
JavaScript Errors in the Wild: An Empirical Study
Frolin S. Ocariza, Jr., Karthik Pattabiraman

University of British Columbia
Vancouver, British Columbia, Canada
Email: {frolino, karthikp}@ece.ubc.ca

Benjamin Zorn
Microsoft Research

Redmond, WA, USA
Email: zorn@microsoft.com

Abstract—Client-side JavaScript is being widely used in popu-
lar websites to improve functionality, increase responsiveness, and
decrease load times. However, the use of JavaScript can decrease
the reliability of these websites. This paper presents an empirical
characterization of the error messages printed by JavaScript as
it executes in these popular websites, and attempts to understand
their root causes. We find that JavaScript errors abound in
real websites, and that the errors fall into a small number
of categories. We further find that both non-deterministic and
deterministic errors occur in the applications, and that the speed
of testing plays an important role in exposing errors. Finally, we
study the correlations among the static and dynamic properties
of the application and the frequency of errors exhibited by it
in an attempt to understand the root causes of the errors. The
study is carried out using the Firefox web browser.

I. Introduction
Web 2.0 applications can retrieve information asyn-

chronously without reloading the page or navigating to a new
one, and are hence much more interactive than traditional
web applications. The interactivity of Web 2.0 applications
is made possible by the use of client-side JavaScript, which
allows for the creation, modification, and deletion of nodes in
the application’s Document Object Model (DOM) 1. Today, as
many as 97 of the top 100 most visited websites use client-side
JavaScript2, consisting of thousands of lines of code.

However, JavaScript is weakly typed, and allows the cre-
ation and execution of new code at runtime, which makes
it prone to programming errors. Further, web browsers are
typically tolerant of errors in JavaScript code, although they
differ in their handling of the errors. For example, web
browsers do not stop executing a web application when it
throws an exception; rather they continue to execute (other
parts of the application) in response to user events and web
browser notifications. As a result, an error in one part of the
application can propagate to other parts of the application, and
compromise its correctness. This leads to subtle bugs that are
hard to find during testing [1].

The main goal of this paper is to empirically study the
reliability of JavaScript-based Web 2.0 applications and to
identify common error categories in these applications. We
also seek to understand the sources of these errors, by studying
their correlation with the application’s static and dynamic
features. In the process, our goal is to formulate design

1The DOM is a hierarchical representation of the elements in a webpage
and is maintained by the web browser.

2From www.alexa.com, April 2011.

guidelines and principles to help developers and testers make
their websites more reliable. Understanding the characteristics
of errors in websites can also help developers of static and
dynamic analysis tools refine their techniques to focus on the
most commonly encountered errors in practice.

Although JavaScript was designed in 1995 by Brendan Eich
and was part of the Netscape 2.0 browser, it became popular
only in the last five years with the advent of applications
such as Gmail and Google Docs. As a result, there have
been few academic papers on JavaScript, and fewer still on
empirical studies of the behaviour of JavaScript-based Web
2.0 applications. Recent work has studied the performance
and runtime behaviour of JavaScript [2], [3], and the security
and privacy of JavaScript-based websites [4], [5]. However, to
our knowledge, there has been no study on characterizing the
reliability of JavaScript-based Web 2.0 applications.

We base our study on error messages printed to the
JavaScript console in the web browser when executing web ap-
plications. Whenever the JavaScript code throws an exception,
an error message is printed to the JavaScript console 3. We use
FireBug4, an add-on to the Firefox web browser, to capture the
messages. Our evaluation set consists of fifty websites from
the Alexa top 100 most visited websites, which we interact
with in a ”normal” manner. We analyze the error messages,
categorize them and determine if they are non-deterministic,
i.e., occur only in a subset of the executions. We also correlate
the website’s features with the types and frequencies of error
messages to understand their relationship.

