SCHEDULING TASKS WITH AND/OR PRECEDENCE
CONSTRAINTS"

D. W. GILLIESt AND J. W.-S. LIU?

Abstract. In traditional precedence-constrained scheduling a task is ready to execute when all
its predecessors are complete. We call such a task an AND task. In this paper we allow certain
tasks to be ready when just one of their predecessors is complete. These tasks are known as OR
tasks. We analyze the complexity of two types of real-time AND/OR task scheduling problems. In
the first type of problem, all the predecessors of every OR task must eventually be completed, but
in the second type of problem, some OR predecessors may be left unscheduled. We show that most
problems involving tasks with individual deadlines are NP-complete, and then present two priority-
driven heuristic algorithms to minimize completion time on a multiprocessor. These algorithms
provide the same level of worst-case performance as some previous priority-driven algorithms for
scheduling AND-only task systems.

Key words. non-preemptive scheduling, list scheduling, minimal length schedules, algorithm
analysis, multiprocessor systems, NP-complete problems.

AMS subject classifications. 68M20, 68Q25, 90B35, 90C90.

1. Introduction. In the traditional model of real-time workloads, dependencies
between tasks are represented by partial orders known as precedence constraints.
Each task may have several predecessors and may not begin execution until all its
predecessors are completed. We call such tasks AND tasks, and the partial order over
them is known as AND-only precedence constraints. This traditional model fails to
describe many real-time applications encountered in practice. In these applications a
task may begin execution when some but not all of its predecessors are completed.
We call such a task an OR task. The resulting task system, containing both AND
and OR tasks, is said to have AND/OR precedence constraints.

In this paper we are concerned with how to schedule tasks with AND/OR prece-
dence constraints to meet deadlines. We investigate two variants of this problem,
called the unskipped and the skipped variants.

In some applications all the predecessors of an OR, task must eventually be com-
pleted, that is, they cannot be skipped. We call the model for this type of application
the AND/OR /unskipped model. For example; in robotic assembly [1], one out of
four bolts may secure an engine head well enough to allow further work on other
parts of the engine head. However, the remaining three bolts must eventually be
installed. The unskipped variant also models tasks that share resources. A task may
need a resource from one of several predecessors in order to execute and hence 1s
ready to execute when any one predecessor is complete. Such a task can be mod-
eled as an OR task. Again, the other predecessors must eventually be completed.
The AND/OR /unskipped problem also arises in hard real-time scheduling when the
precedence constraints are too strict for tasks to meet their deadlines. By relaxing
the precedence constraints of some tasks, and restructuring the application code to
accommodate the relaxed constraints, it may be possible for the tasks to meet their
deadlines.

* This research was supported by the Office of Naval Research (Contracts No. NVY N00014-89-
J-1181 and NVY N00014—92—J—1146)

t Department of Electrical Engineering, University of British Columbia.

{ Department of Computer Science, University of Illinois.

1

2 D. W. GILLIES AND J. W.-S. LIU

In other applications some predecessors of an OR task may be skipped entirely.
We call this the AND/OR/skipped model. One example can be found in the prob-
lem of instruction scheduling on superscalar, MIMD, or VLIW processors. On such
processors, several different instruction sequences may be used to compute the same
arithmetic expression. These different sequences arise from algebraic laws such as as-
sociativity and distributivity. Only one sequence needs to be executed, and the other
sequences may be skipped. Another application that can be characterized by this
model is manufacturing planning [5] because certain manufacturing steps obey asso-
ciative and distributive algebraic laws. The AND/OR/skipped problem also arises in
hard real-time scheduling. When there is insufficient time for a task system to meet
its deadlines, we may convert appropriate tasks to imprecise computations [3], which
may be modeled as OR tasks whose predecessors may be skipped.

We are concerned with ways to schedule AND/OR precedence-constrained tasks
to meet deadlines or to minimize completion time. Most of these problems are gener-
alizations of traditional deterministic scheduling problems that are NP-hard. In this
paper we analyze the complexity of the problems that are not known to be NP-hard.
For two problems that are known to be NP-hard, we give heuristic algorithms to min-
imize completion time. The algorithms have small running time and good worst-case
performance.

Our work is related to some previous work on deterministic scheduling to meet
deadlines [6] [8] and to minimize completion time [9] [10] [13] [14]. We were inspired by
an AND/OR model that was proposed as a means of modeling distributed systems
for real-time control [18]. Two recent systems incorporated AND/OR precedence
constraints of some sort in their implementation [16] [19].

The remainder of this paper is organized as follows. Section 2 describes our
assumptions about the AND/OR scheduling problem and introduces the terminology
used in later sections. Section 3 investigates the unskipped problem with multiple
deadlines and analyzes an algorithm to minimize completion time. In Section 4, we
investigate the skipped problem and give a second algorithm to minimize completion
time. Section 5 draws conclusions and discusses future work. The appendix contains
proofs of the theorems stated in Sections 3 and 4.

2. The AND/OR Model. All the scheduling problems considered here are
variants of the following problem. There are m identical processors and a set of tasks
T = {T1,Ts,...,T,}. Each task T; must execute on one processor for p; units of time
and is said to have processing time p;. There i1s a partial order < defined over T.
If T; < Tj, then T; is a predecessor of T;, and T is a successor of T;. The task T;
is a direct predecessor of T; if there is no T} such that T; < T}, < T;. The task 7}
is an AND task if its execution may begin only after all its direct predecessors have
completed. The task T; is an OR task if its execution may begin after only one of
its direct predecessors has completed. The partial order < is an in-forest if whenever
Tp < 13 and T}, < Tj, we have either 7; < T or T; < Tj; the partial order < is an
in-tree if 1t has a unique element with no successors. A task followed by a series of
direct successors 1;, < Tj, < ---1s called a task chain.

