
SCHEDULING TASKS WITH AND/OR PRECEDENCECONSTRAINTS�D. W. GILLIESy AND J. W.-S. LIUzAbstract. In traditional precedence-constrained scheduling a task is ready to execute when allits predecessors are complete. We call such a task an AND task. In this paper we allow certaintasks to be ready when just one of their predecessors is complete. These tasks are known as ORtasks. We analyze the complexity of two types of real-time AND/OR task scheduling problems. Inthe �rst type of problem, all the predecessors of every OR task must eventually be completed, butin the second type of problem, some OR predecessors may be left unscheduled. We show that mostproblems involving tasks with individual deadlines are NP-complete, and then present two priority-driven heuristic algorithms to minimize completion time on a multiprocessor. These algorithmsprovide the same level of worst-case performance as some previous priority-driven algorithms forscheduling AND-only task systems.Key words. non-preemptive scheduling, list scheduling, minimal length schedules, algorithmanalysis, multiprocessor systems, NP-complete problems.AMS subject classi�cations. 68M20, 68Q25, 90B35, 90C90.1. Introduction. In the traditional model of real-time workloads, dependenciesbetween tasks are represented by partial orders known as precedence constraints.Each task may have several predecessors and may not begin execution until all itspredecessors are completed. We call such tasks AND tasks, and the partial order overthem is known as AND-only precedence constraints. This traditional model fails todescribe many real-time applications encountered in practice. In these applications atask may begin execution when some but not all of its predecessors are completed.We call such a task an OR task. The resulting task system, containing both ANDand OR tasks, is said to have AND/OR precedence constraints.In this paper we are concerned with how to schedule tasks with AND/OR prece-dence constraints to meet deadlines. We investigate two variants of this problem,called the unskipped and the skipped variants.In some applications all the predecessors of an OR task must eventually be com-pleted, that is, they cannot be skipped. We call the model for this type of applicationthe AND/OR/unskipped model. For example, in robotic assembly [1], one out offour bolts may secure an engine head well enough to allow further work on otherparts of the engine head. However, the remaining three bolts must eventually beinstalled. The unskipped variant also models tasks that share resources. A task mayneed a resource from one of several predecessors in order to execute and hence isready to execute when any one predecessor is complete. Such a task can be mod-eled as an OR task. Again, the other predecessors must eventually be completed.The AND/OR/unskipped problem also arises in hard real-time scheduling when theprecedence constraints are too strict for tasks to meet their deadlines. By relaxingthe precedence constraints of some tasks, and restructuring the application code toaccommodate the relaxed constraints, it may be possible for the tasks to meet theirdeadlines.� This research was supported by the O�ce of Naval Research (Contracts No. NVY N00014-89-J-1181 and NVY N00014-92-J-1146)y Department of Electrical Engineering, University of British Columbia.z Department of Computer Science, University of Illinois.1

2 D. W. GILLIES AND J. W.-S. LIUIn other applications some predecessors of an OR task may be skipped entirely.We call this the AND/OR/skipped model. One example can be found in the prob-lem of instruction scheduling on superscalar, MIMD, or VLIW processors. On suchprocessors, several di�erent instruction sequences may be used to compute the samearithmetic expression. These di�erent sequences arise from algebraic laws such as as-sociativity and distributivity. Only one sequence needs to be executed, and the othersequences may be skipped. Another application that can be characterized by thismodel is manufacturing planning [5] because certain manufacturing steps obey asso-ciative and distributive algebraic laws. The AND/OR/skipped problem also arises inhard real-time scheduling. When there is insu�cient time for a task system to meetits deadlines, we may convert appropriate tasks to imprecise computations [3], whichmay be modeled as OR tasks whose predecessors may be skipped.We are concerned with ways to schedule AND/OR precedence-constrained tasksto meet deadlines or to minimize completion time. Most of these problems are gener-alizations of traditional deterministic scheduling problems that are NP-hard. In thispaper we analyze the complexity of the problems that are not known to be NP-hard.For two problems that are known to be NP-hard, we give heuristic algorithms to min-imize completion time. The algorithms have small running time and good worst-caseperformance.Our work is related to some previous work on deterministic scheduling to meetdeadlines [6] [8] and to minimize completion time [9] [10] [13] [14]. We were inspired byan AND/OR model that was proposed as a means of modeling distributed systemsfor real-time control [18]. Two recent systems incorporated AND/OR precedenceconstraints of some sort in their implementation [16] [19].The remainder of this paper is organized as follows. Section 2 describes ourassumptions about the AND/OR scheduling problem and introduces the terminologyused in later sections. Section 3 investigates the unskipped problem with multipledeadlines and analyzes an algorithm to minimize completion time. In Section 4, weinvestigate the skipped problem and give a second algorithm to minimize completiontime. Section 5 draws conclusions and discusses future work. The appendix containsproofs of the theorems stated in Sections 3 and 4.2. The AND/OR Model. All the scheduling problems considered here arevariants of the following problem. There are m identical processors and a set of tasksT = fT1; T2; :::; Tng. Each task Ti must execute on one processor for pi units of timeand is said to have processing time pi. There is a partial order < de�ned over T.If Ti < Tj, then Ti is a predecessor of Tj , and Tj is a successor of Ti. The task Tiis a direct predecessor of Tj if there is no Tk such that Ti < Tk < Tj . The task Tjis an AND task if its execution may begin only after all its direct predecessors havecompleted. The task Tj is an OR task if its execution may begin after only one ofits direct predecessors has completed. The partial order < is an in-forest if wheneverTk < Ti and Tk < Tj , we have either Ti < Tj or Tj < Ti; the partial order < is anin-tree if it has a unique element with no successors. A task followed by a series ofdirect successors Ti1 < Ti2 < � � � is called a task chain.The partial order is also represented by a weighted and transitively reduced di-rected graph G = (T;A;P) called the task graph. In this graph there is a vertex Tifor every task in the set T. The set A is known as the set of arcs. If Ti is a directpredecessor of Tj in the partial order then (Ti; Tj) 2 A. The set P = fp1; � � � ; pngdenotes the set of processing times. A task graph together with a set of deadlinesD = fd1; � � � ; dng is a 2-tuple (G;D) that characterizes a scheduling problem; it is