Static analysis is an alternative technique to using error
messages for finding bugs, and has been used with great
success for large code bases such as the Linux Kernel [6].
However, error messages have several advantages over static
analysis. First, console messages represent errors in real set-
tings after the web application has been released to the public,
and hence these errors likely escaped traditional methods of
testing. Further, the messages capture erroneous interactions
between the web application and the DOM, which static
analysis tools are likely to miss, as they do not model the
DOM. In the extreme case, some static analysis tools such as
JSLint5 and Closure Compiler6 only analyze the code’s syntax,
without any regard for the semantics, and are hence likely

3This console is hidden from the user, but can be enabled on demand.
4http://getfirebug.com
5www.jslint.com
6code.google.com/closure/compiler/

to exhibit false positives. Finally, JavaScript is a challenging
language to analyze statically, and hence many such analyzers
confine themselves to a “sane” subset of the language [7], [8].
However, as recent studies have shown [2], many websites do
not confine themselves to this subset.

A potential disadvantage of error messages is that it is often
not possible to determine if the message represents a real
bug. This problem may be alleviated by studying bug reports
of websites, but unfortunately, a vast majority of real-world
websites do not make their bug databases publicly available.
Nonetheless, we believe that any user-visible error message
is a sign of the website’s unreliability and hence assume that
every error message is a bug in this study.

We make three main contributions in this paper. They are:
• We develop a systematic methodology to execute web

applications in multiple testing modes, and gather their
error messages. The methodology has been implemented
in the form of automated tools that we have developed 7.

• We observe the following results by executing the tools
on popular websites from the Alexa top 100:

– JavaScript errors abound in websites: Even pro-
duction websites that are mature and well-engineered
exhibit errors (average of 4 messages per website).

– Errors fall into well-defined categories: About
94% of the errors fall into one of four categories:
Permission Denied (52%), Undefined Symbol (28%),
Null Exception (9%), and Syntax Errors (4%).

– Presence of non-deterministic errors: About 72%
of the errors are non-deterministic (i.e., vary from
one execution to another) and depend on the speed
of interaction with the web application (i.e., fast,
medium or slow).

– Correlation with static and dynamic characteris-
tics: Error frequencies are positively correlated with
some of the static and dynamic characteristics of
the applications such as Alexa rank, the number
of domains containing JavaScript, the number of
function calls, the number of property deletions, the
number of object inheritance overridings, but not
with others such as size of the code or the number
of dynamic eval calls in the web application.

• We consider the implications of the findings for web
application programmers, testers and tool developers. In
a sense, our paper is a ”call to arms” for improving the
reliability of JavaScript-based Web 2.0 applications.

II. JavaScript Background
JavaScript has gained prominence as the de-facto client-

side programming language of the Web. In many respects,
JavaScript is similar to languages such as C and Java. How-
ever, it differs from them in important ways. For example,
JavaScript is dynamically typed, and allows code to be created
and executed at runtime (through the eval construct, for
example). Therefore, it is particularly prone to errors[1].

7We will make these tools freely available on the web

Note that JavaScript use is not confined to the web. For
example, Windows 7 allows the use of JavaScript in sidebar
widgets, and Firefox allows JavaScript code in its plugins.
Similarly, web applications may use JavaScript in the client-
side or the server-side. In this paper, we focus on web
applications 8 that use JavaScript in the client-side, which
represents the primary use case of the language today.

A website consists of three main components in its web-
pages. First, there is the HTML code, which is the basic
building block of the page. Second, there are cascading style
sheets (CSS), which are used to control the layout of elements
in a page. Finally, there is the JavaScript code, which is
either embedded in the webpages, or is imported as separate
files. The JavaScript code comprises what we call the web
application. Unlike CSS and HTML, JavaScript is used for
more than just the visual display of the page. As a result,
errors in JavaScript can have substantial impact, and may be
potentially exploited by attackers.

Typical web applications are structured as a set of event
handlers that are triggered by specific actions on the webpage,
or by the loading of the page. For example, an ‘on click’ event
handler will be executed whenever a certain element in the
webpage is clicked, if the developer has specified a handler
for the element. In addition, handlers may be triggered by
the expiration of timers and the receipt of AJAX messages
from the server. Because of this structure, a JavaScript-based
web application may continue execution even if one of the
handlers fails. As a result, the application may throw multiple
exceptions in a single execution. We consider some exceptions
that may be thrown below.