The partial order is also represented by a weighted and transitively reduced di-
rected graph G = (T, A, P) called the task graph. In this graph there is a vertex T;
for every task in the set T. The set A is known as the set of arcs. If T; is a direct
predecessor of T; in the partial order then (7;,7;) € A. The set P = {p1,---,pn}
denotes the set of processing times. A task graph together with a set of deadlines
D = {di, --,d,} is a 2-tuple (G, D) that characterizes a scheduling problem; it is

AND/OR SCHEDULING 3

Tl T4

T2 T5 [[T 1,

T3 T3 T5 Tl T4 T2 time
(a) Task system (b) AND/OR/Unskipped schedule

Fi1c. 1. Sample problem and solution.

called a task system. When several graphs Gi, Gg, - are present, the functions
T(Gi), A(Gy), and P(Gi) will be used to extract the sets T, A, and P from the
graph Gj.

Let S(G,T;) = {TG;|(T:,T;) € A(G),T; € T(G)} denote the set of direct suc-
cessors of T, and let P(G,T;) = {T;|(T;,T;) € A(G),T; € T(G)} denote the set of
direct predecessors of T;. Let L(G,T}) be the length of the longest directed path
in G ending at T;. More precisely, L(G,T;) = p; if T; has no predecessors in G,
and L(G,T;) = p; + maxx{L(G,T})|(T%,T;) € A(G)} if T; has predecessors. Let
L*G) = max{L(G,T;)|T; € T(G)} be the length of the longest directed path in a
graph G. Let F(G,T;) = ZTKT’ in qPj denote the total processing time of all the
predecessors of T; in G. Let E*¥(G) = > p; — L*(G) denote the “residual” process-
ing time of an AND-only graph, i.e. the total processing time minus the processing
time of the tasks on the longest chain. Later it will be shown that AND-only graphs
with minimal L*(G) and E*(G) can be used to produce near-optimal priority-driven
schedules.

All the tasks with no successors in a task graph are classified as essential; this
means that they must appear in a valid schedule. If an AND task is essential, then all
its direct predecessors are essential. If an OR task 7} is essential, then the scheduling
algorithm must choose one direct predecessor T; to be essential and the precedence
constraint 7; < T; must be obeyed in scheduling the task system. If a task is not
classified as essential, then 1t 1s inessential. We distinguish between two problems
referred to as skipped and unskipped problems, respectively. In a skipped scheduling
problem, inessential tasks may be left unexecuted. However, in an unskipped problem,
inessential tasks must be executed.

Figure 1(a) depicts an AND/OR task system. In the figure AND tasks are de-
picted by circles and OR, tasks are depicted by circles within boxes. Tasks are generally
labeled by their name, or by their (name, length), so (Ts, e) would indicate that task
Ts requires e units of processing time. Where necessary, deadlines will be written
separately, next to the associated tasks. If the deadlines are omitted from a figure,
then the reader should assume that all the deadlines are identical. Every task in this
example has a processing time of one and all the tasks have the same deadline, hence,
the lengths and deadlines are omitted from this figure. Figure 1(b) depicts a schedule
in which T3 is an essential task, and 7% is an inessential task. Figure 1(b) shows a
schedule of the unskipped task graph from Figure 1(a). If Figure 1(a) were a skipped
task graph, then a skipped schedule could be obtained by deleting 7% from the end of
the schedule in Figure 1(b).

The scheduling algorithms in this paper are simple heuristics that never inten-
tionally leave processors idle. These algorithms are known as priority-driven or list-
scheduling algorithms. Whenever a processor is available, a list-scheduling algorithm
schedules the ready task with the highest priority according to a priority list. Because

4 D. W. GILLIES AND J. W.-S. LIU

Ti2, aTy
aT; T135
aTs T
O T4 2,3,4
OTs

Tys, O Te

(a) Fzact 3-cover problem (b) AND/OR task system

Fi1Gc. 2. Ezact 3-cover transformation.

they try to make the best local choice at each scheduling decision point, list-scheduling
algorithms are also called greedy algorithms. A schedule produced by a list-scheduling
algorithm is known as a list schedule and the time at which all the tasks in T are
complete is the length of the schedule.

We assume that every task in T has ready time equal to zero, thus, an OR
task may begin execution as soon as an essential predecessor is completed. In some
situations each task 7; has a deadline d; ; T; must be completed at or before time d;.
A schedule is called feasible if every task completes by its deadline. A task system
that has a feasible schedule is called feasible. Given a task system our objective is to
find a feasible schedule or determine that no feasible schedule exists.

In other situations all the tasks share a common deadline. The problem of finding
a feasible schedule in these situations is equivalent to the problem of minimizing the
overall completion time, i.e. the time at which the last task completes.

3. Unskipped problems. In this section we discuss the complexity of the
AND/OR /unskipped scheduling problem. After showing that most natural problems
with deadlines are NP-complete on a single processor, we present a priority-driven
heuristic to minimize completion time on m processors. We then explain why no
priority-driven heuristic can provide a better worst-case performance bound than the
one presented here.

3.1. Scheduling to Meet Deadlines on a Single Processor. There are well-
known polynomial-time algorithms [6] [8] for scheduling tasks with AND-only prece-
dence constraints, identical processing times, and arbitrary deadlines on one or two
processors. It is natural to ask whether the corresponding AND/OR, scheduling prob-
lems may be solved in polynomial time. Unfortunately, this extended problem is
NP-complete, even when all the deadlines are the same. This fact is expressed in the
following theorem.

THEOREM 3.1. The problem of AND/OR skipped or unskipped scheduling of a
task system in which all the OR tasks must meet a common deadline 1s NP-complete.

Proof. Tt suffices to prove that the problem is NP-complete on a single processor.
The proof is based on a reduction from exact 3-cover (X3C). Given a hypergraph H
= (V, E) of 3n vertices and a set of hyper-edges, each of which is incident to three
vertices, the problem is to find a set of exactly n edges that covers all the vertices
with no overlap. This problem is NP-complete [7].