AND/OR SCHEDULING 3
T1

T3

T2 T5

4T

T5T3 T1 T2T4
time(a) Task system (b) AND/OR/Unskipped scheduleFig. 1. Sample problem and solution.called a task system. When several graphs G1;G2; � � � are present, the functionsT (Gi), A(Gi), and P (Gi) will be used to extract the sets T, A, and P from thegraph Gi.Let S(G; Ti) = fTjj(Ti; Tj) 2 A(G); Ti 2 T (G)g denote the set of direct suc-cessors of Ti, and let P (G; Ti) = fTj j(Tj; Ti) 2 A(G); Ti 2 T (G)g denote the set ofdirect predecessors of Ti. Let L(G; Tj) be the length of the longest directed pathin G ending at Tj . More precisely, L(G; Tj) = pj if Tj has no predecessors in G,and L(G; Tj) = pj + maxkfL(G; Tk)j(Tk; Tj) 2 A(G)g if Tj has predecessors. LetL*(G) = maxfL(G; Tj)jTj 2 T (G)g be the length of the longest directed path in agraph G. Let E(G; Ti) =PTj<Ti in G pj denote the total processing time of all thepredecessors of Ti in G. Let E*(G) = Ppi � L*(G) denote the \residual" process-ing time of an AND-only graph, i.e. the total processing time minus the processingtime of the tasks on the longest chain. Later it will be shown that AND-only graphswith minimal L*(G) and E*(G) can be used to produce near-optimal priority-drivenschedules.All the tasks with no successors in a task graph are classi�ed as essential; thismeans that they must appear in a valid schedule. If an AND task is essential, then allits direct predecessors are essential. If an OR task Tj is essential, then the schedulingalgorithm must choose one direct predecessor Ti to be essential and the precedenceconstraint Ti < Tj must be obeyed in scheduling the task system. If a task is notclassi�ed as essential, then it is inessential. We distinguish between two problemsreferred to as skipped and unskipped problems, respectively. In a skipped schedulingproblem, inessential tasks may be left unexecuted. However, in an unskipped problem,inessential tasks must be executed.Figure 1(a) depicts an AND/OR task system. In the �gure AND tasks are de-picted by circles and OR tasks are depicted by circles within boxes. Tasks are generallylabeled by their name, or by their (name, length), so (T5; e) would indicate that taskT5 requires e units of processing time. Where necessary, deadlines will be writtenseparately, next to the associated tasks. If the deadlines are omitted from a �gure,then the reader should assume that all the deadlines are identical. Every task in thisexample has a processing time of one and all the tasks have the same deadline, hence,the lengths and deadlines are omitted from this �gure. Figure 1(b) depicts a schedulein which T3 is an essential task, and T2 is an inessential task. Figure 1(b) shows aschedule of the unskipped task graph from Figure 1(a). If Figure 1(a) were a skippedtask graph, then a skipped schedule could be obtained by deleting T2 from the end ofthe schedule in Figure 1(b).The scheduling algorithms in this paper are simple heuristics that never inten-tionally leave processors idle. These algorithms are known as priority-driven or list-scheduling algorithms. Whenever a processor is available, a list-scheduling algorithmschedules the ready task with the highest priority according to a priority list. Because

4 D. W. GILLIES AND J. W.-S. LIU
v1 v5

v3

v2 v6v4

e1

e3

e2

e4
T
T
T
T
T
T

T 1,2,3

T2,3,4

T 4,5,6

1

2

3

4

5

6

T1,3,5(a) Exact 3-cover problem (b) AND/OR task systemFig. 2. Exact 3-cover transformation.they try to make the best local choice at each scheduling decision point, list-schedulingalgorithms are also called greedy algorithms. A schedule produced by a list-schedulingalgorithm is known as a list schedule and the time at which all the tasks in T arecomplete is the length of the schedule.We assume that every task in T has ready time equal to zero, thus, an ORtask may begin execution as soon as an essential predecessor is completed. In somesituations each task Ti has a deadline di ; Ti must be completed at or before time di.A schedule is called feasible if every task completes by its deadline. A task systemthat has a feasible schedule is called feasible. Given a task system our objective is to�nd a feasible schedule or determine that no feasible schedule exists.In other situations all the tasks share a common deadline. The problem of �ndinga feasible schedule in these situations is equivalent to the problem of minimizing theoverall completion time, i.e. the time at which the last task completes.3. Unskipped problems. In this section we discuss the complexity of theAND/OR/unskipped scheduling problem. After showing that most natural problemswith deadlines are NP-complete on a single processor, we present a priority-drivenheuristic to minimize completion time on m processors. We then explain why nopriority-driven heuristic can provide a better worst-case performance bound than theone presented here.3.1. Scheduling to Meet Deadlines on a Single Processor. There are well-known polynomial-time algorithms [6] [8] for scheduling tasks with AND-only prece-dence constraints, identical processing times, and arbitrary deadlines on one or twoprocessors. It is natural to ask whether the corresponding AND/OR scheduling prob-lems may be solved in polynomial time. Unfortunately, this extended problem isNP-complete, even when all the deadlines are the same. This fact is expressed in thefollowing theorem.Theorem 3.1. The problem of AND/OR skipped or unskipped scheduling of atask system in which all the OR tasks must meet a common deadline is NP-complete.Proof. It su�ces to prove that the problem is NP-complete on a single processor.The proof is based on a reduction from exact 3-cover (X3C). Given a hypergraph H= (V;E) of 3n vertices and a set of hyper-edges, each of which is incident to threevertices, the problem is to �nd a set of exactly n edges that covers all the verticeswith no overlap. This problem is NP-complete [7].The exact 3-cover problem can be transformed into an AND/OR scheduling prob-lem as follows. Create a task system (G;D) composed entirely of unit processing-time