JavaScript code may be included in a web application either
when the web browser loads a page for the first time, or when
it is dynamically created at runtime (e.g., through eval). In
both cases, the code must be parsed before it is executed, and
errors in this process can also show up as syntax errors.

JavaScript is weakly typed, which means that there is no
constraint on the types of variables that a JavaScript variable
can refer to. Therefore, before invoking a method on an object
or accessing its field, programmers need to ensure that the
object has a member function or field by that name. Otherwise
the code will throw an Undefined Symbol exception.

JavaScript code typically interacts with the elements of the
webpage through a data structure called the Document Object
Model (DOM). The DOM is an internal representation of
the webpage within the web browsers and is organized in a
hierarchical structure. The JavaScript code often makes certain
assumptions about the DOM, which, if violated, can lead to
its failure. For example, an event handler may assume that a
certain DOM element is present and attempt to access it. A
NullException is thrown if the element is not present.

Finally, Web browsers enforce the Same-Origin Policy
(SOP), which ensures that JavaScript code from one domain
cannot access methods or properties from another domain.
Violations of the SOP result in a Permission Denied exception.

8We use the term web application to mean Web 2.0 application.

III. Anecdotal Examples
Prior to performing a full experiment on fifty websites, we

conducted an initial pilot study on five websites — CNN,
IMDb, Yahoo, Amazon, and YouTube. This pilot study al-
lowed us to formulate hypotheses with regards to the research
questions we would like to answer. In addition, since only
a few websites were considered, we were able to conduct a
detailed source code-level analysis of the errors that appeared
in these websites, helping us better explain the results from
the full experiment. One of our main findings from this pilot
study was that errors that appear in production websites could
be classified into at least three different categories: Permission
Denied Errors, Null Exception Errors, and Undefined Symbol
Errors.

In this section, we present some sample error messages from
each of the three error categories encountered in the pilot study
and explain how they came about. These examples illustrate
the subtle nature of these errors, and the potentially severe
implications such errors may have.

Permission Denied: Permission denied errors occur when
JavaScript code from one domain attempts to access JavaScript
components from another domain, violating the same-origin
policy. For example, the error message “Permission denied
for http://view.atdmt.com to call method Location.toString on
http://www.imdb.com.” appeared in the IMDb website. It turns
out, in this case, that view.atdmt.com is the domain used to
set up advertisements in the website.

This error illustrates an important point: JavaScript errors
are not solely caused by code written by the developer of the
web application, but may also be caused by code written by
others. The usage of JavaScript code coming from different
domains and the usage of JavaScript frameworks developed
separately by other programmers makes this intermingling of
JavaScript code even more prominent. Current web develop-
ment practices could therefore make JavaScript code prone to
errors if developers are not made aware of the potential pitfalls
associated with this intermingling of JavaScript code.

Null Exception: These errors occur when a property or
method is accessed via a null object. As an example, the error
message “C is null” was encountered in the Yahoo website.
We analyzed the root cause of this error message by tracing
through the JavaScript code that lead to the error. After doing
so, we found that the error was caused by a typographical
error in the value of the “id” attribute of a div element in the
DOM. The incorrect id caused the getElementById method to
return a null value, which, in this case, was assigned to the
variable “C”. The variable “C” was later used to update the
class name of the div element, causing a null exception to be
thrown (because “C” has been assigned the value null).

The root cause of this error suggests two important things.
First, the structure of the DOM could have an impact on
the reliability of a web application. In this example, the
error occurred because the div element’s ID — which is an
attribute found in the DOM — was incorrectly typed. Thus, the
reliability of JavaScript based web applications not only relies

on the semantic correctness of JavaScript code, but also on
correct DOM structure and correct interaction with the DOM.

