist Competitive Algorithm [13], and Genetic Algorithms [14]. The

radiality constraint is normally imposed implicitly in all of these studies. The

radiality constraint, however, is difficult to represent mathematically, as is also

acknowledged in [15].

The term “radial” refers to a configuration that includes all the nodes but

has no loops. A brief review of the different methods of imposing the radiality

constraint is given in [15]. In the heuristic methods, radiality is usually dealt

with implicitly, e.g., [3]. In direct mathematical models, on the other hand, a

mathematical formulation for the radiality constraint is required. A few studies

provide mathematical models for the radiality constraint, such as [4]-[10], [16]-

[18].
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In this paper, the authors follow the concept that a distribution network can

be modeled as an undirected graph, taking its nodes as vertices and its branches

as edges. In order to establish a radial configuration as a subgraph (which trans-

lates into a spanning tree in a graph), two conditions must be satisfied:

1. All nodes are inside the subgraph

2. The subgraph is connected and has no loops (simple cycles)

The first condition ensures the subgraph spans all the nodes, and the second

condition ensures the subgraph is a tree. These two are necessary conditions,

and together are also sufficient. However, this fact has not been paid enough

attention to in the literature. A brief review of the existing approaches for im-

posing the radiality constraint follows.

In [10], [16], and [17], a simple constraint is used to impose the radiality.

That constraint requires the ultimate configuration to have n − 1 branches,

where n is the number of nodes. However, it is shown later in this paper, and

was also shown in, e.g., [19], that this is not a sufficient condition to guarantee

radiality.

In recent work of [6] and [5], the radiality constraint is imposed by the follow-

ing statement: “every node except the root has exactly one parent”. However,

the formulations provided may not represent a spanning tree. This fact is shown

by a counterexample in this paper. In fact, the constraints provided in [5], for

example, does not guarantee a connected graph.

In [8] and [18], radiality is imposed using the branch-to-node incidence ma-

trix. The elements of this matrix are 0, 1 or -1, and its size is m by n (m

is the number of branches). A necessary and sufficient condition for having a

spanning tree is that the determinant of the incidence matrix must be non-zero.

Although this is a strong condition, conventional optimization routines are not

capable of handling determinant constraints. In other words, the determinant

calculation cannot be stated as a closed-form mathematical formulation.

In this paper, DS is modeled as a planar graph, which allows the enforce-

ment of the radiality constraint in a very simple and effective way as compared
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to a regular graph. A planar graph is a graph that can be drawn on a two-

dimensional plane such that the edges of the graph only meet at the vertices

[20]. In other words, even if there are intersections between edges, rearrange-

ment of the vertices will make it possible to redraw the graph as a planar graph.

Power distribution networks usually possess this property. A useful feature of

a planar graph is its dual graph, which allows for an efficient mathematical

representation of the radiality constraint. Using the primal and dual graphs,

the author of [21] has shown that an efficient formulation is possible for finding

minimum spanning trees (MST).

A mixed-integer quadratically constrained formulation for the network re-

configuration problem is proposed in [7]. It is found by the authors that the

currently available formulations for radiality constraint are not efficient to be

solved by the state-of-the-art solvers, e.g., GUROBI. One of the possible reasons

is that those formulations produce infeasible subproblems in the branch-and-cut

algorithm, the algorithm used for solving mixed-integer programming problems.

The infeasible subproblems slow down the whole process unnecessarily. To clar-

ify this fact, it should be noted that, for example, it takes four iterations to

solve a feasible quadratic programming problem, whereas it takes ten iterations

to prove an infeasible one. Another reason for the proposed formulation to be

more efficient is that it admits tighter quadratic programming relaxations which

enhances the convergence speed of the branch-and-cut routine by adding more

constraints to the problem and reducing the search space. By doing this, reduc-

tions of up to 30% are achieved in CPU time for the systems used in this paper.