AND/OR SCHEDULING 5tasks. There is an OR task Ti in the task system for each hypergraph vertex vi inH. In the task system all 3n OR tasks have deadline 4n. Create an AND task Ti;j;kfor each hyper-edge that connects vi, vj , and vk. The successors of task Ti;j;k are theOR tasks Ti, Tj , and Tk. Figure 2 is an example of this transformation. Now we askif there exists a schedule in which every OR task meets its deadline. Clearly, if thegiven hypergraph H has an exact 3-cover, n AND tasks corresponding to the covermay execute in the time interval [0; n], thereby allowing all 3n OR tasks to completeby time 4n. If no such cover exists, then at least n+1 edges must be used to cover thehypergraph. Hence at least n+1+3n time units must elapse before all the OR tasksare complete regardless of whether this a skipped or an unskipped problem. Thus,if a scheduler produces a feasible schedule, then there is an exact 3-cover, and if thescheduler fails, then no such cover exists.The proof of Theorem 3.1 indicates that this scheduling problem is at least as hardas the n-dimensional cover problem, a generalized version of n-dimensional matching.About thirty years ago, T. C. Hu gave a polynomial-time algorithm to schedule anAND-only task system with in-tree precedence constraints onm processors [14]. Thus,there is some hope that if we restrict the AND/OR/unskipped task system to havein-tree precedence constraints, there may exist a polynomial-time algorithm. Un-fortunately, the following theorem shows that this AND/OR scheduling problem isNP-complete.Theorem 3.2. The problem of AND/OR/unskipped scheduling to meet deadlines,where tasks have identical processing times, arbitrary deadlines, and in-tree precedenceconstraints, is NP-complete.Proof. The proof is contained in the appendix.Corollary 3.3. The problem remains NP-complete for task systems in whichonly the OR tasks have deadlines.Proof. The proof is contained in the appendix.The proofs of Theorems 3.2 and Corollary 3.1 in the appendix make use of longchains of AND tasks with di�ering deadlines. We now consider a class of task systemswhere only two tasks in a chain may have deadlines. In a simple in-forest, (1) each in-tree consists of an OR task with a deadline, no successors, and two direct predecessors,and (2) each direct predecessor of an OR task has a deadline and is the root of anin-tree of AND tasks with no deadlines (i.e. the deadlines are in�nite). A simple in-forest restricts the allowable precedence constraints and allowable tasks with deadlinesin a task system. We have found no simpler non-trivial combination of precedenceconstraints and deadlines. Surprisingly, even this simpli�ed AND/OR schedulingproblem is NP-completeTheorem 3.4. The problem of AND/OR/unskipped scheduling to meet deadlines,where the task system is a simple in-forest with identical processing times, is NP-complete.Proof. The proof may be found in [11].Theorems 3.1-3.3 allow us to arrive at the following conclusion. Every AND/ORtask graph with k OR tasks, each of which has l direct predecessors, corresponds toa set of lk di�erent AND-only task graphs. A feasible schedule of such a task systemcorresponds to an implicit selection of one of these lk AND-only task graphs. There-fore, when there are O(logn) OR tasks in the AND/OR task system, it is possible toenumerate in polynomial time the set of all possible AND-only task graphs and applyan optimal AND-only scheduling algorithm such as the one described in [8]. On theother hand, Theorems 3.1-3.3 show that many natural scheduling problems with O(n)

6 D. W. GILLIES AND J. W.-S. LIUTable 1Complexity of AND/OR/unskipped problems.(a) Scheduling to meet deadlines with identical processing times on 1 processor.Deadline Location General Graph In-Tree Simple In-Forest2 Deadlines O(n) DeadlinesOn All Tasks NP-C (Theorem 3.1) NP-C (Theorem 3.2) NP-C (Theorem 3.3)On OR Tasks Only NP-C (Theorem 3.1) NP-C (Corollary 3.1) Trivial(b) Scheduling to minimize completion time on m processors.Task Processing Time General Graph In-TreeIdentical NP-C [15] for AND-only NP-C (Theorem 3.4)Arbitrary Minimum-Path Heuristic Minimum-Path HeuristicInput: Task graph G = (T;A;P)Step 1: For each OR task Ti with no OR predecessors:(a) Let Tk be a direct predecessor of Ti that minimizes the longest path ending at Tk .In other words, Tk 2 P (G; Ti) and for all Tj 2 P (G; Ti) with j 6= k, L(G; Tj) �L(G; Tk).(b) Convert Ti into an AND task whose only direct predecessor is Tk .Step 2: The resulting task system has only AND tasks. Schedule this task system using apriority-driven algorithm and an arbitrary priority list.Fig. 3. The minimum path heuristic for general graphs.OR tasks are NP-complete. It follows that the complexity of the AND/OR/unskippedproblem is determined almost exclusively by the number of OR tasks in the task sys-tem and the complexity of the corresponding AND-only scheduling problem. Theseresults are summarized in Table 1(a).It appears di�cult to design a priority-driven scheduling heuristic with goodworst-case performance. For the simple problem studied in Theorem 3.3, we haveproduced examples to show that any algorithm that only considers slacks betweendeadlines and non-deadline information, one isolated in-tree at a time, may performpn times worse than an optimal algorithm. Some obvious priority-driven schedulingalgorithms such as fewest predecessors �rst, least slack �rst, and some generalizationsof the algorithms in [4] neglect to compare the deadlines among di�erent in-trees. Inthe worst case these algorithms may meet only pn deadlines when it is possible tomeet n out of n+1 deadlines. For more information the reader is referred to [11] [12].3.2. Scheduling to Minimize Completion Time. We now consider the prob-lem of scheduling AND/OR/unskipped tasks with arbitrary processing times on mprocessors to meet a common deadline. This problem is equivalent to that of schedul-ing to minimize the overall completion time. Ullman has shown this problem tobe NP-complete [15] for AND-only task systems where all the tasks have identicalprocessing times. However, Hu's algorithm solves this problem in polynomial timefor in-tree precedence constraints. Unfortunately, the problem becomes NP-completewhen OR tasks are allowed.Theorem 3.5. The problem of scheduling an AND/OR/unskipped task systemto minimize completion time on m processors, where tasks have identical processingtimes and in-tree precedence constraints, is NP-complete.Proof. The proof is contained in the appendix.In Figure 3, we present a heuristic that minimizes the completion time of an