Second, the appearance of even a small error could prevent
subsequent JavaScript code (which could potentially be impor-
tant) from being executed. In the example provided, the error
prevented the styling rules of three additional menu elements
from being updated by JavaScript code, since the execution
of the JavaScript file containing this code was halted once the
error appeared. Although this particular error only affected the
appearance of the website in a small way, such a subtle error
has the potential to lead to more severe consequences.

Consider, for example, a hypothetical scenario in which a
web application allows the user to modify his work online.
In this application, the user clicks on a Save button to save
his work, and JavaScript is used to specify the file name of
the server-side script that would handle the actual saving. If
the JavaScript code that specifies the file name is preceded by
JavaScript code that sets up other buttons in the application,
a null exception error caused by this preceding code would
prevent the server-side script for the “Save” button from being
specified. This is because the JavaScript code that sets up
the file name of the server-side script for the “Save” button
has been prevented from executing. As a result, clicking on
the “Save” button would do nothing, as it has no server-side
function associated with it.

Unfortunately, the user will not be aware of this error and
would likely assume that the button is working, so he will
simply click on this button every time he wishes to save his
work. Thus, by the time the user exits, his work will have been
completely lost. The user will not be aware that his work has
been lost until after he tries to modify the document again.
This hypothetical example goes to show that a fault that ini-
tially looks benign could have potentially severe consequences
by preventing the execution of subsequent JavaScript code.

Another Null Exception error was encountered in
Amazon, where the JavaScript error message “docu-
ment.getElementById(“inappDiv”) is null” appeared. This er-
ror appears only when the user is not signed in. From the
source code, inappDiv is the ID of a div element corresponding
to a form for reporting inappropriate content. This form is
available only for registered users of Amazon; thus, for users
who are not signed in, the inappDiv element does not exist.
This error also suggests the subtle nature of JavaScript errors.
In addition, it shows that the environment in which the web
application is executed (e.g., the interaction speed, whether
the user is signed in or not, etc.) could have an effect on the
appearance of JavaScript errors.

Undefined Symbol: These errors occur when JavaScript
code attempts to call a function or access a variable that
has not been previously defined. An example of this error
occurred in the Amazon website, where the error message
“gbEnableTwisterJS is not defined” appeared.

After doing the source code analysis, we found that the
variable “gbEnableTwisterJS” was used as a condition for
an if statement. Since this variable has not previously been
defined, an error took place. We did some additional research

and determined that prior versions of this JavaScript code
did in fact include the statement “gbEnableTwisterJS = 0”,
defining the gbEnableTwisterJS variable. This finding suggests
that gbEnableTwisterJS was initially used as a variable for the
page in which the error appeared, but was later discarded.
Unfortunately, not all references to gbEnableTwisterJS got
removed from the JavaScript code, leading to the error.

A similar error message which reads
“E(“set hp firefox instructions”) is not defined” appeared
in Yahoo. In this case, E is an associative array containing
the element “set hp firefox instructions”. This element was
defined in E in previous versions of the source code, but not
in the current version, leading to the error.

This simple error illustrates the difficulties associated with
the web application development process — in particular when
writing JavaScript code. JavaScript coding typically involves
the creation of different JavaScript files which interact with
one another during execution, and involves the creation of
many functions and variables; keeping track of these different
components to ensure consistency can be very complex. In the
example given, JavaScript code that was supposed to be taken
out has accidentally been left behind, showing that JavaScript
code can be difficult to manage, making the web application
prone to more programmer errors.

Further evidence of the difficulty of managing JavaScript
code could be found in CNN, where the error message
“cnn onMemFBInit() is undefined” appeared. From the source
code, it turns out that cnn onMemFBInit() is a func-
tion called only when the condition “CNN IsMemInit &&
CNN IsFBInit” is satisfied. In this case, both Boolean vari-
ables were set to true, causing the condition to be satisfied.
Interestingly, a comment could be found right after the state-
ment setting CNN IsMemInit to true that says, “this probably
isn’t needed anymore”. Thus, based on this comment, it seems
like the Boolean condition was no longer meant to be satisfied
and the cnn onMemFBInit() function was no longer meant to
execute; nonetheless, CNN IsMemInit was still set to true,
causing the function to get executed.

