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Abstract—Conventionally, power flow equations are used for
distribution systems (DS) analysis to find the nodal voltages.
For the particular form of the DS reconfiguration problem,
however, a direct formulation in terms of branch flows allows
a substantial increase in solution efficiency from an optimization
point of view. In this paper, a set of linear current flow (LCF)
equations are derived for DS. This formulation is then used within
the network reconfiguration problem for loss minimization. A
mixed-integer quadratically constrained programming (MIQCP)
formulation, together with a mixed-integer linear programming
(MILP) formulation are proposed in this paper and assessed
through simulations. In these comparisons, the MILP formulation
shows computational advantages over the MIQCP version and
the preceding literature. The proposed methods are evaluated on
several test systems.

Index Terms—Distribution systems, linear current flow equa-
tions, voltage-dependent load model, network reconfiguration.

I. INTRODUCTION

HE tendency towards optimizing the utilization of the
Tcurrent infrastructure in power systems has significantly
increased in the past decade. The costs and technical diffi-
culties associated with building new lines has been a major
motivation [1]. Also, reducing power losses has become a
desirable objective for many distribution companies (DISCOs).
The problem of distribution system (DS) reconfiguration for
purposes such as loss minimization, load balancing, and
voltage profile improvement has been widely studied since
the early 80’s. Direct mathematical formulations, as well as
heuristic methods have been proposed to solve these problems.
In direct mathematical methods, the optimization problem is
usually formulated as a mixed-integer programming (MIP)
problem and it is then solved using commercial MIP solvers.
The advantages of these methods can be summarized as
follows:

o Flexibility for adding new constraints or optimizing for
different objectives

o Provide the optimality gap at each iteration

o Guarantee robustness and reliability

While the MIP-based methods have the mentioned advan-
tages, they have a significant drawback: high computational
burden. This drawback impedes the application of the MIP-
based methods for large-scale systems. Here is where the
heuristic methods step forward. The advantage of heuristic al-
gorithms over direct mathematical approaches lies within their
reduced computational complexity. However, this advantage
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comes at the cost of finding suboptimal solutions. Also, there
is usually no information on the optimality level (optimality
gap) of the solution and the robustness of the algorithm may
not be guaranteed.

A. Motivation

The above discussion reveals the important fact that, when
attempting to find a good optimization algorithm, one needs
to take advantage of the low computational burden of heuristic
methods and the flexibility and reliability of the direct math-
ematical methods, simultaneously. In the MIP formulation
of the problem, the basic challenge is the nonlinear power
flow equations. Using the conventional power flow formula-
tions, the resulting MIP problem would belong to the family
of mixed-integer nonlinear programming (MINLP) problems.
The large-scale MINLP problems are extremely difficult to
solve. Therefore, researchers have tried to come up with
different versions of power flow formulations with simplifying
assumptions to avoid the non-convex nonlinear equations. In
addition, the power flow equations attempt to find the nodal
voltages instead of directly calculating the power flows. The
present paper provides a linear current flow (LCF) formulation
that suits the structure of the reconfiguration problem. This
formulation is based on the voltage-dependent load model
introduced by the authors in [2].

The recent advances in MIP algorithms have led to solvers
capable of handling mixed-integer quadratically constrained
programming (MIQCP) problems. However, these solvers are
slow when compared to the mixed-integer linear programming
(MILP) ones if many conic quadratic constraints are present.
This motivated the authors to use efficient relaxation tech-
niques in order to provide a MILP formulation of the problem.
The computational advantages of the MILP formulation is
shown against the MIQCP version.

B. Related Work

1) Direct Mathematical Methods: Three convex models for
the distribution system reconfiguration problem are derived in
[3]. In this work, the DistFlow equations, originally proposed
in [4], are used. The first method is a quadratic programming
formulation obtained by fixing all the nodal voltages to 1.0 in
per-unit. The second formulation is a quadratically-constrained
programming algorithm that takes into account the branch
ampacities. The third formulation is a second-order cone
programming algorithm that is obtained by approximating the
nonlinear DistFlow equations. The last approximation method
is the most accurate but requires prohibitive computation.