AND/OR SCHEDULING 7AND/OR/unskipped task system with arbitrary processing times. The basic idea isto choose an AND-only graph that minimizes the longest path in G. The heuristiccan be implemented to run in time O(n + jAj) by reversing the direction of the arcsin G and employing depth-�rst search. Let Go = (To;Ao;Po) and Wo denote theimplicit AND-only graph and the completion time of the task system according to anoptimal schedule. Let G0 = (T0;A0;P0) and W 0 denote the implicit AND-only graphand the completion time of the task system according to a schedule produced by theMinimum Path Heuristic, respectively. The worst-case performance of the MinimumPath Heuristic depends on the following lemma.Lemma 3.6. L*(G0) � L*(Go).Proof. Let H = fTijP (G0; Ti) 6= P (Go; Ti)g denote the set of tasks whose pre-decessors di�er between the optimal graph and the graph produced in Step 1 of theMinimum Path Heuristic. If H = ;, then the AND-only task graphs are identical andthe lemma is established. Otherwise, let Ti 2 H be a task for which there exists noTj 2 H with Tj < Ti inGo. By the construction ofG0, jP (G0; Ti)j = jP (Go; Ti)j = 1.We change Ao, replacing the arc (P (Go; Ti); Ti) by (P (G0; Ti); Ti) and obtain no in-crease in the longest path (by steps 1(a) and 1(b) of the heuristic). This argumentis used inductively to transform Go into G0 with no increase in the maximum pathlength. This establishes the lemma.The following fact is proved in the well-known paper [13].Lemma 3.7. In any priority-driven schedule, there is a chain of tasks that exe-cutes during all the idle periods (when one or more processors are not in use), andthis chain is not longer than the completion time of an optimal schedule.If Wp denotes the total length of all the idle periods in a schedule produced bythe Minimum Path Heuristic, then Wp � L*(G0) � L*(Go) � Wo by Lemmas 3.1and 3.2.Theorem 3.8. The worst-case performance of the Minimum Path Heuristic isgiven by W 0=Wo � 2� 1=m. Moreover, this bound is tight.Proof. Let Wb denote the total length of all the busy periods in a priority-driven schedule. Let Wp denote the total length of all the idle periods in a priority-driven schedule. During the idle periods at least 1 and no more than m � 1 tasksexecute, and during the busy periods exactly m tasks execute. It should be clearthat W 0 = Wp +Wb. Hence, the worst-case completion time of this heuristic may beformulated as a linear program:Maximize Wp +Wb = W 0subject to Wp � L*(G0) � L*(Go) � WomWb + 1Wp � mWoSolving the program yields Wp = Wo, Wb = (1 � 1=m)Wo, i.e. W 0=Wo � 2 � 1=m.Examples of AND-only task systems that achieve this bound may be found in [2]and [10]. It is known [10] that no AND-only priority-driven heuristic can avoid 2�1=mworst-case performance (because priority-driven heuristics never intentionally idle theprocessor, and sometimes intentional idling is needed). Our priority-driven heuristicwill schedule AND-only task systems as a special case. Hence, it is not possible toget better worst-case performance from an AND/OR scheduling algorithm withouta better AND-only scheduling algorithm. In fact, it has been a long-standing openproblem to �nd a better AND-only scheduling algorithm [15].

8 D. W. GILLIES AND J. W.-S. LIUTable 2Complexity of AND/OR/skipped problems(a) Scheduling to meet deadlines with identical processing times on 1 processor.Deadlines Location General Graph In-Tree Simple In-Forest1 Deadline O(n) DeadlinesOn All Tasks NP-C (Theorem 3.1) NP-C (Theorem 4.1) NP-C (Theorem 4.2)ON OR Tasks Only NP-C (Theorem 3.1) NP-C (Theorem 4.1) [17] Algorithm(b) Scheduling to minimize completion time on m processors.Task Processing Time General Graph In-TreeIdentical NP-C [15] (� 3=2 �OPT) NP-C (Theorem 4.3)Arbitrary No Algorithm Path-Balancing Heuristic4. Skipped Problems. In an AND/OR/skipped scheduling problem, the in-essential predecessors of an OR task may be skipped entirely. We �rst show thatwhen the problems of Section 3 are formulated in the skipped model they remainNP-complete. Then we present a heuristic algorithm for scheduling to minimize com-pletion time on m processors. This heuristic algorithm works for in-tree precedenceconstraints, but not for arbitrary precedence constraints.4.1. Scheduling to Meet Deadline. Theorem 3.1 showed that the problem ofAND/OR/skipped scheduling with one deadline and arbitrary precedence constraintsis NP-complete on a single processor, therefore, we immediately consider simplifyingthe precedence constraints.Theorem 4.1. The problem of AND/OR/skipped scheduling to meet deadlines,where tasks have identical processing times and in-tree precedence constraints, is NP-complete.Proof. The proof is contained in the appendix.Theorem 4.2. The problem of AND/OR/skipped scheduling to meet deadlines,where the task system is a simple in-forest with identical processing times, is NP-complete.Proof. The proof may be found in [11].Now we consider the case where the task system is a simple in-forest and only theOR tasks have deadlines. For this type of task system, an algorithm to �nd a feasibleschedule can examine each OR task and choose as its direct predecessor the AND taskwhich has the fewest total predecessors. After these choices are made, the AND-onlygraph is scheduled using the earliest deadline �rst rule. This method always producesa feasible schedule if the task system is feasible. If the task system is infeasible it isstill possible to maximizes the number of OR tasks that simultaneously meet theirdeadlines and have essential predecessors. To produce such a schedule, we note thatan OR task together with one predecessor subtree consisting of ki AND tasks may bethought of as one large task with processing time ki + 1. Then the algorithm of [17],which minimizes unit penalty on a single processor, may be used to schedule taskswith processing time (ki + 1), to maximize the number of OR tasks that meet theirdeadline.In summary, we �nd that the complexity of the skipped problem is always at leastas high as the complexity of the unskipped problem. This fact is summarized in Table2(a).