IV. Experimental Setup
In this section, we list the research questions we are

seeking to answer in our experiments. We then describe the
websites we consider in our evaluation. Finally, we explain
how we generate test suites and capture JavaScript errors in
the websites.

A. Research Questions

Question 1: Are JavaScript errors prevalent in web appli-
cations, and if so, do these errors share common traits across
websites?

Question 2: Does the speed of interaction affect the fre-
quency of JavaScript errors? An interaction refers to the clicks,
mouseouts, mouseovers and other events triggered by the user
when visiting a web application. The speed of interaction
refers to how quickly a user performs these interactions.

Question 3: Do non-deterministic JavaScript errors occur in

Web 2.0 applications? An error is considered non-deterministic
if its frequency differs from one execution to another.

Question 4: Are there correlations between the type of
content a web application serves and the number of errors
in that web application?

Question 5: Are there any correlations between a web
application’s static and dynamic characteristics and the number
of errors in that web application?

Question 6: Are there inter-category correlations among the
different error categories in Web 2.0 applications?

Question 7: Is the reliability of a web application affected
by the frameworks used in its construction?

B. Chosen Websites

The websites considered in this experiment belong to the
set of top 100 most visited websites as ranked by the web
traffic reporting website www.alexa.com on January 7, 2011.
The websites are relatively mature and well-engineered. We
choose fifty websites from the Alexa Top 100 (see Table I).
However, we also ensured that the chosen websites formed a
representative set with sufficient variety. For example, multiple
country-based Google websites appear in the Alexa Top 100;
since these websites have similar characteristics, only one
Google website was chosen. We also excluded adult websites
and sites that do not contain JavaScript code from the study.
The websites all contain several lines of JavaScript code
(ranging from 16 to 77722, average is 13856), and some span
multiple domains (up to 18, average is 6).

C. Overview of Experiment

In this section, we describe the steps in our experiment. The
tools used in the experiment are described in Section IV-D.

Our experiment consists of the following steps.
Step 1: Create test cases for each web application. A

test case represents an “interaction” with a web application,
which may consist of one or more events, depending on the
context of use of the web application. For example, opening a
webpage involves only a single click, so a test case imitating
this interaction would consist only of one event (i.e., clicking
the link). In contrast, using a search engine would consist
of two events — typing the keyword and clicking the search
button. Fifteen test cases are created for each web application
using the Selenium tool (see Section IV-D); this group of
fifteen test cases makes up one test suite. We created the test
cases based on normal interactions with the website — i.e.,
no attempts were made to break the websites to cause them
to produce errors.

Step 2: Replay the test suites corresponding to each web
application multiple times. Each test suite is replayed in three
testing modes — fast, medium, and slow — representing the
speed of interaction (i.e., the speed at which events in the test
suite are replayed in sequence), to determine the effect of the
speed of interaction on the frequency of errors (Question 2). To
determine if JavaScript errors in websites are non-deterministic
(Question 3), each test suite is replayed three times in each
of the three testing modes. Thus, each test suite is executed

TABLE I: Error Data and Static Characteristics. The PD, NE, US, SE, and Misc. columns refer to the total number of distinct errors in
each error category across all nine runs of the experiment for each website. The JavaScript Errors column refers to the totals. Note that the
extensions for the websites are .com unless specified otherwise.