A mixed-integer conic programming reformulation of the



reconfiguration problem is proposed in [5]. The nonlinear
power flow equations are rewritten in terms of rotated conic
quadratic constraints. A MILP formulation is also derived by
replacing the conic quadratic constraints with their linear ap-
proximations. Numerical solutions indicate that both methods
struggle to provide an optimal solution in a reasonable time.
Suboptimal solutions (assuming 5% optimality gap), however,
are obtained within a relatively short time.

Reference [6] applies a decomposition algorithm to the
MINLP formulation of the reconfiguration problem. The pro-
posed algorithm is based on Benders decomposition, which
solves the problem in two stages, namely the master and
subproblem. The application of Benders decomposition to non-
convex MINLP problems is just a heuristic since the orig-
inal method, known as generalized Benders decomposition,
assumes convex nonlinear functions [7] when fixing the binary
variables, while the power flow equations are not convex. Also,
the master problem is formulated as a MINLP problem, which
is still a barrier since it is difficult to solve this problem for
large-scale systems.

A MINLP formulation of the reconfiguration problem is
proposed in [8] and is solved using a branch-and-bound
algorithm. Although this formulation has only bilinear terms
as its nonlinear constraints, it is still a non-convex quadratic
model, which is difficult to solve.

A MILP formulation for the reconfiguration problem is
proposed in [9]. The power flow equations are written in
the form of current injections and the nonlinear terms are
linearized using a least-square method at each node. The first
drawback of this method is that for every single node, a linear
approximation should be calculated. Another drawback is that
this formulation takes the nodal voltages as the independent
variables, which creates a complicated structure for the re-
sulting MILP problem. These drawbacks are addressed in the
present paper.

The present authors proposed a framework for distribution
systems optimization using a linear power flow (LPF) for-
mulation in [10]. The application of the LPF in the network
reconfiguration problem has shown computational advantages
over the related literature. However, due to the nature of the
LPF formulation, multiplications of the binary and continuous
variables are present in the model. This difficulty has been
dealt with by introducing auxiliary variables and constraints,
which reduced the potential speed up that could be achieved by
the linear formulation. A reformulation of the LPF in terms of
current flows, i.e. the linear current flow (LCF), is preferable
in the case of network reconfiguration.

2) Heuristic Methods: Numerous heuristic methods have
been proposed in the literature for the problem of DS re-
configuration. These methods can be categorized into two
main groups. In the first group, knowledge of power systems
engineering is applied to building a heuristic method, without
using artificial intelligence elements. Good examples of this
type of heuristics are given in [4], [11]-[17]. Normally, these
methods do not guarantee the optimality of the results and,
in most cases, there is no knowledge of the optimality gap.
Nonetheless, these methods usually provide good-quality so-
lutions within a short time and show a robust performance.

In the second group of heuristic methods, the problem is
solved using a variety of artificial intelligence techniques.
Some good examples of these methods are Genetic Algorithms
[18], Plant Growth Algorithms [19], Tabu Search Algorithms
[20], Harmony Search Algorithms [21], Evolutionary Algo-
rithms [22], Artificial Neural Networks [23], Simulated An-
nealing Algorithms [24], Ant Colony Algorithms [25], and
Particle Swarm Optimization [26]. This type of heuristic meth-
ods generally admit fast solutions. However, the optimality of
the results is not usually guaranteed. Also, the robustness of
these reconfiguration algorithms relies highly on the robustness
of the applied artificial intelligence method.

C. Contributions

The mixed-integer programming formulations proposed in
the preceding literature share a common structure, which is
to take the nodal voltages as independent variables. On the
other hand, due to the nature of the reconfiguration problem,
the main driving variables are the current flows. In fact, the
binary variables representing the status of a switch are in direct
control of the the current flow of each branch. Using current
flows instead of nodal voltages as the main variables gives
such a structure to the resulting combinatorial optimization
problem, which can be solved more efficiently by the standard
branch-and-cut routines.