AND/OR SCHEDULING 9Input: Task graph G = (T;A;P)Step 1: Convert the OR tasks in the in-treeG into AND tasks, to obtain an AND-only graphG0 that minimizes f(G0), as follows.For each path Ci = fTx1 < Tx2 < : : : < Txkg from the root to a leaf in G do begin(a) [Copy G] Gc G.(b) [Freeze OR tasks along path Ci] For each OR task Txj 2 Ci let Ac = (Ac �P (Gc; Txj))[f(Txj�1 ; Txj)g (i.e. make Txj an AND task in Gc).(c) [Truncate all paths longer than Ci] Let Cj 6= Ci be a longer path in Gc. If no suchCj exists, go to Step (d). Otherwise, let Tk be the least OR task on Cj. If no suchTk exists then go to Step (f). For each Tl 2 P (Gc; Tk) on a path longer than Ci, dobegin remove the arc (Tl; Tk) from Gc end. If jP (Gc; Tk)j = 0 no AND-only graphexists with Ci as the longest path, so go to Step (f). Else Repeat Step (c).(d) [Minimize processing time] For each OR task Tk with 2 or more direct predecessorsand no OR predecessors in the graph Gc, pick as a sole predecessor of Tk the taskTj 2 P (Gc; Tk) such that for all Ti 2 P (Gc; Tk) with i 6= j, E(Gc; Ti) � E(Gc; Tj).(e) If the resulting AND-only graph yields a lesser value of f(Gc) then let G0 Gc.(f) end.Step 2: The resulting task system G0 contains only AND tasks. Schedule this task systemusing a priority-driven heuristic and an arbitrary priority list.Fig. 4. The path-balancing heuristic for in-trees.4.2. Scheduling to Minimize Completion Time. Table 2(b) gives the com-plexity of scheduling m processors to minimize completion time. The next theoremconcludes our investigation into the complexity of AND/OR scheduling.Theorem 4.3. The problem of scheduling an AND/OR/skipped task system tominimize completion time on m processors, where tasks have identical processing timesand in-tree precedence constraints, is NP-complete.Proof. The proof is contained in the appendix.Now we present a heuristic algorithm that minimizes the completion time of anAND/OR/skipped task system with in-tree precedence constraints. Let f(G) =E*(G)=m+ L*(G) denote a function of an AND-only precedence graph. This func-tion is an estimate of the worst-case completion time of a priority-driven schedule.Our algorithm converts an AND/OR in-tree into an AND-only in-tree that minimizesthis function. In a general graph it is di�cult to minimize this function quickly. Ifm = 1, a polynomial-time algorithm to minimize f(G) could be used to solve anyexact 3-cover problem (refer to Theorem 3.1), implying P = NP. Because of this thePath Balancing Heuristic described below is restricted to in-tree task graphs. Thealgorithm appears in Figure 4.The complexity of the algorithm can be determined as follows. The O(n) possiblepaths from the root to the leaves can be enumerated in time O(n) using depth-�rstsearch. Each iteration of the Steps 1(a) - 1(e) can be carried out together in O(n)time using a recursive depth-�rst search. Most of the work is done when returningfrom procedure calls. Hence, the overall complexity of this heuristic is O(n2).To derive the worst-case performance of the Path-Balancing Heuristic we begin byshowing that Step 1 of this heuristic minimizes f().Lemma 4.4. f(G0) � f(Go).Proof. Consider the longest path of length L*(Go) in Go This path starts at thetree root and ends at a leaf vertex. Clearly, the Path Balancing Heuristic considersthis path in some iteration of Step 1. Step 1(c) of the heuristic ensures that noother paths are longer than this longest path, without increasing E*(G0) more thanis necessary. Step 1(d) of the heuristic chooses the direct predecessors of each OR