The exact 3-cover problem can be transformed into an AND/OR scheduling prob-
lem as follows. Create a task system (G, D) composed entirely of unit processing-time

AND/OR SCHEDULING 5

tasks. There is an OR task 7; in the task system for each hypergraph vertex v; in
H. In the task system all 3n OR tasks have deadline 4n. Create an AND task 7; ;
for each hyper-edge that connects v;, v;, and v;. The successors of task 7; ; ; are the
OR tasks T3, T;, and T}. Figure 2 is an example of this transformation. Now we ask
if there exists a schedule in which every OR task meets its deadline. Clearly, if the
given hypergraph H has an exact 3-cover, n AND tasks corresponding to the cover
may execute in the time interval [0, n], thereby allowing all 3n OR tasks to complete
by time 4n. If no such cover exists, then at least n+1 edges must be used to cover the
hypergraph. Hence at least n 4+ 1+ 3n time units must elapse before all the OR tasks
are complete regardless of whether this a skipped or an unskipped problem. Thus,
if a scheduler produces a feasible schedule, then there is an exact 3-cover, and if the
scheduler fails, then no such cover exists. d

The proof of Theorem 3.1 indicates that this scheduling problem is at least as hard
as the n-dimensional cover problem, a generalized version of n-dimensional matching.
About thirty years ago, T. C. Hu gave a polynomial-time algorithm to schedule an
AND-only task system with in-tree precedence constraints on m processors [14]. Thus,
there is some hope that if we restrict the AND/OR/unskipped task system to have
in-tree precedence constraints, there may exist a polynomial-time algorithm. Un-
fortunately, the following theorem shows that this AND/OR scheduling problem is
NP-complete.

THEOREM 3.2. The problem of AND/OR funskipped scheduling to meet deadlines,
where tasks have identical processing times, arbitrary deadlines, and in-tree precedence
constraints, is NP-complete.

Proof. The proof is contained in the appendix. d

COROLLARY 3.3. The problem remains NP-complete for task systems in which
only the OR tasks have deadlines.

Proof. The proof is contained in the appendix. d

The proofs of Theorems 3.2 and Corollary 3.1 in the appendix make use of long
chains of AND tasks with differing deadlines. We now consider a class of task systems
where only two tasks in a chain may have deadlines. In a simple in-forest, (1) each in-
tree consists of an OR task with a deadline, no successors, and two direct predecessors,
and (2) each direct predecessor of an OR task has a deadline and is the root of an
in-tree of AND tasks with no deadlines (i.e. the deadlines are infinite). A simple in-
forest restricts the allowable precedence constraints and allowable tasks with deadlines
in a task system. We have found no simpler non-trivial combination of precedence
constraints and deadlines. Surprisingly, even this simplified AND/OR, scheduling
problem is NP-complete

THEOREM 3.4. The problem of AND/OR funskipped scheduling to meet deadlines,
where the task system is a simple in-forest with identical processing times, is NP-
complete.

Proof. The proof may be found in [11]. O

Theorems 3.1-3.3 allow us to arrive at the following conclusion. Every AND/OR
task graph with & OR tasks, each of which has [direct predecessors, corresponds to
a set of [* different AND-only task graphs. A feasible schedule of such a task system
corresponds to an implicit selection of one of these ¥ AND-only task graphs. There-
fore, when there are O(logn) OR tasks in the AND/OR task system, it is possible to
enumerate in polynomial time the set of all possible AND-only task graphs and apply
an optimal AND-only scheduling algorithm such as the one described in [8]. On the
other hand, Theorems 3.1-3.3 show that many natural scheduling problems with O(n)

6 D. W. GILLIES AND J. W.-S. LIU

TaBLE 1
Complexity of AND/OR /unskipped problems.

(a) Scheduling to meet deadlines with identical processing times on 1 processor.

Deadline Location General Graph In-Tree Simple In-Forest

2 Deadlines O(n) Deadlines
On All Tasks NP-C (Theorem 3.1) | NP-C (Theorem 3.2) | NP-C (Theorem 3.3)
On OR Tasks Only | NP-C (Theorem 3.1) | NP-C (Corollary 3.1) | Trivial

(b) Scheduling to minimize completion time on m processors.

Task Processing Time | General Graph In-Tree
Identical NP-C [15] for AND-only | NP-C (Theorem 3.4)
Arbitrary Minimum-Path Heuristic | Minimum-Path Heuristic

Input: Task graph G = (T, A,P)
Step 1: For each OR task T; with no OR predecessors:
(a) Let Ty be a direct predecessor of T; that minimizes the longest path ending at T}.
In other words, Ty € P(G,T;) and for all T; € P(G,T;) with j # k, L(G,T;) >
L(G,Ty).
(b) Convert T; into an AND task whose only direct predecessor is T}, .
Step 2: The resulting task system has only AND tasks. Schedule this task system using a
priority-driven algorithm and an arbitrary priority list.

Fi1c. 3. The minimum path heuristic for general graphs.

OR tasks are NP-complete. It follows that the complexity of the AND/OR /unskipped
problem is determined almost exclusively by the number of OR tasks in the task sys-
tem and the complexity of the corresponding AND-only scheduling problem. These
results are summarized in Table 1(a).

It appears difficult to design a priority-driven scheduling heuristic with good
worst-case performance. For the simple problem studied in Theorem 3.3, we have
produced examples to show that any algorithm that only considers slacks between
deadlines and non-deadline information, one isolated in-tree at a time, may perform
/1 times worse than an optimal algorithm. Some obvious priority-driven scheduling
algorithms such as fewest predecessors first, least slack first, and some generalizations
of the algorithms in [4] neglect to compare the deadlines among different in-trees. In
the worst case these algorithms may meet only /n deadlines when it is possible to
meet n out of n+ 1 deadlines. For more information the reader is referred to [11] [12].