The main contributions of this work are twofolds. The LCF
equations are derived here, which can be used to calculate the
current flows directly, independent of voltage values. The LCF
equations are then used to formulate the network reconfigu-
ration problem. Using the LCF-based MILP formulation, it
is possible to reduce the problem dimension by dropping the
voltage variables and constraints in the minimum-loss network
reconfiguration problem, which is a valid assumption for some
systems [12]. Effective relaxation techniques are then applied
to replace the quadratic constraints with their polyhedral
relaxations. It is shown, through extensive simulations, that
the proposed formulation results in reduced computation times,
while providing a proven optimal solution.

II. DISTRIBUTION SYSTEM MODELING
A. Load Modeling

The constant P-Q load model, as well as the common
voltage-dependent load models (e.g., ZIP and exponential
models) introduce nonlinearity in the solution of the power
flow equations. The load model proposed in [2] is an al-
ternative to the conventional voltage-dependent load models
that allows for a linear formulation of the PF equations. The
proposed load model is described as:

P(V) V2 174
2 =Cy (Vo> +Cr (VO> (1)
QV) (VN [V
Q) ~ (v) T (v) @

in which Py and @ are the active and reactive power demand
at Vp; constants C' and C’ are calculated by a curve-fitting
procedure applied to the load measured data. Note that there



is only one independent parameter in (1) and (2) because C'z +
Cr=1and C, +C;=112].

B. The Linear Current Flow Equations

The linear power flow (LPF) equations derived in [2] are
based on the Norton equivalent of the load synthesis, as shown
in Fig. 1. The equivalent current source and impedance, in
complex numbers, are calculated as:
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Using nodal analysis and the mentioned load model, a linear
formulation was obtained in [2] that calculates the nodal
voltages. To find the branch currents, extra computations are
required.

In a different approach, let us consider the branch currents,
instead of the nodal voltages, as the independent variables.
Also, replace the Norton equivalent of the loads shown in
Fig. 1 by their Thévenin equivalent, as shown in Fig. 2. Next,
assume an arbitrary current direction for each branch, as is
done in Fig. 2. Considering the loop formed through the
ground by the load connected to Node ¢, Line k, and the load
connected to Node j, we can apply Kirchhoff’s Voltage Law
to obtain:
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In (4), N"/N?" are the sets of branches entering/leaving Node
1 excluding Branch k. Rearranging this equation, one can write
for Branch £,
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Figure 1. A generic part of distribution system: Norton equivalent.
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Figure 2. A generic part of distribution system: Thévenin equivalent.

The linear current flow (LCF) equations can now be written
as:
ZI1I=F (6)

in which Z € C™*™ is the network impedance matrix (m
is the total number of branches); I € C™*! is the vector of
branch currents; £ € C™*! is the vector of equivalent voltage
source for each branch. The k" element of F is the difference
between the Thévenin voltage sources located at both ends of
Branch k, as in (5). The non-zero elements on the k™ row of
7, assuming Branch k is connected between Nodes ¢ and j,
can be defined as:
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The definition in (7) is readily implemented in a computerized
program to form Z for a generic distribution system. A
noticeable feature of the Z matrix is that, unlike the admittance
matrix, it is not necessarily symmetrical.

Many optimization software packages only allow for op-
erations on real numbers. Therefore, it is worthwhile to
derive the current flow equations (6) in rectangular (Cartesian)
coordinates. Assume Z = R + jX, I = I + jI'™, and
E = E™ 4+ E'™ It is trivial to verify the following variant

of (6)
R 7X Ire Ere
which has 2m variables and 2m equations. Using the LCF

equations of (6) or (8), the branch currents can be directly
calculated, independently from the nodal voltages.