10 D. W. GILLIES AND J. W.-S. LIUtask to minimize E*(G0), thus, the heuristic cannot fail to �nd a graph for whichf(G0) is at most E*(Go)=m+ L*(Go).Theorem 4.5. The worst-case performance of the Path Balancing Heuristic isgiven by: W 0Wo � 2� 1m:(1)Moreover, this bound is tight.Proof. Any optimal schedule completes no earlier than the total processing time ofthe task system divided by m processors, and also no earlier than L*(Go). HenceWo � max�E*(Go) + L*(Go)m ;L*(Go)� :And by Lemmas 3.2 and 4.1, we haveW 0 � E*(G0)=m + L*(G0) � E*(Go)=m + L*(Go):Hence W 0Wo � E*(Go)=m+ L*(Go)max�E*(Go) + L*(Go)m ;L*(Go)� :(2)We simplify Equation (2) in two cases.Case 1. The maxfg in (2) evaluates to its �rst argument. Then we haveW 0W � E*(Go) + L*(Go)mE*(Go) + L*(Go) = B:(3)Note that the maxfg in (2) evaluates to its �rst argument if and only if L*(Go) �E*(Go)=(m � 1), so we have an upper bound on L*(Go). The derivative of thebound in (3) is dBdL*(Go) = E*(Go)(m � 1)2(E*(Go) + L*(Go)) � 0:(4)Because the derivative of (4) is nonnegative for allm � 1 andE*(Go) � 0, a maximumof (3) occurs when L*(Go) is as great as possible, i.e. L*(Go) = E*(Go)=(m � 1),thus W 0W � E*(Go)(m � 1) + E*(Go)mE*(Go)(m � 1) + E*(Go) = 2� 1m:Case 2. The maxfg in (2) evaluates to its second argument. This occurs if andonly if E*(Go) � L*(Go)(m� 1). We substitute E*(Go) � L*(Go)(m � 1) into thenumerator of (2) to obtain (1).The example in Figure 4 demonstrates that this worst-case bound is tight. LetT1 = fT1; T2; T4;1; : : : ; T4;m(m�1)=e+1g and let T2 = fT2; T3;1; : : : ; T3;m; T5;1; : : : ; T5;mg.

AND/OR SCHEDULING 11
(T3,1,δ)

(T2,δ)

(T5,m,m–δ)

(T5,1, m–δ)

(T1,m–ε)
(T4,1,ε)

…
…

…

…
…

…

(T3,2,δ)

(T3,m,δ)

…
…

…

ε)(T4,m(m–1)/ε + 1,
{

{

G1

2G Fig. 5. A worst-case AND/OR/skipped in-tree.The Path Balancing Heuristic chooses between the in-trees G1 = (T1;A1;P1) andG2 = (T2;A2;P2), where A1 and A2 denote the associated arc sets. The lengthsof the longest paths in these in-trees are L*(G1) = L*(G2) = m + �, respectively.Furthermore, E*(G1) = E*(G2) = m2 � m. Thus, the Path Balancing Heuristicchooses arbitrarily between these two trees, since either one minimizes f(G0). Thereis a schedule of length m + 2� for G2, but the shortest possible schedule for G1 haslength m +m(m � 1)=m+ � whenever e divides (m � 1) evenly. As d! 0, the ratioof these schedule lengths approaches 2� 1=m.We now o�er additional evidence that the problem of scheduling AND/OR/skippedtask systems is much harder than the problem of scheduling AND-only task systems.Consider scheduling an AND/OR/skipped task system derived from an exact 3-coverproblem, as described in the proof of Theorem 3.1, on a (3n + 1)-processor system.We add to the task system an AND task with 2n + 1 direct predecessors, and askif there is a schedule that completes in 2 units of time on 3n + 1 processors. Thetask system is feasible if n tasks corresponding to edges in an exact 3-cover togetherwith the additional 2n + 1 AND tasks begin processing at time 0, and all the taskscorresponding to hypergraph vertices together with the other added AND task begintheir processing at time 1. Hence, there is a schedule with a completion time of 2 ifand only if there is an exact 3-cover. It follows that unless P = NP no polynomial-time AND/OR/skipped scheduling heuristic can guarantee a worst-case completiontime of less than 3/2 times the length of an optimal schedule. In contrast to this,if the task system is AND-only, it is known [15] that no polynomial-time heuristiccan guarantee a worst-case completion time of less than of 4/3 times the length of anoptimal schedule.5. Conclusion. We have analyzed the skipped and unskipped variants of theAND/OR scheduling problem with deadlines. In the skipped variant, some tasksmay be left unscheduled, but in the unskipped variant all tasks must be scheduled.When tasks have identical processing times, deadlines, and there is a single processor,the problem was shown to be NP-complete, even for drastically simpli�ed precedenceconstraints. We presented an e�cient priority-driven heuristic to minimize completiontime on m processors, and showed that its worst-case performance bound cannot be

12 D. W. GILLIES AND J. W.-S. LIUimproved by using a di�erent priority-driven heuristic. We also presented a heuristicto minimize the completion time of an AND/OR/skipped task system with in-treeprecedence constraints. We derived the worst-case performance for this algorithm andexplained why the algorithm cannot be extended to handle general task graphs withthe same performance unless P = NP.Throughout this paper we assumed that only one direct predecessor task had tobe completed before an OR task could begin. Under a more general assumption,OR task Ti can begin once ki predecessor tasks are complete. The algorithms andtheorems in this paper require minor modi�cations to handle this more general case.There is also a similar AND/OR model where individual arcs (and not tasks) canbe AND arcs or OR arcs. By using tasks with a processing time of zero, our modelcan simulate this other model. There are also situations where both OR/skipped andOR/unskipped tasks are present in a single in-tree. With slight modi�cations ourAND/OR/skipped heuristic can be used to handle such mixed task systems. Detailsof these transformations and algorithms appear in [12].During this investigation we reached several conclusions about the complexity ofAND/OR scheduling. Contrary to our intuition, the skipped problems we consideredwere generally of higher complexity than the corresponding unskipped problems. Thiscan be seen by comparing Table 1 and Table 2, and the proofs in the appendix. Inthe problem of scheduling to meet deadlines, we have several observations. It wasgenerally not helpful to restrict the in-degree of OR tasks in the task graph. It wasalso not helpful to restrict deadlines to only the OR tasks, or to restrict the task graphto be an in-tree or an in-forest or even a simple in-tree, the simplest relation possiblefor this type of problem.A. Appendix. This appendix presents the proofs of Theorems 3.2, 3.4, 4.1, 4.3,and Corollary 3.1. Proofs of Theorems 3.3 and 4.2 may be found in both [11] and[12]. Except where noted, all proofs refer to the scheduling of a single processor.Theorem 3.2. The problem of AND/OR/unskipped scheduling to meet deadlines,where tasks have identical processing times, arbitrary deadlines, and in-tree precedenceconstraints, is NP-complete.Proof. Our proof is based on a reduction from 3SAT. Given an instance of a 3SATproblem, with k boolean variables and n clauses, we will create k OR tasks. Foreach variable xi which occurs in li clauses we create an in-tree containing one ORtask and two chains of length li. One chain corresponds to truth for the associatedvariable, and the other corresponds to falsity. Therefore, there are 3n tasks in allchains corresponding to truth, and 3n tasks in all chains corresponding to falsity.The OR tasks are given deadlines of e = 3n + k. An example is shown in Figure 6.This example is an in-tree for a variable x that appears in 4 clauses. Deadlines aredepicted above or below the tasks. Because of the deadlines of the OR tasks, in anyfeasible schedule k OR tasks and k chains execute throughout the time interval [0; e],and no other tasks may execute in this interval. This leaves k task chains to executein the time period [e; e+ 3n] in a feasible schedule.For each 3SAT clause we assign an interval of three time units starting at time e.Hence the time intervals [e; e + 3]; [e + 3; e + 6]; : : : ; [e + 3n � 3; e + 3n] correspondto clause 1, clause 2, : : : , clause n, respectively. Each interval of time is dividedinto two parts. In the �rst two time units, tasks in leftover chains correspondingto truth or falsity in a clause may execute. In the third time unit, only a taskcorresponding to truth may execute. To enforce this rule, we give later deadlines tothe tasks/terms that would make each clause true. In Figure 6, variable x occurs in