The rest of this paper is organized as follows. In Section 2, a brief background

on the graph theory is presented. In Section 3, the inadequacy of the existing

methods for representing the radiality constraint is shown. A mixed-integer

quadratically constrained formulation for the minimum-loss network reconfigu-

ration is described in Section 4. Section 5 presents examples of finding radial

configurations for various test systems. Finally, Section 6 concludes the paper.
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2. Background

2.1. Planar Graph

A graph is called planar if, with any rearrangement of its vertices, it can

be drawn on a plane without having intersecting edges. A planar graph with n

vertices andm edges divides the plane into f faces. Euler’s formula [20] suggests

the following relation for a planar graph:

f = n−m+ 2 (1)

For example, consider the graph shown in Fig. 1. The faces are the regions

on the plane separated by the graph’s edges. The outside infinite face (shown

by "E") is also counted. In Fig. 1, the faces are identified by capital letters.

There are two necessary, but not sufficient, conditions for a graph to be planar

[20]:

n ≥ 3

2
f (2a)

n ≤ 3m− 6 (2b)

Apart from those necessary conditions, there is a theorem in [20] that pro-

vides necessary and sufficient conditions for planarity. Before referring to that

theorem, two particular graphs, known as Kuratowski’s graphs, need to be in-

troduced. The graphs shown in Fig. 2, known as K5 and K3,3, are Kuratowski’s

two graphs. Another preliminary concept is that of homeomorphic graphs. Two

graphs are homeomorphic if one can be obtained from the other by adding new

edges in series to the existing ones or by merging already-existing edges that

are in series. As per [20], a necessary and sufficient condition for a graph to

be planar is that it does not contain either of Kuratowski’s two graphs, or any

graph homeomorphic to either of them.

According to the authors’ experience, all distribution systems encountered

satisfy the conditions for planarity. Overhead lines are mainly built along land

corridors, and because they are geographically distributed in a plane (which is
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the definition of a planar graph), the natural intuition is that a DS has a planar

graph representation. There are also formulated algorithms to check whether

an arbitrary graph is planar, e.g., [22].

2.2. Dual Graph

The dual graph G∗ of a planar graph G is defined as follows [20]:

• For each face of G, there is one corresponding vertex in G∗.

• For each edge joining two neighbouring faces in G, there is a corresponding

edge between the two vertices in G∗.

• For any pendent edge (an edge with only one vertex connected to it) in

G, there is one self-loop at the corresponding vertex in G∗.

From the above definition, it immediately follows that if G has n vertices, m

edges and f faces, then G∗ has f vertices, m edges and n faces [20]. Figure 3

depicts the dual graph of the 9-node graph shown in Fig. 1. As can be seen

in Fig. 3, there may be more than one edge between two vertices in the dual

graph which have to be distinguished.

2.3. The Spanning Tree Constraint

The radiality constraint in a DS is identical to the spanning tree constraint

in graph theory. The minimum spanning tree in a weighted undirected graph is

the subgraph that is a tree and the sum of its weights is the minimum possible.

This problem is well-addressed in the literature [21]. Also, a mixed-integer

linear programming formulation for this problem specifically designed for planar

graphs is proposed in [21]. This method is briefly explained in the following.

An undirected graph is first converted into a directed graph. Define the

following variables and sets in G:

• xij : status of the edge connecting vertex i to vertex j.

• wij : weight of the edge connecting vertex i to vertex j.
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• Ni: set of vertices directly connected to vertex i.

and in G∗:

• y(k,l),e: status of the edge(s) connecting vertex k to vertex l. The index

e is used to distinguish between multiple edges connecting the same two

vertices.

• Mk: set of vertices directly connected to vertex k.

• Sk,l: set of multiple edges between vertices k and l.

The minimum spanning tree problem is formulated as follows [21]:

Minimize
∑
i,j

wijxij (3)

Subject to: ∑
j∈Ni

xij = 1, 1 ≤ i ≤ n− 1 (4a)

∑
l∈Mk

∑
e∈Sk,l

y(k,l),e = 1, 1 ≤ k ≤ f − 1 (4b)

xij + xji + y(k,l),e + y(l,k),e = 1, For all edges in G (4c)

Note that since (4c) has one equation for each edge in G, it represents m con-

straints. Also, if i = n or j = n (k = f or l = f) in G(G∗), xij(y(k,l),e) only

exists in one direction terminating in vertex n(f) in G(G∗), i.e. the last vertex.