3.2. Scheduling to Minimize Completion Time. We now consider the prob-
lem of scheduling AND/OR/unskipped tasks with arbitrary processing times on m
processors to meet a common deadline. This problem is equivalent to that of schedul-
ing to minimize the overall completion time. Ullman has shown this problem to
be NP-complete [15] for AND-only task systems where all the tasks have identical
processing times. However, Hu’s algorithm solves this problem in polynomial time
for in-tree precedence constraints. Unfortunately, the problem becomes NP-complete
when OR tasks are allowed.

THEOREM 3.5. The problem of scheduling an AND/OR /unskipped task system
to minimize completion titme on m processors, where tasks have tdentical processing
times and in-tree precedence constraints, is NP-complete.

Proof. The proof is contained in the appendix. d

In Figure 3, we present a heuristic that minimizes the completion time of an

AND/OR SCHEDULING 7

AND/OR /unskipped task system with arbitrary processing times. The basic idea is
to choose an AND-only graph that minimizes the longest path in G. The heuristic
can be implemented to run in time O(n + |A|) by reversing the direction of the arcs
in G and employing depth-first search. Let G4 = (To, Ao, Po) and W, denote the
implicit AND-only graph and the completion time of the task system according to an
optimal schedule. Let G’ = (T, A’, P’) and W’ denote the implicit AND-only graph
and the completion time of the task system according to a schedule produced by the
Minimum Path Heuristic, respectively. The worst-case performance of the Minimum
Path Heuristic depends on the following lemma.

LEMMaA 3.6. L¥G') < LK G,).

Proof. Let H = {T;|P(G',T;) # P(Go,T;)} denote the set of tasks whose pre-
decessors differ between the optimal graph and the graph produced in Step 1 of the
Minimum Path Heuristic. If 7 = (), then the AND-only task graphs are identical and
the lemma is established. Otherwise, let 7; € H be a task for which there exists no
T; € H with T; < T in G,. By the construction of G/, |P(G', T;)| = |P(Go, T})| = 1.
We change A, replacing the arc (P(G,,T;),T;) by (P(G',T;),T;) and obtain no in-
crease in the longest path (by steps 1(a) and 1(b) of the heuristic). This argument
is used inductively to transform G, into G’ with no increase in the maximum path
length. This establishes the lemma. O

The following fact is proved in the well-known paper [13].

LEMMA 3.7. In any priority-driven schedule, there is a chain of tasks that exe-
cutes during all the idle periods (when one or more processors are not in use), and
this chain is not longer than the completion time of an optimal schedule.

If W, denotes the total length of all the idle periods in a schedule produced by
the Minimum Path Heuristic, then W, < L*(G') < L*(G,) < W, by Lemmas 3.1
and 3.2.

THEOREM 3.8. The worst-case performance of the Minimum Path Heuristic is
given by W' /W, <2 —1/m. Moreover, this bound is light.

Proof. Let W, denote the total length of all the busy periods in a priority-
driven schedule. Let W, denote the total length of all the idle periods in a priority-
driven schedule. During the idle periods at least 1 and no more than m — 1 tasks
execute, and during the busy periods exactly m tasks execute. It should be clear
that W/ = W, + Ws. Hence, the worst-case completion time of this heuristic may be
formulated as a linear program:

Maximize W, +W; = w'
subject to W, < L¥G') < L¥(G,) < W,
mWy + 1Wp < mW,

Solving the program yields W, = W,, Wy = (1 — 1/m)W,, i.e. W/W, < 2—1/m.
a

Examples of AND-only task systems that achieve this bound may be found in [2]
and [10]. Tt is known [10] that no AND-only priority-driven heuristic can avoid 2—1/m
worst-case performance (because priority-driven heuristics never intentionally idle the
processor, and sometimes intentional idling is needed). Our priority-driven heuristic
will schedule AND-only task systems as a special case. Hence, it is not possible to
get better worst-case performance from an AND/OR scheduling algorithm without
a better AND-only scheduling algorithm. In fact, it has been a long-standing open
problem to find a better AND-only scheduling algorithm [15].

8 D. W. GILLIES AND J. W.-S. LIU

TABLE 2
Complexity of AND/OR/skipped problems

(a) Scheduling to meet deadlines with identical processing times on 1 processor.

Deadlines Location General Graph In-Tree Simple In-Forest

1 Deadline O(n) Deadlines
On All Tasks NP-C (Theorem 3.1) | NP-C (Theorem 4.1) | NP-C (Theorem 4.2)
ON OR Tasks Only | NP-C (Theorem 3.1) | NP-C (Theorem 4.1) | [17] Algorithm

(b) Scheduling to minimize completion time on m processors.

Task Processing Time | General Graph In-Tree
Identical NP-C [15] (> 3/2* OPT) | NP-C (Theorem 4.3)
Arbitrary No Algorithm Path-Balancing Heuristic

4. Skipped Problems. In an AND/OR/skipped scheduling problem, the in-
essential predecessors of an OR task may be skipped entirely. We first show that
when the problems of Section 3 are formulated in the skipped model they remain
NP-complete. Then we present a heuristic algorithm for scheduling to minimize com-
pletion time on m processors. This heuristic algorithm works for in-tree precedence
constraints, but not for arbitrary precedence constraints.

4.1. Scheduling to Meet Deadline. Theorem 3.1 showed that the problem of
AND/OR/skipped scheduling with one deadline and arbitrary precedence constraints
is NP-complete on a single processor, therefore, we immediately consider simplifying
the precedence constraints.

THEOREM 4.1. The problem of AND/OR/skipped scheduling to meetl deadlines,
where tasks have identical processing times and in-tree precedence constraints, 1s NP-
complete.

Proof. The proof is contained in the appendix. d

THEOREM 4.2. The problem of AND/OR/skipped scheduling to meel deadlines,
where the task system is a simple in-forest with identical processing times, is NP-
complete.