AND/OR SCHEDULING 13
e+12

x

Falsity

e+5 e+8

e+11

e

e+3

Truth

e+6 e+9e+2

x
_

x
_

xFig. 6. An in-tree for a variable x appearing in the �rst 4 clauses.the �rst 4 clauses of the 3SAT expression. It appears uncomplemented in clauses 1and 4, and complemented in clauses 2 and 3. If x appears in the 3SAT expressionfor the i'th time as an uncomplemented variable in clause j, the deadline for the i'thtask in the truth predecessor chain is e+ 3j, and is e+ 3j � 1 for the i'th task in thefalsity predecessor chain. These deadlines are exchanged if the i'th appearance of xis as a complemented variable in clause j. We give all the OR tasks a common ANDsuccessor with a deadline of in�nity, to form a single tree.If a scheduling algorithm �nds a feasible schedule, then each task that executes inthe interval [e+3j�1; e+3j] corresponds to a variable (or a complemented variable)that is true in clause j. If the variable were not true, then the deadline of the taskwould have expired one time unit earlier. Furthermore, the task chains guarantee thatthe truth or falsity of a variable is consistent among di�erent 3SAT clauses. Thus, aschedule is feasible if and only if there is a satisfying truth assignment.All the other proofs in this appendix and in [11] and [12] are modi�cations of theproof of Theorem 3.2. In particular, Theorems 3.3 and 4.2 require a large simplein-tree for each term in a 3SAT expression, and have been omitted for brevity.Corollary 3.1. The problem remains NP-complete if only the OR tasks havedeadlines.Proof. We make the following changes to the proof of Theorem 3.2: replace thein-trees of the type depicted by Figure 6 by new in-trees such as the one in Figure 7.This is done by adding an AND task with a deadline of e to the beginning of eachtruth and falsity chain, converting each AND task with a deadline into an OR taskwith one or two extra AND predecessor tasks, and setting e = 3n + 5k. As in theprevious proof, the last deadline associated with a variable in a clause is e+3n. Notethat there are exactly e + 3n tasks of the type that are shaded in Figure 7, in theentire task system. Becuase of their deadlines, the shaded tasks must execute in thetime interval [0; e + 3n], and the unshaded tasks must execute after time e + 3n inany feasible schedule.It is not di�cult to verify that in a feasible schedule the tasks that execute in thetime interval [e; e+ 3n] correspond to a satisfying 3SAT truth assignment.Theorem 4.1. The problem of AND/OR/skipped scheduling to meet deadlines,where tasks have identical processing times, arbitrary deadlines on the OR tasks only,and in-tree precedence constraints, is NP-complete.Proof. This theorem extends the previous corollary to skipped tasks. We usenearly the same in-trees as in Corollary 3.1. However, we set e = 2k, we give theOR tasks at the root of each in-tree a deadline of e + 3n + k rather than e, and wereplace each unshaded task by a chain of e AND tasks. It is not di�cult to checkthat the task chains that execute in the time intervals [e+ 3j � 1; e+ 3j], 1 � j � n,correspond to a truth assignment satisfying the 3SAT clauses.

14 D. W. GILLIES AND J. W.-S. LIU
x

e+11
Falsity

e+6 e+9

e+12

e+2

e+5 e+8e+3
Truth

e

e

e

_
x

_
xxFig. 7. An in-tree for scheduling with deadlines on OR tasks only.

x

Truth

Falsity

x
_

x

[0,3] [3,6] [6,9]

T1,1 T1,2

T'1,1 T'

T1,3n

T'1,3n

T1

T2

Tk

Tk+1

[9,12]