The set of constraints in (4) enforce the spanning tree constraint. These

constraints are used later in the network reconfiguration problem to impose

radiality.

2.4. Formulation of Radiality Constraints

The formation of the radiality constraint for the 9-node system shown in

Fig. 3 is discussed here in detail as a reference.

The needed sets are formed as follows:
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N1 = {2, 6} N2 = {1, 3, 5} N3 = {2, 4}

N4 = {3, 5, 8} N5 = {2, 4, 9} N6 = {1, 7, 9}

N7 = {6, 8} N8 = {4, 7, 9} N9 = {5, 6, 8}

MA = {B,C,D,E} MB = {A,D,E}

MC = {A,D,E} MD = {A,B,C,E}

ME = {A,B,C,D}

SA,E = {1, 2} SB,E = {1, 2} SC,E = {1, 2}

In the following, examples are given on how to write the problem constraints.

In the primal graph (4a) is

For i = 1, x1,2 + x1,6 = 1.

For i = 2, x2,1 + x2,3 + x2,5 = 1.

For i = 3, x3,2 + x3,4 = 1.

For i = 4, x4,3 + x4,5 + x4,8 = 1.

For i = 5, x5,2 + x5,4 + x5,9 = 1.

For i = 6, x6,1 + x6,9 + x6,7 = 1.

For i = 7, x7,6 + x7,8 = 1.

For i = 8, x8,4 + x8,7 + x8,9 = 1.

In the dual graph (4b) is

For k = A, yA,B + yA,C + yA,D + yA,E,1 + yA,E,2 = 1

For k = B, yB,A + yB,D + yB,E,1 + yB,E,2 = 1

For k = C, yC,A + yC,D + yC,E,1 + yC,E,2 = 1

For k = D, yD,A + yD,B + yD,C + yD,E = 1

For (4c), each branch has one equation:

For Branch 1-2, x1,2 + x2,1 + yA,E,1 + yE,A,1 = 1

For Branch 2-3, x2,3 + x3,2 + yB,E,1 + yE,B,1 = 1

For Branch 3-4, x3,4 + x4,3 + yB,E,2 + yE,B,2 = 1

For Branch 4-5, x4,5 + x5,4 + yB,D + yD,B = 1

For Branch 1-6, x1,6 + x6,1 + yA,E,2 + yE,A,2 = 1

For Branch 6-7, x6,7 + x7,6 + yC,E,1 + yE,C,1 = 1
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For Branch 7-8, x7,8 + x8,7 + yC,E,2 + yE,C,2 = 1

For Branch 8-9, x8,9 + x9,8 + yC,D + yD,C = 1

For Branch 2-5, x2,5 + x5,2 + yA,B + yB,A = 1

For Branch 6-9, x6,9 + x9,6 + yA,C + yC,A = 1

For Branch 5-9, x5,9 + x9,5 + yA,D + yD,A = 1

For Branch 4-8, x4,8 + x8,4 + yD,E + yE,D = 1

If there is a pendent node in the network, i.e. a node that has only one branch

connected to it, that branch is definitely in the spanning tree since its discon-

nection renders the graph disconnected.

3. Inadequacy of Existing Methods in Representing the Radiality

Constraint

There are several different methods proposed in the literature for represent-

ing the radiality constraint. These methods, however, may not be adequate, as

is shown through examples here. The first method of representing the radiality

constraint, which is the simplest, is to require the number of branches to be

exactly equal to the number of nodes minus one. In other words,∑
ij∈W

uij = n− 1 (5)

where uij is the binary variable standing for branch i-j status (0: “open”, 1:

“close”); W is the set of all branches. This criterion has been used to enforce

the radiality constraint in, e.g., [10], [16], [17]. However, this constraint does

not guarantee the connectivity of the resulting network, as is also acknowledged

in [15], [19]. As a counterexample, look at the topology shown in Fig. 4 for

the network shown in Fig. 1. It is trivial to check that the network in Fig. 4

satisfies (5), but is not connected.