ITI. A LCF-BASED MIQCP FORMULATION OF THE
NETWORK RECONFIGURATION PROBLEM

The LCF equations derived in Section II are used here to
formulate the optimal network reconfiguration problem. From
a mathematical point of view, the LCF formulation suits the
reconfiguration problem better than the LPF variant. This is
mainly to avoid the bilinear terms resulting from multiplication



of binary and continuous variables in [10]. With LCEF, the
disconnection of each line is simply modeled by forcing
its current to zero, while with LPF the corresponding line
impedance has to be taken out from the impedance matrix.

The objective of the problem can be load balancing among
feeders, loss reduction, voltage profile improvement, etc. Here,
the loss minimization problem is studied. The total losses in
the network can be calculated as:

m o,
Bloss = Z Rk(|Ill;e‘2 + |Illcm ) €))
k=1

The constraints to the minimum-loss network reconfiguration
are established next.

A. The Current Flow Equations

The LCF equations in (8) can be written in expanded form
as

m
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Note that (10a) and (10b) add 2 x m linear equality constraints
to the optimization problem. This system of equations has a
single unique solution. In other words, the matrix representing
the system of linear equations has full rank. When a few of the
branches are disconnected to retrieve a radial structure, the cor-
responding equations to those branches have to be eliminated.
Otherwise, the system of linear equations is overdetermined
and, thus, infeasible. The process of branches disconnection
is carried out as follows.

Let us denote the status of branch k by wg. It is then desired
to activate the k™ equation in (10a) and (10b) if £ = 1, and
deactivate it otherwise. This particular type of variables, i.e.
uy, are called indicator variables [27]. An indicator variable,
when is zero, forces some of the problem variables to assume a
fixed value, and, otherwise, forces them to belong to a convex
set. Commercial mixed-integer programming solvers such as
CPLEX are capable of efficiently handling this feature of the
problem [28].

An indicator variable can also be represented as a disjunc-
tion [29]. Disjunctive programming deals with logic-based
constraints, i.e. constraints that are only active when an
indicator variable is true. One reformulation of a disjunction,
e.g., (10), takes the following form:

m
(ug —1)M < (Rl — X Ii™) = Eff < (1—ux)M (11a)
k=1

(up—1)M <Y (X If+ R i") — B < (1—ug) M (11b)
k=1

in which M is a large-enough positive scalar. This reformu-
lation is also known as Big-M formulation. It is tricky to
find a good value for M since a large value leads to loose
bounds and a small value may lead to an infeasible problem.
Commercial solvers such as CPLEX are capable of finding

good values for M during the solution process to tighten the
bounds. This useful feature of the solver is utilized here to
enforce the disjunctions.

B. Branch Ampacities

The magnitude of the current flowing through a branch is
bounded by the thermal limit of the conductors. This constraint
can be represented as:

im 2
P+ 150 < ) (12)
where 1™ is the maximum current magnitude allowed in a
branch. Note that u; = 0 forces both I;7 and I;" to be zero.

C. Nodal Voltage Limits

The voltage at each node has to be within certain operational
limits, e.g., =5%. In order to derive the voltages from the
branch currents, the Thévenin equivalent of loads shown in
Fig. 2 is used. The voltage at Node ¢ can be calculated as

VIV = —Ei+ Zii(—Ie+ > L= > L) (13)
lEND leNg™

This equation is in the form of complex numbers. The real and
imaginary parts of nodal voltages, which are linear combina-
tions of currents, can be used to impose the voltage magnitude
limits:

VI VP i < v (14)
Recall the assumption of small voltage angles in DS [2]. This

. o imi2

assumption allows for eliminating the term |V™|” in (14),
giving the following box constraint [10]:

Vvimin S V;re S V;max (15)

where V;® can be retrieved from (13) as a function of currents.

D. Radiality Constraint

When radiality of the final configuration is imposed, the
formulation proposed in [5] is used. In this formulation, the
network is converted into a directional graph by assigning two
binary variables to each branch. The aim is to force each node
to have exactly one parent.

