Two-Port Networks(I&N Chap 16.1-6)

- Introduction
- Impedance/Admittance Parameters
- Hybrid Parameters
- Transmission Parameters
- Interconnecting Two-Port Networks

Single-Port Circuit

A "port" refers to a pair of terminals through which a single current flows and across which there is a single voltage.

Externally, either voltage or current could be independently specified while the other quantity would be computed. The Thevenin equivalent permits a simple model of the linear network, regardless of the number of components in the network.

Two-Port

A two-port network requires two terminal pairs (total 4 terminals). Amongst the two voltages and two currents shown, generally two can be independently specified (externally). How many distinct pairs of independent quantities are possible?

By convention, regard Port 1 as the input and Port 2 as the input (and use the polarity labels shown). We consider circuits with no internal independent sources.

Admittance Parameters

\n
$$
\begin{array}{c}\n\frac{I_1}{\sqrt{1}} & \frac{I_2}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_2}{\sqrt{10}} \\
\frac{I_1}{\sqrt{10}} & \frac{I_2}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_2}{\sqrt{10}} \\
\frac{I_1}{\sqrt{10}} & \frac{I_2}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} \\
\frac{I_1}{\sqrt{10}} & \frac{I_2}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} \\
\frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} \\
\frac{I_1}{\sqrt{10}} & \frac{I_1}{\sqrt{10}} \\
\frac{I_1}{\sqrt{10}} & \
$$

Example Find the two-port admittance and impedance parameters. $I_{1} = \frac{1}{2} I_0 V_1 + \frac{1}{2} I_2 V_2$ $\frac{4}{1}$ $\frac{1}{2}$ $y_{0} = \frac{1}{y} \left(\frac{1}{y_{0}} - 5C \right)$ $y_{2} = \frac{I_{2}}{y_{0}} \left(\frac{1}{y_{0}} + \frac{1}{R} + \frac{1}{S}\right)$ $\int \frac{1}{\sqrt{2}} \sqrt{1-e^{-5C}}$; $\int z_1 = \frac{1}{\sqrt{1}} \sqrt{20} = -5C$
 $\left[\sqrt{3}e^{-\frac{1}{\sqrt{2}}} \sqrt{12}e^{-5C} - 5C\right]$
 $\left[\sqrt{3}e^{-\frac{1}{\sqrt{2}}} \sqrt{22}\right] = \left[\frac{5C}{-5C} - \frac{5C}{\frac{1}{\sqrt{2}}} + 5C\right]$ $V_{12} z_{11} I_1 + z_{12} I_2 \rightarrow z_{11} = \frac{R}{I_1} \sum_{z=0}^{I_2} R + \frac{1}{sC}$ $i Z_{12} = \frac{V_0}{I_2} I_1 = 0$
 $V_{22} z_{21} I_1 + z_{22} I_2 \rightarrow z_{22} = \frac{V_2}{I_2} I_1 = 0$
 $V_{22} z_{21} I_1 + z_{22} I_2 \rightarrow z_{22} = \frac{V_2}{I_2} I_1 = 0$
 $V_{23} = \frac{V_2}{I_1} I_1 + z_{22}$

Based on slides by J. Yan

Slide 4.7

Transistor Hybrid Parameters

The "small signal" analysis (DC analysis of quiescent point is separate) of BJTs often utilises hybrid parameters.

n Slide 4.11

I&N Examples 16.5 & 16.6

For the circuit shown, use the interconnected parallel and series networks below to find, respectively, the circuit admittance and impedance parameters.

Slide 4.14

I&N Example 16.9

 $I₁$ Analyse the effect of load R_L on the gain and gain error using a non-ideal op-amp model (use *A*=20000, $R₂$ $R_i = 1 \text{ M}\Omega$, $R_o = 500 \Omega$, $R_i = 1 \text{ k}\Omega$ and $R_2 = 49 \text{ k}\Omega$). \mathbf{V}_2 $R_1 \geq$ $\cos \theta$ $\sim \sqrt{a}$ $\sim \sqrt{b}$ V_{2z} - $I_{2}R_{L}$ $\frac{A_{acdvar} - A_{ideal}}{A_{ideal}}$ $\frac{(I_{2}h_{21}I_{1}+h_{22}V_{2})}{(I_{2}-h_{21}I_{1}+h_{22}V_{2})}/\pi h_{11}$
 $h_{21}V_{2}h_{12}V_{2}-h_{11}h_{22}V_{2}$ Gain error = $=$ sh V_2 55 0.0 $-\frac{h_{21}}{\Delta h + h_{11}} = \frac{49.9}{1 + 1.25} = A_{\text{actual}}$ Voltage gain, $(\mathbf{V}_2/\mathbf{V}_1)$ -2.0 50 Jain error $(\%)$ -4.0 -6.0 45 -8.0 \equiv Gain — Gain error -10.0 40 -12.0 10 100 1000 10000 100000 $\mathbf{1}$ Load resistance, R_L (k Ω)

I&N Example 16.10

Equivalent Circuits from [z]

A reciprocal network with known impedance parameters can be represented by the "T-network" of impedances shown.

 $V_{h}=(2h-2)I_{1}+2E(1+h-1)I_{2}$
= $2h+2h+2h+2=$

$$
V_{2} = 212I_{1} + 222I_{2}
$$

Summary

- • A two-port network has an input port and an output port, each with each port involving a single current and a single voltage.
- \bullet If the two-port network is linear and does not contain any independent sources, it may be possible to characterize up to 6 different sets of matrix relationships. We discussed four: admittance [y], impedance [z], hybrid [h], and transmission [T]. If the parameters exist, they can be calculated or measured individually by short-circuiting or opencircuiting the appropriate port.
- •A two-port network is reciprocal if $y_{12}=y_{21}$, $z_{12}=z_{21}$, $h_{12}=h_{21}$. If the linear network only contains passive elements, it is reciprocal.
- • When two-port networks are connected (a) in series, their impedance parameters add; (b) in parallel, their admittance parameters add; and (c) in cascade, their transmission parameters multiply.