Bytes of Number of Java- Non-
Website Alexa JavaScript Number of Domains with PD NE US SE Misc. Script Deterministic

Rank Code Domains JavaScript Errors Errors
Google 1 164089 1 1 0 0 0 0 0 0 0
YouTube 3 420894 2 1 2 2 0 0 0 4 4
Yahoo 4 504503 4 3 1 1 1 0 1 4 3
Baidu 6 12759 1 1 1 0 0 0 0 1 0
QQ 9 210324 7 6 0 1 0 0 0 1 1
MSN 11 122143 7 5 4 0 1 0 0 5 4
Amazon 13 225149 3 2 0 1 1 0 0 2 0
Sina.com.cn 16 512392 18 17 4 0 2 0 0 6 5
WordPress 19 151959 8 7 0 0 1 0 0 1 1
Ebay 20 263615 3 2 1 0 0 0 0 1 0
LinkedIn 22 289599 6 5 0 0 0 0 2 2 2
Bing 23 28678 1 1 3 0 0 0 0 3 2
Microsoft 24 276465 9 9 1 0 0 2 0 3 1
Yandex.ru 25 221566 3 2 0 0 1 0 0 1 0
163 28 438689 12 11 2 0 1 0 1 4 2
mail.ru 30 201063 3 2 0 1 0 1 0 2 1
PayPal 31 258071 2 1 0 0 2 1 0 3 0
FC2 32 91775 6 5 2 0 0 0 0 2 2
Flickr 36 8736 3 1 7 0 0 0 0 7 7
IMDb 37 380061 7 6 4 0 0 0 0 4 4
Apple 38 416295 2 1 0 2 1 0 1 4 3
BBC 43 557137 11 11 0 0 1 0 0 1 0
Sohu 44 224148 12 12 2 0 1 1 0 4 3
Go 45 83512 6 6 4 0 0 0 0 4 4
Soso 46 40439 2 1 1 0 0 0 3 4 0
Youku 50 298149 6 5 0 0 1 0 0 1 1
AOL 51 301306 6 5 1 1 1 0 0 3 2
CNN 54 892169 11 11 4 0 5 0 0 9 9
MediaFire 59 485692 3 2 0 0 1 0 0 1 0
ESPN 61 628953 9 8 3 0 2 0 0 5 5
MySpace 62 720027 8 6 4 0 1 0 0 5 4
MegaUpload 63 139857 3 2 6 0 0 0 0 6 6
Mozilla 64 138855 2 1 0 0 1 0 0 1 0
4shared 66 233052 5 4 2 0 2 0 1 5 2
Adobe 67 591191 4 3 0 0 3 0 2 5 0
About 68 147027 2 2 3 0 2 1 0 6 5
LiveJournal 74 343701 7 6 4 0 0 0 0 4 4
Tumblr 75 247224 4 3 0 1 0 0 0 1 1
GoDaddy 77 317264 4 2 0 0 1 0 0 1 0
CNET 78 987612 13 12 12 3 0 1 0 16 11
YieldManager 82 164512 1 1 0 0 1 0 0 1 0
Sogou 83 8436 1 1 0 0 3 0 0 3 0
Zedo 84 96504 4 4 1 0 1 0 0 2 0
Ifeng 85 101255 11 10 2 3 3 1 0 9 8
ThePirateBay.org 86 506 2 1 2 0 0 0 0 2 2
ImageShack.us 88 425050 10 10 6 1 1 0 0 8 6
Livedoor 91 143131 3 3 2 0 2 0 0 4 4
Weather 94 1637291 8 8 4 0 1 0 0 5 4
NYTimes 95 762306 12 11 6 1 0 0 0 7 6
Netflix 97 208821 2 2 0 0 10 0 1 11 10

Total 101 18 55 8 12 194 139

a total of nine times in our experiment. We use the Selenium
tool to replay the test suites (Section IV-D). JavaScript errors
that occur during a test suite’s replay are typically displayed
on a console. For each run of the test suite, the error messages
are redirected to a file (called an error file).

Step 3: Parse the error files to collect error statistics.We
have written a parser (see Section IV-D) to parse the error
files and count the number of distinct errors. Figure 1 shows
the three attributes of a message. Two errors are considered
distinct if any one of the three attributes are different: (1) their
corresponding text descriptions, (2) the JavaScript files that
triggered the errors, or (3) the lines of code that triggered the
errors. For each distinct error, the parser counts the actual
number of times the error appeared in each test suite run
(because an error may appear multiple times in a run).