IV. A MILP FORMULATION OF THE NETWORK
RECONFIGURATION PROBLEM

There are two quadratic terms in the MIQCP formulation,
i.e. (9) and (12). In this section, effective relaxation techniques
are applied to the quadratic terms to find a MILP formulation
for the problem.



A. Active Power Losses

The total active power losses are calculated in (9). Each
element of the summation, i.e. Rk(|l{f|2 + |I,i€m|2), is a convex
quadratic term. A piecewise linearization (PWL) technique is
proposed in [30] to linearize these type of functions. This
technique has been proven efficient in many applications, e.g.,
in linearizing the generators cost functions [31]. The details
of this linearization process are provided in Appendix A.
When applying the PWL technique, each term in the objective
function takes the form of a maximum over a set of affine
functions. Define A\, as

— Jre ‘Iim . 1
Ak 112?;{% Kk + B+ i} (16)
which is the PWL approximation of |I,‘f|2 + |Iim ®. The

objective function then takes the following form:
: _Jre _7im .

min ]; Ry, lrglagxs{alfk + 8" + v} 17)

which is a min-max optimization problem. This can be easily

reformulated as a linear programming problem, as discussed
in [32]. The following problem is equivalent to (17):

min Z Rk (18a)
k=1
st A >l + B+, Vi=1,...,5s. (18b)

The number of linear pieces, i.e. s, can be chosen in a way to
satisfy a particular accuracy in the approximation.

B. Branch Ampacities

The current ampacity constraint in (12), for a fixed uy = 1,
is a quadratic constraint of the form (23). The branch status uy
is enforced later by adding (19) to the problem. In Appendix B,
a relaxation method for these constraints is proposed. Using
a hexagon relaxation (i.e. n = 6), the linear constraints of
(28) replace (12). In addition, the following two constraints
are required enforce the branch status:

—up [P < I? < up Ip™ (19a)
—up I < M < gy X (19b)
Theses equations would be inactive if ug = 1, since they

represent a larger feasible region that contains the hexagon
defined by (28).

V. SIMULATION RESULTS

In this section, the proposed MIQCP and MILP formulations
are applied to several distribution test systems. The commonly
used test systems in the literature are the 16-node [11], 33-
node [4], 70-node [33], 119-node [20], 136-node [34], 415-
node [5], and 880-node [35]. In the simulations, the load
models described in Section II-A are used and the parameters
for all the loads, without loss of generality, are assumed
to be identical as Cz; = C; = 0.5. The value of losses
obtained using the MIQCP and MILP methods are shown
in Table I. In this table, the losses are calculated using

constant P-Q load models and conventional power flow, with
the configuration obtained using the proposed methods, to be
able to compare the results with the previous literature. The
linearization technique used to represent the objective function
in the MILP formulation, i.e. (18), introduces a negligible error
in the value of losses. It should be noted that the direction at
which the losses increase/decrease plays a more important role
in the optimization problem than its exact value. Due to this
reason, both the MILP and MIQCP methods find the same
optimal configurations. The optimal configurations are given
in Table II. The open switches (tie switches) are reported in
this table.

Optimal reconfiguration for loss minimization invariably
improves the voltage profile of the network. This fact has
been observed by the authors in all the test systems, and
the observations in [12] also support this fact. Therefore, it
may be possible to drop the voltage limit constraints, i.e.
(15), in most of the cases when minimizing the losses. The
proposed formulation provides such a structure that allows
for completely dropping the voltage variables and constraints,
without affecting the results. The problem dimension would
then reduce substantially. This fact further supports the suit-
ability of the proposed LCF-based formulation for network
reconfiguration.

The computation times for the test systems are given in
Table III. All the simulations were done in the AIMMS
platform [36] on an Intel Core i7-2600, 3.4 GHz CPU, §
GB RAM, and 64-bit operating system machine. The MIP
solver, i.e. CPLEX, allows the user to provide a known
initial solution for the problem. In this paper, a fast heuristic
method developed by the authors is employed to initialize the
solution process. This heuristic method finds the minimum
spanning tree for the graph representing the network with
all the switches closed and the current magnitudes taken as
its weights. This method is more efficient than the general-
purpose heuristics used by CPLEX to find an initial solution.