The second approach used in the literature for representing radiality is to

model the network as a directed graph, e.g., [6], [5]. The clear statement of the

constraints is as follows [5]:

βij + βji = uij , (i, j) ∈W (6a)
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uij = uji, (i, j) ∈W (6b)

∑
j∈Ni

βij = 1, i = 2, . . . , n. (6c)

β1j = 0, j ∈ N1 (6d)

βij ∈ {0, 1}, (i, j) ∈W (6e)

Note that (6b) is implicitly imposed by (6a) and is only restated for clarity. It

is trivial to check that the network shown in Fig. 4 satisfies all the constraints

in (6). The values for β constructing this network are given in Table 1. Only

non-zero values of βij are reported in Table 1.

The reason that the mentioned constraints representing radiality still work,

when embedded in a network reconfiguration problem, is discovered by the au-

thors. The disconnected network leads to an infeasible power flow solution. In

other words, the connectivity constraint is imposed by the power flow equa-

tions. This fact is also emphasized in [15] and the network flows are used to

impose the connectivity of the network. However, during the process of solving

a mixed-integer programming problem, infeasible configurations may be gener-

ated, which is due to insufficiency of the constraints representing the radiality.

The infeasible subproblems in a branch-and-cut algorithm lead to a larger num-

ber of iterations which, in turn, increases the CPU time of the whole solution

process. The most severe case is when decomposition algorithms are used to

solve mixed-integer problems, e.g., [4]. When Bender’s Decomposition is used

[4], the master problem, which mainly deals with the integer variables, may gen-

erate infeasible configurations that would not be known to be infeasible until

the subproblem is solved. Moreover, in most of the heuristic methods, many

infeasible configurations are generated first and then discarded by checking the

radiality constraint. The process of determining and discarding the infeasible

solutions slows down the whole solution process, leading to an unnecessarily
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large CPU time.

Another method for representing the radiality constraint is to employ the

branch-to-node incidence matrix, e.g., [8], [18]. The elements of the incidence

matrix are all -1, 0, or 1. It is known that if a graph represents a spanning tree,

then the determinant of the incidence matrix must be -1 or 1 [23]. In other

words, if the determinant is zero, then the obtained subgraph is Not a spanning

tree. One deficiency of this method is that it cannot be explicitly stated in a

mathematical formulation that can be used in conventional optimization mod-

els. Another problem with this method is that it needs calculations with high

computational complexity. Therefore, its direct application in mathematical

models of network reconfiguration problem is impractical.

4. AMixed-Integer Quadratically Constrained Formulation of Minimum-

Loss Network Reconfiguration Problem

The minimum-loss network reconfiguration problem is, by nature, a mixed-

integer nonlinear programming problem with non-convex constraints [24]. Re-

cently, the authors proposed a linear power flow (LPF) formulation based on

a voltage-dependent load model in [25]. The LPF equations are used in [7] to

form a mixed-integer quadratically constrained programming (MIQCP) formu-

lation for the minimum-loss network reconfiguration. This formulation is briefly

described here.

4.1. Objective

The active power losses in a network are calculated as:

Ploss =
∑
m,k
m<k

um,kGm,k

[
(V re

m − V re
k )2 + (V im

m − V im
k )2

]
(7)

where Gm,k is the branch conductance; V re
k and V im

k are the real and imaginary

parts of the nodal voltages; um,k ∈ {0, 1} stands for the status of the branch

connecting Nodes m and k. The products of binary and continuous variables

are dealt with as described in Appendix.
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4.2. Load Modeling

A voltage-dependent load model is considered in this study. The following

equations describe the voltage dependence of loads at each node:

P (V )

P0
= CZ

(
V

V0

)2

+ CI

(
V

V0

)
(8)

Q(V )

Q0
= C ′Z

(
V

V0

)2

+ C ′I

(
V

V0

)
(9)

in which P0 and Q0 are the active and reactive power demand at the nominal

voltage V0; the parameters CZ , C ′Z , CI , and C ′I are to be determined using

a curve fitting process [25]. Using the above load model, each load can be

synthesized as a current injection in parallel with an admittance. The values

for the current injections and admittances are determined as follows:

GL =
P0CZ

V 2
0

, BL = −Q0C
′
Z

V 2
0

(10a)

Ip =
P0CI

V0
, Iq = −Q0C

′
I

V0
(10b)

In these equations, GL and BL are the equivalent conductance and susceptance

of load, respectively; Ip and Iq are the real and imaginary parts of the equivalent

current injection from each load, respectively.