Proof. The proof may be found in [11]. O

Now we consider the case where the task system is a simple in-forest and only the
OR tasks have deadlines. For this type of task system, an algorithm to find a feasible
schedule can examine each OR, task and choose as its direct predecessor the AND task
which has the fewest total predecessors. After these choices are made, the AND-only
graph is scheduled using the earliest deadline first rule. This method always produces
a feasible schedule if the task system is feasible. If the task system is infeasible it is
still possible to maximizes the number of OR tasks that simultaneously meet their
deadlines and have essential predecessors. To produce such a schedule, we note that
an OR task together with one predecessor subtree consisting of k; AND tasks may be
thought of as one large task with processing time k; + 1. Then the algorithm of [17],
which minimizes unit penalty on a single processor, may be used to schedule tasks
with processing time (k; 4+ 1), to maximize the number of OR tasks that meet their
deadline.

In summary, we find that the complexity of the skipped problem is always at least
as high as the complexity of the unskipped problem. This fact is summarized in Table

2(a).

AND/OR SCHEDULING 9

Input: Task graph G = (T, A,P)
Step 1: Convert the OR tasks in the in-tree G into AND tasks, to obtain an AND-only graph
G’ that minimizes f(G'), as follows.
For each path C; = {Ty; < Tz, < ... < Ty, } from the root to a leaf in G do begin
(a) [Copy G] Ge — G.
(b) [Freeze OR tasks along path C;] For each OR task Ty; € Cilet Ac = (Ac —
P(Gc,ij)) U {(ij—1 ,ij)} (i.e. make Ty; an AND task in Ge).
(¢) [Truncate all paths longer than C;] Let C; # C; be a longer path in G¢. If no such
C; exists, go to Step (d). Otherwise, let T be the least OR task on C;. If no such
T}, exists then go to Step (f). For each T} € P(Ge, 1)) on a path longer than C;, do
begin remove the arc (1}, T)) from Ge end. If |[P(Ge,Tx)| = 0 no AND-only graph
exists with C; as the longest path, so go to Step (f). Else Repeat Step (c).
(d) [Minimize processing time] For each OR task T} with 2 or more direct predecessors
and no OR predecessors in the graph Ge, pick as a sole predecessor of Ty the task
T, € P(Ge, Ty) such that for all T; € P(Ge, Ty) with i # j, B(Ge,T)) > E(Ge, T)).
(e) If the resulting AND-only graph yields a lesser value of f(Gc) thenlet G’ — Ge.
(f) end.
Step 2: The resulting task system G’ contains only AND tasks. Schedule this task system
using a priority-driven heuristic and an arbitrary priority list.

Fi1Gc. 4. The path-balancing heuristic for in-trees.

4.2. Scheduling to Minimize Completion Time. Table 2(b) gives the com-
plexity of scheduling m processors to minimize completion time. The next theorem
concludes our investigation into the complexity of AND/OR scheduling.

THEOREM 4.3. The problem of scheduling an AND/OR/skipped task system lo
minimize completion ttme on m processors, where tasks have identical processing times
and in-tree precedence constraints, is NP-complete.

Proof. The proof is contained in the appendix. d

Now we present a heuristic algorithm that minimizes the completion time of an
AND/OR/skipped task system with in-tree precedence constraints. Let f(G) =
EX(G)/m+ L*(G) denote a function of an AND-only precedence graph. This func-
tion is an estimate of the worst-case completion time of a priority-driven schedule.
Our algorithm converts an AND/OR in-tree into an AND-only in-tree that minimizes
this function. In a general graph it is difficult to minimize this function quickly. If
m = 1, a polynomial-time algorithm to minimize f(G) could be used to solve any
exact 3-cover problem (refer to Theorem 3.1), implying P = NP. Because of this the
Path Balancing Heuristic described below is restricted to in-tree task graphs. The
algorithm appears in Figure 4.

The complexity of the algorithm can be determined as follows. The O(n) possible
paths from the root to the leaves can be enumerated in time O(n) using depth-first
search. Each iteration of the Steps 1(a) - 1(e) can be carried out together in O(n)
time using a recursive depth-first search. Most of the work is done when returning
from procedure calls. Hence, the overall complexity of this heuristic is O(n?).

To derive the worst-case performance of the Path-Balancing Heuristic we begin by
showing that Step 1 of this heuristic minimizes f().

LEMMA 4.4. f(G') < f(Gy).

Proof. Consider the longest path of length L*(G,) in G, This path starts at the
tree root and ends at a leaf vertex. Clearly, the Path Balancing Heuristic considers
this path in some iteration of Step 1. Step 1(c) of the heuristic ensures that no
other paths are longer than this longest path, without increasing F*(G’) more than
is necessary. Step 1(d) of the heuristic chooses the direct predecessors of each OR

10 D. W. GILLIES AND J. W.-S. LIU

task to minimize E*(G’), thus, the heuristic cannot fail to find a graph for which
F(G') is at most E*(G,)/m + L*(Gy). O

THEOREM 4.5. The worst-case performance of the Path Balancing Heuristic is
given by:

3

(1)

S
3

Moreover, this bound is tight.
Proof. Any optimal schedule completes no earlier than the total processing time of
the task system divided by m processors, and also no earlier than L*(G,). Hence

EXGo) + LHGo)

m

W, > max{ ,L*(Go)}.

And by Lemmas 3.2 and 4.1, we have
W' < EXG)/m+ L¥G') < EXGo)/m+ LK G,).

Hence

@) w' EXGo)/m+ LHG,)
Wo ~ max{ E*(G°)$ LX(Go) , L*(Go)} .