For each distinct error, the parser determines if the error is
non-deterministic by comparing its frequencies in each run. An
error is considered non-deterministic in a given testing mode
if its frequency differs across the three runs of that testing
mode (because this indicates that the error was triggered in
some executions but not in others). We count an error as
non-deterministic if it is non-deterministic in any of the three
testing modes. Finally, the parser classifies each distinct error
message into five mutually exclusive categories and counts the
number of errors in each category. The error categories were
determined based on an initial pilot study of five websites.

D. Tools

For this experiment, the Firefox v. 3.6.13 web browser is
used under the Mac OS/X Snow Leopard (10.6.6) platform.

Fig. 1: A screenshot of a JavaScript error message as shown in
the Firebug error console. The error message consists of (1) the
text description, (2) the line where the error occurred, and (3) the
JavaScript file containing the erroneous line.

The machine used for the experiments was a 2.66 GHz Intel
Core 2 Duo, with 4 GB of RAM.

The Selenium9 IDE (v. 1.0.10) is used to create test cases
and group the test cases together into test suites. Selenium
is an extension to the Firefox web browser that captures and
records user interaction with a webpage and converts these
interactions into events for later replay. Examples of events
are clicks, mouseouts, mouseovers, and dropdown selections.

To create the test suites, we interact with each web site in
reasonable ways to exercise its behavior. The Selenium IDE’s
recorder runs in the background and records this interaction to
create the test case. In some cases, Selenium commands need
to be entered manually due to limitations of the Selenium IDE.
For example, the Selenium recorder currently does not support
the recording of mouseout and mouseover events; however,
commands for these events are added manually to the test
case. Fifteen test cases for a given web application together
constitute the test suite for this web application.

Once a test suite is created, Selenium can replay this test
suite at a speed that can be set by the user. The replay speed is
adjusted using a slider that ranges from “Slow” to “Fast”. In
our experiments, the testing modes correspond to three replay
speeds — fast, medium, and slow. Selenium replays the fifteen
test cases at the chosen speed, for each application. Each test
suite is run three times in each testing mode.

The Firebug 1.6.1 debugger, which is an extension to
Firefox, is used to capture JavaScript errors during replay.
Although Firebug can capture other errors such as those
in CSS and XML, we modify its settings to capture only
JavaScript errors, which are this study’s focus.

Firebug extension called ConsoleExport10 is used to export
the error messages to an error file. The error files are parsed
to collect error statistics, as described in Section IV-C.

To help us answer Question 5, we collect each web ap-
plication’s static characteristics using two Firefox extensions:
Web Developer11 and Phoenix12. We use Web Developer to
determine the JavaScript code size in the web application,
and we use Phoenix to count the number of domains and the
number of domains with JavaScript. The static characteristics
are based on the initial loading of each website’s homepage.

For the dynamic characteristics data, we use the traces col-
lected by Richards et al. [2]. We downloaded the traces from

9http://seleniumhq.org/
10http://www.softwareishard.com/blog/consoleexport/
11http://chrispederick.com/work/web-developer/
12https://addons.mozilla.org/en-us/firefox/addon/phoenix/

the authors’ website13. Note that for our dynamic analysis, we
only considered websites studied by Richards et al.; only 29
of the 50 websites overlap between the studies. Also, note
that the study done by Richards et al. is based on Safari,
not Firefox, and they consider a different test suite for the
websites. Nonetheless, we assume that their measurements
represent the true dynamic characteristics of the websites.

Two of the dynamic parameters, properties deleted and
object inheritance overriding, need further explanation [2].
Properties deleted refers to the number of object fields, object
methods, or DOM elements that are deleted dynamically.
Object inheritance overriding refers to the number of times
a method belonging to a parent object is overriden by a
child object. In other words, this measures the amount of
polymorphism present in the application.

Finally, for Question 7, the frameworks were determined
using the Library Detector14 plugin available for Firefox.