4.3. Power Flow Equations

The linear power flow (LPF) equations are derived in [25] based on the

assumption of small voltage angles in distribution systems. The LPF equations

at Node m are stated as:
n∑

k=1

(
Ḡm,kV

re
k − B̄m,kV

im
k

)
= Ip,m (11)

n∑
k=1

(
B̄m,kV

re
k + Ḡm,kV

im
k

)
= Iq,m (12)

where n is the number of nodes; Ḡm,k and B̄m,k are, respectively, the conduc-

tance and susceptance parts of the modified network admittance matrix (load
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admittances are added to the diagonal elements of the admittance matrix); Ip,m

and Iq,m are, respectively, the equivalent real and imaginary current injections

of the load connected to Node m. The product of binary and continuous vari-

ables are dealt with as described in Appendix.

It should be noted that the LPF formulation is intended for a balanced dis-

tribution system analysis. This is justifiable in case of network reconfiguration

since the tie/sectionalizing switches are three-phase operated units. In other

words, there is no single-phase operation in the course of network reconfigura-

tion.

4.4. Branch Ampacity

The current flowing through each branch is calculated as:

I2m,k = um,k[G2
m,k +B2

m,k][(V re
m − V re

k )2 + (V im
m − V im

k )2] (13)

The production of binary and continuous variables are dealt with as described

in Appendix. The current ampacity limits are then imposed by the following

constraint:

I2m,k ≤ |Imax
m,k |2 (14)

where Imax is the maximum current allowed in a branch.

4.5. Nodal Voltage Limits

The nodal voltage magnitudes are bounded by the following constraints:

V min
m ≤

√
|V re

m |
2

+ |V im
m |

2 ≤ V max
m (15)

In a typical distribution system, voltage angles are negligible, as discussed in

[25]. This assumption allows for eliminating |V im
m |

2 in (15), giving the following

box constraint:

V min
m ≤ V re

m ≤ V max
m (16)
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4.6. Complete Formulation

The minimum-loss network reconfiguration problem has (7) as its objective,

subject to (11)-(14), (16), the additional constraints resulting from replacing the

binary-continuous products using (17a) and (17b), and the radiality constraint.

The radiality constraint is represented by the most recent formulation proposed

in [5] and the proposed formulation in this paper, and the results are compared

in terms of CPU time.

5. Simulation Results

In this section, the problem of network reconfiguration for loss reduction

is solved for several test systems using the proposed method. Common test

systems used in the literature are the 14-node [1], 33-node [2], 70-node [26],

84-node [27], 119-node [28], and 135-node [29]. The system sizes and total loads

are given in Table 2. The mixed-integer programming problem is written in

AIMMS environment [30] and GUROBI is used to solve it.

Simulation results for the test systems obtained using the radiality constraint

in (6) as well as the results obtained using the radiality constraint in (4) are

given in Table 3. The power losses are calculated in the post-process using a

constant-power load model, after the configuration is determined by the voltage-

dependent load model formulation. This is done for the purpose of comparison

with reported values in other literature, e.g., [5]. The optimality of the results is

guaranteed by the solver. A comparison of the optimal losses and configurations

with previous literature is done in [7] and is not reproduced here. It is important

to notice that the amount of saving in CPU time increases as the size of the

problem increases. For instance, 17%, 24%, and 30% reduction in CPU time are

achieved for the 84-node, 119-node, and 135-node systems, respectively. This

is due to tighter relaxations provided by the subproblems generated during the

branch-and-cut algorithm. When a disconnected network is generated by (6),

the corresponding quadratic programming relaxation would be infeasible since

the power flow equations are impossible to satisfy in a disconnected network.
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This fact does not affect the quality of the final solution. However, it causes the

whole solution process to take longer to converge, as can be clearly seen in the

reported CPU times.