We simplify Equation (2) in two cases.
Case 1. The max{} in (2) evaluates to its first argument. Then we have

W' EXGe) + LX(Go)m
o WS ENGo) § L7Ge)

Note that the max{} in (2) evaluates to its first argument if and only if L¥G,) <
EXGo)/(m — 1), so we have an upper bound on L*G,). The derivative of the
bound in (3) is

iB EXGo)(m 1)
(1) ITA(Ga) ~ HEHGo) + L7(Ga)) ~

Because the derivative of (4) is nonnegative for allm > 1 and £ G,) > 0, a maximum
of (3) occurs when L*(G,) is as great as possible, i.e. L¥Go) = EX(Go)/(m — 1),
thus

EXGo)(m— 1)+ EXGo)m 1

E*(C:‘:o)(m — 1)+ EXG,) 2T

<

==

Case 2. The max{} in (2) evaluates to its second argument. This occurs if and
only if X G,) < L¥Go)(m —1). We substitute E*(Go) < L*¥(Go)(m — 1) into the
numerator of (2) to obtain (1). 0

The example in Figure 4 demonstrates that this worst-case bound is tight. Let
T] = {Tl,Tz, T471, ceey T4,m(m—1)/e+1} and let T2 = {Tz, T371, ceey Tgym, T571, ceey T57m}.

AND/OR SCHEDULING 11

(T4'11€)

(T4 m(m-1)e + 1°€)
(T,.9)

(T5,1r m—E)C\
(T319)
G; (Ts,m,mﬂac>/c/§

(T329)C

(T 5)‘

3,m’

Fic. 5. A worst-case AND/OR /skipped in-tree.

The Path Balancing Heuristic chooses between the in-trees Gy = (T1, A1, Pq) and
G2 = (T2,A2,P3), where A; and A, denote the associated arc sets. The lengths
of the longest paths in these in-trees are L¥(Gq) = L*(Ggz) = m + &, respectively.
Furthermore, E*(G1) = E*(Gz2) = m? — m. Thus, the Path Balancing Heuristic
chooses arbitrarily between these two trees, since either one minimizes f(G'). There
is a schedule of length m + 26 for Gz, but the shortest possible schedule for Gy has
length m + m(m — 1)/m + § whenever e divides (i — 1) evenly. As d — 0, the ratio
of these schedule lengths approaches 2 — 1/m.

We now offer additional evidence that the problem of scheduling AND/OR /skipped
task systems is much harder than the problem of scheduling AND-only task systems.
Consider scheduling an AND/OR/skipped task system derived from an exact 3-cover
problem, as described in the proof of Theorem 3.1, on a (3n 4 1)-processor system.
We add to the task system an AND task with 2n + 1 direct predecessors, and ask
if there i1s a schedule that completes in 2 units of time on 3n + 1 processors. The
task system is feasible if n tasks corresponding to edges in an exact 3-cover together
with the additional 2n + 1 AND tasks begin processing at time 0, and all the tasks
corresponding to hypergraph vertices together with the other added AND task begin
their processing at time 1. Hence, there is a schedule with a completion time of 2 if
and only if there is an exact 3-cover. It follows that unless P = NP no polynomial-
time AND/OR/skipped scheduling heuristic can guarantee a worst-case completion
time of less than 3/2 times the length of an optimal schedule. In contrast to this,
if the task system is AND-only, it is known [15] that no polynomial-time heuristic
can guarantee a worst-case completion time of less than of 4/3 times the length of an
optimal schedule.

5. Conclusion. We have analyzed the skipped and unskipped variants of the
AND/OR scheduling problem with deadlines. In the skipped variant, some tasks
may be left unscheduled, but in the unskipped variant all tasks must be scheduled.
When tasks have identical processing times, deadlines, and there 1s a single processor,
the problem was shown to be NP-complete, even for drastically simplified precedence
constraints. We presented an efficient priority-driven heuristic to minimize completion
time on m processors, and showed that its worst-case performance bound cannot be

12 D. W. GILLIES AND J. W.-S. LIU

improved by using a different priority-driven heuristic. We also presented a heuristic
to minimize the completion time of an AND/OR/skipped task system with in-tree
precedence constraints. We derived the worst-case performance for this algorithm and
explained why the algorithm cannot be extended to handle general task graphs with
the same performance unless P = NP.

Throughout this paper we assumed that only one direct predecessor task had to
be completed before an OR task could begin. Under a more general assumption,
OR task 7; can begin once k; predecessor tasks are complete. The algorithms and
theorems in this paper require minor modifications to handle this more general case.
There is also a similar AND/OR model where individual arcs (and not tasks) can
be AND arcs or OR arcs. By using tasks with a processing time of zero, our model
can simulate this other model. There are also situations where both OR/skipped and
OR/unskipped tasks are present in a single in-tree. With slight modifications our
AND/OR/skipped heuristic can be used to handle such mixed task systems. Details
of these transformations and algorithms appear in [12].

During this investigation we reached several conclusions about the complexity of
AND/OR scheduling. Contrary to our intuition, the skipped problems we considered
were generally of higher complexity than the corresponding unskipped problems. This
can be seen by comparing Table 1 and Table 2, and the proofs in the appendix. In
the problem of scheduling to meet deadlines, we have several observations. It was
generally not helpful to restrict the in-degree of OR tasks in the task graph. It was
also not helpful to restrict deadlines to only the OR, tasks, or to restrict the task graph
to be an in-tree or an in-forest or even a simple in-tree, the simplest relation possible
for this type of problem.

A. Appendix. This appendix presents the proofs of Theorems 3.2, 3.4, 4.1, 4.3,
and Corollary 3.1. Proofs of Theorems 3.3 and 4.2 may be found in both [11] and
[12]. Except where noted, all proofs refer to the scheduling of a single processor.

THEOREM 3.2. The problem of AND/OR /unskipped scheduling to meet deadlines,
where tasks have identical processing times, arbitrary deadlines, and in-tree precedence
constraints, is NP-complete.