It is important to notice the difference between the com-
putation time for MILP and MIQCP formulations. Although
the size of the MILP problem is larger than the MIQCP ver-
sion, the computational complexity of the linear programming
problem solved at each iteration is less than the equivalent
conic quadratic programming problem. The main challenge
in the MIQCP problem is to handle the conic constraints.
In other words, if the conic constraints are relaxed, then all
the constraints are linear and only the objective is quadratic.
Linearizing the quadratic objective only makes a small dif-
ference, as compared to relaxing the conic constraints, in the
solution time. When the control variables are only discrete
variables, which is the case in network reconfiguration, using
linearized objective function is well-justifiable, as is also done
in [37] (the first stage of the 2-Stage Procedure) for the unit
commitment problem.

VI. CONCLUSION

The linear current flow (LCF) equations derived in this
paper are advantageous in problems that directly deal with
current flows. One problem that needs direct calculation of the



Table T
SIMULATION RESULTS FOR SYSTEM RECONFIGURATION: OPTIMAL
SOLUTIONS
#Nodes 14 33 70 119 136 415 880
Poss (kW) by
MIQCP/MILP 468.3 139.5 201.4 869.7 280.2 23524 9914
Reference [11] [3] [33] [20] [5] [5] [3]
Ploss(KW) 468.3 139.5 205.1 869.7 280.2 2359.9 999.1
Table 11

OPTIMAL CONFIGURATIONS FOR TEST SYSTEMS

#Nodes| Open Lines

14 78,16

33 7,9,14,32,37

70 14,30,45,51,66,70,75,76,77,78,79

119 23,26,34,39,42,51,58,71,74,95,97,109,122,129,130

7,35,51,90,96,106,118,126,135,137,138,141,142,144,
145,146,147,148,150,151,155

7,33,39,42,63,72,82,84,86,88,89,90,92,103,129,135,138,159,
168,178,180,182,184,185,186,188,199,225,231,234,255,264,
415 274,276,278,280,281,282,284,295,321,327,330,351,360,370,
372,374,376,377,378,380,391,417,423,426,447,456,466,468,
470,472,473,474,476,481,482,483,484,485,486,487,488

84,131,140,159,190,244,282,288,306,312,409,411,452,494,
596,616,629,631,637,698,815,844,885,888,889,890,900

136

880

currents is the network reconfiguration problem. The structure
of the problem can be built in such a way that forcing a
current to zero can be readily achieved with the LCF equations.
As compared to similar studies, the proposed formulation
exhibits better performance in terms of computation times.
The relaxation techniques applied show a strong impact on the
computations. Other areas of application for the proposed LCF
equations are network reconfiguration for reliability enhance-
ment and system restoration. For meshed distribution systems,
performing N — 1 contingency analysis for branch outages is
directly possible using the LCF formulation.

APPENDIX A
PIECEWISE LINEARIZATION OF A QUADRATIC FUNCTION

Consider the following standard quadratic function:

fla,y) =2+ (20)

where z and y are bounded by box constraints z; < x <
x, and y; <y < y,. The max-affine piecewise linearization
(PWL) of f(z,y) can be expressed as:

fla,y) = ax {aia + Biy + v} 2D
which has no restrictions on the subspaces over which the
affine pieces are defined. The best f(x,y), with a fixed s,
can then be obtained by solving the following least-squares
problem:

w

>

k=1

min
@;,BiyYi

Fanm) — Fu)|

(22)

where w is the number of point-wise function evaluations.
The superiority of this PWL technique over other available

Table III
COMPUTATION TIMES (S)

Test System (# Nodes)