…

1,2

T *1,3

1,3T **Fig. 8. In-tree task system for AND/OR/skipped/unskipped tasks on m processors.Theorem 4.3. The problem of scheduling an AND/OR/skipped task system tominimize completion time on m processors, where tasks have identical processing timesand in-tree precedence constraints, is NP-complete.Proof. Given a 3SAT problem with k boolean variables and n clauses, we specifya system with m = k + 1 processors. For each variable xi we create an in-tree withone OR task Ti at the root and two predecessor chains of length 3n + 1. One chaincorresponds to truth, and the other corresponds to falsity. All the tasks T1 : : :Tk havea common AND direct successor Tk+1. For each 3SAT clause we assign an interval of3 units of time starting at time zero. Hence the intervals [0; 3]; [3; 6]; : : : ; [3n� 3; 3n]correspond to clause 1, clause 2, : : :, clause n. If a variable xi appears uncomplemented(complemented) in clause j, we create two AND tasks T*i;j and T**i;j and make theirsuccessors Ti;3j+1 and T 0i;3j (Ti;3j and T 0i;3j+1) respectively. Figure 8 illustrates thetransformation for a 3SAT problem with n = 4 clauses. The variable x appears in the�rst, second, and fourth clauses of the 3SAT problem instance, and x is complementedin the second clause. The predecessor chains of length 3n + 1 are used to simulatemultiple deadlines, which are not allowed by the problem statement.If a scheduling algorithm �nds a feasible schedule with an overall completion timeof 3n + 3, then by interchanging tasks among di�erent processors, we can transformthe schedule so that processors one through k execute a truth or falsity chain of length3n+1 in the time interval [0; 3n+1], and processor k+1 executes only tasks of type T*i;jor T**i;j in the same time interval. Then each task that executes in the time interval

AND/OR SCHEDULING 15[3j � 1; 3j]; 1 � j � n, on processor k + 1 corresponds to a variable or complementedvariable that is true in clause j of the 3SAT problem instance. Because only one truthor falsity chain for each OR task executes in the time interval [0; 3n+ 1], the truthor falsity of a variable is consistent among di�erent 3SAT clauses. Thus, a feasibleschedule can be found if and only if there is a satisfying truth assignment.Theorem 3.4. The problem of scheduling an AND/OR/unskipped task systemto minimize completion time on m processors, where tasks have identical processingtimes and in-tree precedence constraints, is NP-complete.Proof. The proof is nearly identical to the proof of Theorem 4.3. Given a 3SATproblem, we generate the same in-tree as in the proof of Theorem 3.4, except we adda chain of 6n + 6 AND successors to task Tk+1. Then we ask if there is a schedulewith an overall completion time of 9n+ 9. In such a schedule k task chains withoutessential tasks have plenty of time to complete in the time interval [3n+3; 9n+9]. Itis not di�cult to see that there are tasks that execute in the time intervals [3j�1; 3j],1 � j � n, that correspond to a satisfying truth assignment.Acknowledgement. We wish to acknowledge Mohla� Se�ka, who implementedthe path balancing heuristic and improved its description, and also Sandra Broadrick-Allen, who helped to improve later versions of this paper.REFERENCES[1] P.-R. Chang, Parallel algorithms and VLSI architectures for robotics and assembly scheduling,Ph.D. thesis, Purdue University, West Lafayette, IN, 1988.[2] E. G. Coffman, Jr., ed., Computer and Job Shop Scheduling Theory, John Wiley, New York,NY, 1976.[3] J. Y. Chung, J. W.-S. Liu, and K. J. Lin, Scheduling Periodic Jobs That Allow ImpreciseResults, IEEE Trans. Computers, 39 (1990), pp. 1156-1174.[4] E. G. Coffman, Jr., J. Y. Leung, and D. W. Ting, Bin packing: maximizing the number ofpieces packed, Acta Informatica, 9 (1978), pp. 263-271.[5] L. S. Homem de Mello and A. C. Sanderson, AND/OR graph representation of assemblyplans, Proc. AAAI (1986) pp. 1113-1119.[6] M. R. Garey and D. S. Johnson, Two-processor scheduling with start-times and deadlines,SIAM J. Comput., 6 (1977), pp. 416-428.[7] M. R. Garey and D. S. Johnson, Computers and Intractability: a Guide to the Theory ofNP-completeness, W. H. Freeman and Co., San Francisco, CA, 1979.[8] M. R. Garey, D. S. Johnson, B. B. Simons, and R. E. Tarjan, Scheduling unit-time taskswith arbitrary release times and deadlines, SIAM J. Comput. 10 (1981), pp. 256-269.[9] D. W. Gillies and J. W.-S. Liu, Greed in resource scheduling, Proc. IEEE Real-Time SystemsSymposium, 10 (1989), pp. 285-294.[10] D. W. Gillies and J. W.-S. Liu, Greed in resource scheduling, Acta Informatica, 28 (1991),pp. 755-775.[11] D. W Gillies, and J. W.-S. Liu, Scheduling Tasks with AND/OR Precedence Constraints,Rep. No. UIUCDCS-R-90-1627 (UIUC-ENG-1766), Department of Computer Science,Univ. of Illinois, Urbana, 1991.[12] D. W Gillies, Algorithms to schedule tasks with AND/OR precedence constraints, Ph.D. The-sis, Department of Computer Science, Univ. of Illinois, Urbana, 1993.[13] R. L Graham, Bounds on multiprocessing timing anomalies, SIAM J. Appl. Math., 17 (1969),pp. 416-429.[14] T. C Hu, Parallel sequencing and assembly line problems, Operations Res., 9 (1961), pp. 841-848.[15] E. L. Lawler, J. K. Lenstra, A. H. G. Rinnooy Kan, and D. B. Shmoys, Sequencing andScheduling: Algorithms and Complexity, Rep. No. BS-R8908, Centre for Mathematics andComputer Science, Amsterdam, Holland, 1989.[16] M. C. McElvany, Guaranteeing deadlines in MAFT, Proc. IEEE Real-Time Systems Sympo-sium, 9 (1988), pp. 130-139.

16 D. W. GILLIES AND J. W.-S. LIU[17] J. M. Moore, An n job, one machine sequencing algorithm for minimizing the number of latejobs, Management Sci., 15 (1968), pp. 102-109.[18] D. Peng and K. G. Shin, Modeling of concurrent task execution in a distributed system forreal-time control, IEEE Trans. Computers, 36 (1987), pp. 500-516.[19] V. Saletore and L. V. Kale, Obtaining �rst solution faster in AND and OR parallel executionof logic programs, North American Conference on Logic Programming, 1 (1989), pp. 390-406.