Proof. Our proof is based on a reduction from 3SAT. Given an instance of a 3SAT
problem, with k& boolean variables and n clauses, we will create & OR tasks. For
each variable z; which occurs in [; clauses we create an in-tree containing one OR
task and two chains of length [;. One chain corresponds to truth for the associated
variable, and the other corresponds to falsity. Therefore, there are 3n tasks in all
chains corresponding to truth, and 3n tasks in all chains corresponding to falsity.
The OR tasks are given deadlines of e = 3n + k. An example is shown in Figure 6.
This example 1s an in-tree for a variable x that appears in 4 clauses. Deadlines are
depicted above or below the tasks. Because of the deadlines of the OR tasks, in any
feasible schedule & OR tasks and & chains execute throughout the time interval [0, €],
and no other tasks may execute in this interval. This leaves k task chains to execute
in the time period [e, e + 3n] in a feasible schedule.

For each 3SAT clause we assign an interval of three time units starting at time e.
Hence the time intervals [e,e + 3],[e + 3,e 4+ 6],...,[e + 3n — 3, e + 3n] correspond
to clause 1, clause 2, ..., clause n, respectively. FEach interval of time is divided
into two parts. In the first two time units, tasks in leftover chains corresponding
to truth or falsity in a clause may execute. In the third time unit, only a task
corresponding to truth may execute. To enforce this rule, we give later deadlines to
the tasks/terms that would make each clause true. In Figure 6, variable z occurs in

AND/OR SCHEDULING 13

e+3 e+ e+8 e+l2

Truth

Falsity

e+2 e+6 e+t9 e+ll

Fi1c. 6. An in-tree for a variable x appearing in the first 4 clauses.

the first 4 clauses of the 3SAT expression. It appears uncomplemented in clauses 1
and 4, and complemented in clauses 2 and 3. If z appears in the 3SAT expression
for the ¢’th time as an uncomplemented variable in clause j, the deadline for the ¢’th
task in the truth predecessor chain is e + 35, and 1s e + 37 — 1 for the ¢’th task in the
falsity predecessor chain. These deadlines are exchanged if the ¢’th appearance of z
is as a complemented variable in clause j. We give all the OR tasks a common AND
successor with a deadline of infinity, to form a single tree.

If a scheduling algorithm finds a feasible schedule, then each task that executes in
the interval [e4+3j — 1, e+ 3j] corresponds to a variable (or a complemented variable)
that 1s true in clause j. If the variable were not true, then the deadline of the task
would have expired one time unit earlier. Furthermore, the task chains guarantee that
the truth or falsity of a variable is consistent among different 3SAT clauses. Thus, a
schedule is feasible if and only if there is a satisfying truth assignment. O

All the other proofs in this appendix and in [11] and [12] are modifications of the
proof of Theorem 3.2. In particular, Theorems 3.3 and 4.2 require a large simple
in-tree for each term in a 3SAT expression, and have been omitted for brevity.

COROLLARY 3.1. The problem remains NP-complete if only the OR tasks have
deadlines.

Proof. We make the following changes to the proof of Theorem 3.2: replace the
in-trees of the type depicted by Figure 6 by new in-trees such as the one in Figure 7.
This is done by adding an AND task with a deadline of e to the beginning of each
truth and falsity chain, converting each AND task with a deadline into an OR task
with one or two extra AND predecessor tasks, and setting e = 3n + bk. As in the
previous proof, the last deadline associated with a variable in a clause 1s e +3n. Note
that there are exactly e 4+ 3n tasks of the type that are shaded in Figure 7, in the
entire task system. Becuase of their deadlines, the shaded tasks must execute in the
time interval [0, e 4+ 3n], and the unshaded tasks must execute after time e + 3n in
any feasible schedule.

It is not difficult to verify that in a feasible schedule the tasks that execute in the
time interval [e, e 4+ 3n] correspond to a satisfying 3SAT truth assignment. [

THEOREM 4.1. The problem of AND/OR/skipped scheduling to meet deadlines,
where tasks have identical processing times, arbitrary deadlines on the OR tasks only,
and in-tree precedence constraints, is NP-complete.

Proof. This theorem extends the previous corollary to skipped tasks. We use
nearly the same in-trees as in Corollary 3.1. However, we set e = 2k, we give the
OR tasks at the root of each in-tree a deadline of e + 3n + k rather than e, and we
replace each unshaded task by a chain of e AND tasks. It is not difficult to check
that the task chains that execute in the time intervals [e +3j — 1,e + 3j], 1 < j < n,
correspond to a truth assignment satisfying the 3SAT clauses. O

14 D. W. GILLIES AND J. W.-S. LIU

TiaTio O\A KA : : Ta, 30w
Truth %%%%%%%%%O—*O—*O—*

X } X ; :; X T

Falsity O_>O—>O—>O—>O—>O~—>O—>O—>O—>O—>O—>O—> Tyt
Tll) 32/ : O/' O/'Tl 3n D/
2 : :; ‘ T
T3 5 31 S /

03 [B6 = 69 [912] s

Fic. 8. In-tree task system for AND/OR/skipped/unskipped tasks on m processors.

THEOREM 4.3. The problem of scheduling an AND/OR/skipped tlask system lo
minimize completion ttme on m processors, where tasks have identical processing times
and in-tree precedence constraints, is NP-complete.

Proof. Given a 3SAT problem with & boolean variables and n clauses, we specify
a system with m = k + 1 processors. For each variable x; we create an in-tree with
one OR task T; at the root and two predecessor chains of length 3n 4+ 1. One chain
corresponds to truth, and the other corresponds to falsity. All the tasks 77 ...7} have
a common AND direct successor Ti11. For each 3SAT clause we assign an interval of
3 units of time starting at time zero. Hence the intervals [0, 3],[3,6],...,[3n — 3, 3n]
correspond to clause 1, clause 2, .. ., clause n. If a variable xl appears uncomplemented

(complemented) in clause j, we create two AND tasks sz and T:; and make their
successors 1; 3511 and T} 3] (T; 35 and TZ»73]»+1) respectively. Figure 8 illustrates the
transformation for a 3SAT problem with n = 4 clauses. The variable # appears in the
first, second, and fourth clauses of the 3SAT problem instance, and x is complemented
in the second clause. The predecessor chains of length 3n + 1 are used to simulate
multiple deadlines, which are not allowed by the problem statement.