33 70 119 136 415 880™

MIQCP 352 485 1009 1785 1800+ 1800+
MILP  0.15 091 2.8 5.6 116 398
[10] 32 5.7 394 1884 953 1134

[3] 128 11310 N/A 235" NA 3192"

[5] N/A  N/A  N/A 1800+ 1800+ 1800+
[38] 19 N/A 4007 4473 14256  N/A

Suboptlmal solutions obtained by intense relaxations [3].
** Relative optimality gap is considered 1% for this case.

methods is that it decides on the subspaces over which the
affine pieces are defined [31]. An efficient method is proposed
in [30] to find the solution of (22). In addition, there are com-
mercial solvers capable of handling these types of problems
involving the “max” operator, which are usually categorized as
non-smooth problems. Good examples are CONOPT, MINOS,
LGO and IPOPT.

The standard quadratic function in (20) is shown in Fig. 3(a),
as an example, for z,y € [—4,4]. The PWL approximation of
this function using 24 pieces (s = 24) is shown in Fig. 3(b).

APPENDIX B
LINEARIZATION OF A CONVEX QUADRATIC CONSTRAINT

The quadratic constraints for branch ampacities are in the
following form:

22 +y? <r? (23)

which is the area inside a circle, centered at the origin, with
radius r. In order to linearize this constraint, a regular convex
polygon approximation of the circle is used here. A regular
convex polygon is a polygon where each side has the same
length, and all interior angles are equal and less than 180
degrees. Figure 4 shows an inner hexagon approximation of
a circle with radius r,. Define the size of this polygon with
the radius r, and note that with a known r, and the number
of sides, a polygon can be uniquely defined. Take the original
circle to be approximated with r = rj,. If one takes r, =
Tin, the whole hexagon falls inside the circle, which leads to
conservative results since some of the possible solutions are
omitted. Taking 7, = 7oy, the whole circle (ry,) falls inside
the hexagon. In this case, some non-solutions are taken as
solutions. Assume that the outer circle (o) represents the
absolute maximum ampacity, while the inner circle (rj,) is
the maximum ampacity considering a safety margin, e.g., 5%.
This allows for a small portion of the solution to exceed the
conservative margin without jeopardizing the feeder ampacity.
A compromised approximation would be a polygon that falls
somewhere in between the two circles of rq, and ry,. This
polygon is shown in Fig. 4 with r,. The optimal polygon in
this case would be the one that makes the two areas in Fig. 4,
i.e. A1 and As, equal. The area A; shows the omitted solutions
and the area A, shows the solutions exceed the safety margin.
Mathematically, for a generic polygon with n sides, these areas
are calculated as follows:

Ay =71 [cos —RV1-— RQ} R=— cos( ) (24)

in



(b) PWL approximation

Figure 3. A standard quadratic function of two variables and its PWL
approximation.

Ay = A + 17"926 sin(2—7r) — rﬁlz (25)
2 n n

In order to find the radius of the optimal polygon, A; should

be equal to As. With this assumption, it follows immediately

from (25) that

27
v = Tint | —%— 26
r Tin sin ( 2771. ) (26)
The error generated by this approximation for different sizes
of polygons is calculated by
A
— @7)

™

’[’I:

This error is shown in Fig. 5 versus the size of polygon.
Using a higher-order polygon leads to lower errors in the
approximation. It should be noted, however, that increasing
the order of approximation translates into a greater number of
constraints in the optimization problem. Therefore, one should

Size of polygon (n)

Figure 5. Error of polygon approximation of a circle.

compromise between the approximation error and size of the
optimization problem. Based on the authors’ experience, using
hexagon approximation (i.e. n = 6) makes a good balance
between the approximation error and the size of the problem.
When an hexagon is used in the approximation, the following
constraints replace the quadratic constraint in (23):

V3@ +1)<y< —V3a-—r1) (282)
—\/—gr <y< \/—gr (28b)

2 2
V3(z —7) <y <V3(z+7) (28¢)

where the radius 7 can be optimally chosen using (26).
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