The optimal configurations are shown in Table 4. Only the open switches

are reported. There is no difference between the configurations obtained when

(4) is used and the configurations obtained when (6) is used.

6. Conclusion

Distribution systems are modeled as planar graphs in this study. The pur-

pose of this modeling is to facilitate the formulation of the radiality constraint

using a proven mathematical procedure. The problem of DS reconfiguration

for loss reduction is formulated as a mixed-integer quadratically constrained

programming problem, which is then solved using a commercial software. It is

shown that the CPU time required by the branch-and-cut procedure is decreased

when the proposed formulation for radiality constraint is used. Whenever the

connectivity of the network is left to be imposed only by the power flow equa-

tions, infeasible subproblems may be generated which slows down the whole

solution process. The proposed formulation, on the other hand, guarantees a

radial configuration and provides tighter quadratic programming relaxations at

every iteration.

7. Appendix: Product of Binary-Continuous Variables

The production of a binary variable (z) and a bounded continuous variable

(x) can be eliminated by introducing a new continuous variable (w) and the

following four inequality constraints [31]:

x− (1− z)xmax ≤ w ≤ x− (1− z)xmin (17a)

z xmin ≤ w ≤ z xmax (17b)

15



If z = 1, then (17a) enforces w = x and (17b) limits x within its bounds.

If z = 0, then (17b) enforces w = 0 and (17a) is the bounds on x. There-

fore, w is equivalent to z × x. This technique is adopted here to eliminate the

multiplication of binary-continuous variables in (7)-(13).
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Figure 1: The 9-node network. The letters show the faces of the graph.
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(a) K5 (b) K3,3

Figure 2: The Kuratowski’s two graphs.
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Figure 3: Dual graph (dotted lines) of the 9-node network.
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Figure 4: The network obtained by applying the conventional radiality constraints.
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Table 1: Values for βij According to (6) for the Network in Fig. 4

Value Variables

1 β61 β52 β23 β34 β84 β45 β95 β76

0 β21 β96 β89 β87
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Table 2: Dimensions of the Test Systems

Test Case Branches Feeders Load(MVA)

14-node 16 3 28.70 + i17.30

33-node 37 1 3.7 + i2.3

70-node 79 4 4.47 + i3.06

84-node 96 11 28.3 + i20.7

119-node 132 3 22.7 + i17.0

135-node 156 8 18.31 + i7.93
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Table 3: Comparison of Network Losses Obtained by The

Proposed Algorithm and Other References

Test Case
Losses(kW)

T1(s)* T2(s)*
Initial Optimum

14-node 514 468.3 0.14 0.16

33-node 202.7 139.6 3.2 3.0

70-node 227.5 201.4 5.7 4.2

84-node 532 469.9 9.4 7.8

119-node 1298.1 869.7 39.4 30.1

135-node 320.4 280.2 188.2 132.5

* T1: CPU time when (6) is used. T2: CPU time

when (4) is used.
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Table 4: Radial Configurations Obtained by The Proposed Algorithm

Test Case Off-line Branches

14-node 6-8,7-9,5-14

33-node 7-8,9-10,14-15,32-33,25-29

70-node
14-15,9-38,15-67,49-50,39-59,38-43,9-15,21-27,28-29,

62-65,40-44

84-node
7-6,13-12,18-14,26-16,32-28,34-33,39-38,43-11,72-71,

83-82,55-5,41-42,63-62

119-node
23-24,26-27,35-36,41-42,44-45,51-65,53-54,61-62,74-

75,77-78,86-113,95-100,101-102,89-110,114-115

135-node

6-7,10-32,57-61,78-125,20-130,137-138,59-145,139-

154,141-154,155-156,154-204,211-212,138-217,125-

219,141-220,222-223,144-145,43-46,63-64,130-131,

214-215
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