If a scheduling algorithm finds a feasible schedule with an overall completion time
of 3n + 3, then by interchanging tasks among different processors, we can transform

the schedule so that processors one through k execute a truth or falsity chain of length

3n+1in the time interval [0, 3n+41], and processor k+1 executes only tasks of type T,

or T; ; in the same time interval. Then each task that executes in the time interval

AND/OR SCHEDULING 15

[3j —1,35],1 < j < n, on processor k + 1 corresponds to a variable or complemented
variable that is true in clause j of the 3SAT problem instance. Because only one truth
or falsity chain for each OR task executes in the time interval [0,3n + 1], the truth
or falsity of a variable is consistent among different 3SAT clauses. Thus, a feasible
schedule can be found if and only if there is a satisfying truth assignment. O

THEOREM 3.4. The problem of scheduling an AND/OR /unskipped tlask system
to minimize completion titme on m processors, where tasks have tdentical processing
times and in-tree precedence constraints, is NP-complete.

Proof. The proof is nearly identical to the proof of Theorem 4.3. Given a 3SAT
problem, we generate the same in-tree as in the proof of Theorem 3.4, except we add
a chain of 6n + 6 AND successors to task Ty41. Then we ask if there is a schedule
with an overall completion time of 9n + 9. In such a schedule k task chains without
essential tasks have plenty of time to complete in the time interval [3n+3,9n +9]. Tt
is not difficult to see that there are tasks that execute in the time intervals [35— 1, 37],
1 < j < n, that correspond to a satisfying truth assignment. O

Acknowledgement. We wish to acknowledge Mohlafi Sefika, who implemented
the path balancing heuristic and improved its description, and also Sandra Broadrick-
Allen, who helped to improve later versions of this paper.

REFERENCES

[1] P.-R. CHANG, Parallel algorithms and VLSI architectures for robotics and assembly scheduling,
Ph.D. thesis, Purdue University, West Lafayette, IN, 1988.
[2] E. G. COFFMAN, JR., ED., Computer and Job Shop Scheduling Theory, John Wiley, New York,
NY, 1976.
[3] J. Y. CHUNG, J. W.-S. L1y, anD K. J. LiN, Scheduling Periodic Jobs That Allow Imprecise
Results, IEEE Trans. Computers, 39 (1990), pp. 1156-1174.
[4] E. G. COFFMAN, JR., J. Y. LEUNG, AND D. W. TING, Bin packing: mazimizing the number of
pieces packed, Acta Informatica, 9 (1978), pp. 263-271.
[5] L. S. HoMEM DE MELLO AND A. C. SANDERSON, AND/OR graph representation of assembly
plans, Proc. AAAT (1986) pp. 1113-1119.
M. R. GAREY AND D. S. JOHNSON, Two-processor scheduling with start-times and deadlines,
SIAM J. Comput., 6 (1977), pp. 416-428.
[7] M. R. GAREY AND D. S. JounsoN, Computers and Intractability: a Guide to the Theory of
NP-completeness, W. H. Freeman and Co., San Francisco, CA, 1979.
M. R. GAREY, D. S. Jounson, B. B. SimoNs, AND R. E. TARJAN, Scheduling unit-time tasks
with arbitrary release times and deadlines, SIAM J. Comput. 10 (1981), pp. 256-269.
D. W. GiLLIEs AND J. W.-S. L1u, Greed in resource scheduling, Proc. IEEE Real-Time Systems
Symposium, 10 (1989), pp. 285-294.
[10] D. W. GiLLIES AND J. W.-S. L1u, Greed in resource scheduling, Acta Informatica, 28 (1991),
pp. 755-775.

D. W Giuuies, AND J. W.-S. Liu, Scheduling Tasks with AND/OR Precedence Constraints,
Rep. No. UIUCDCS-R-90-1627 (UIUC-ENG-1766), Department of Computer Science,
Univ. of Illinois, Urbana, 1991.

[12] D. W GILLIES, Algorithms to schedule tasks with AND/OR precedence constraints, Ph.D. The-

sis, Department of Computer Science, Univ. of Illinois, Urbana, 1993.
[13] R. L GRAHAM, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),
pp. 416-429.

T. C Hu, Parallel sequencing and assembly line problems, Operations Res., 9 (1961), pp. 841-
848.

[15] E. L. LAWLER, J. K. LENSTRA, A. H. G. RiNNooY KaN, AND D. B. SHMOYS, Sequencing and
Scheduling: Algorithms and Complexity, Rep. No. BS-R8908, Centre for Mathematics and
Computer Science, Amsterdam, Holland, 1989.

[16] M. C. MCELVANY, Guaranteeing deadlines in MAFT, Proc. IEEE Real-Time Systems Sympo-
sium, 9 (1988), pp. 130-139.

(14]

16 D. W. GILLIES AND J. W.-S. LIU

[17] J. M. MOORE, An n job, one machine sequencing algorithm for minimizing the number of late
jobs, Management Sci., 15 (1968), pp. 102-109.

[18] D. PeENG AND K. G. SHIN, Modeling of concurrent task evecution in a distributed system for
real-time control, IEEE Trans. Computers, 36 (1987), pp. 500-516.

[19] V. SALETORE AND L. V. KALE, Obtaining first solution faster in AND and OR parallel ezecution

of logic programs, North American Conference on Logic Programming, 1 (1989), pp. 390-
406.