V. Results
The results section is organized paralleling the research

questions in Section IV-A. For each result, (1) we state our
observation (Observation), (2) refer to the data from which we
made this observation (Data), and (3) explain how we arrived
at this observation and its possible causes (Explanation).

A. Distribution of Error Categories

Table I presents the total number of distinct errors encoun-
tered across all nine runs of each website’s test suite. The
following observations may be made based on the table.

Observation 1: JavaScript errors abound in production Web
2.0 applications, with an average of around 4 errors per
website.

Data: JavaScript Errors column in Table I
Explanation: Table I shows that one or more JavaScript er-

rors appeared in 49 of the 50 websites tested in our experiment
(Google was the only website which did not have errors). The
maximum distinct error count was 16 (CNET). On average,
3.88 distinct errors appeared in each web application, with a
standard deviation of 3.02.

Observation 2: Errors predominantly fall into four distinct
categories, which are described below.

Data: PD, NE, US, SE, and Misc. columns in Table I
Explanation: The error messages were found to belong to

the following categories.
Permission Denied Errors (PD) – These errors occur when

JavaScript code from one domain attempts to access an
object or variable belonging to a different domain in the
same webpage, thereby violating the same-origin policy. In
our study, these errors are often caused by the inclusion
of advertisements from domains attempting to access the
Location.toString method in the domain of the website.

Null Exception Errors (NE) – These errors occur when
a null value is used to access properties or methods.

13http://sss.cs.purdue.edu/projects/dynJavaScript/
14https://addons.mozilla.org/en-US/firefox/addon/library-detector/

For example, if a variable X is assigned the value docu-
ment.getElementById(”label”), but the id “label” does not
exist in the DOM, X will be assigned the value null; when
X.innerHTML is used in a subsequent line, a null exception
error will occur.

Undefined Symbol Errors (US) – These errors occur when
the JavaScript code (1) calls a function that has not been
defined, (2) refers to a method or property that does not belong
to a particular object, or (3) uses a variable that has either not
been declared or assigned a value. For example, if an object A
has the properties a1 and a2, while object B has the properties
b1 and b2, attempting to access a2 via object B (i.e., B.a2)
results in an undefined symbol error.

Syntax Errors (SE) – These errors occur due to syntactic
violations in JavaScript code. Examples include missing end
brackets, missing semi-colons, and unterminated string literals.
They can also occur as a result of differences in parsing
JavaScript among browsers. All syntax errors found in our
study came from static code (as opposed to dynamic code
generated by the eval function). Also, of the eight syntax
errors encountered in our study, six came from JavaScript
code written specifically for the website, while two came from
external JavaScript code for advertisements.

Miscellaneous Errors (Misc.) – Errors that occur in only a
single web application and do not fall under the above cate-
gories are categorized as “Miscellaneous” errors. For example,
an “uncaught exception” error appeared in LinkedIn, but did
not appear in other websites, and is therefore classified under
the “Miscellaneous” category.

Distribution of errors: Errors belonging to the permission
denied category are the most prominent. Based on the data
from Table I, permission denied errors make up 52.1% of
all errors; null exception errors make up 9.3%; undefined
symbol errors make up 28.4%; and syntax errors make up
4.1%. The remaining errors are in the Miscellaneous category.
As mentioned, permission denied errors are mostly caused
by advertisements. We find that advertisements are present in
over 30 of the 50 websites, and hence the dominance of this
category.

B. Effect of Testing Mode

In the previous subsection, we studied the number of distinct
error messages. In this section, we analyze the actual number
of occurrences of the error messages in order to understand
the effect of testing mode. Due to space constraints, we focus
on two websites — CNN and mail.ru — to illustrate the trends
we observe across all web applications. Tables II and III show
the occurrences of a subset of the error message that appeared
in CNN and mail.ru, respectively, for each testing mode.

Observation 3: The appearance of an error message de-
pends on testing mode (i.e., the speed of interaction).

Data: Tables II and III (Average columns)
Looking at the “Average” columns in Tables II and III, it

becomes apparent that some error messages appear in one
mode, but not in another. For example, in CNN, the error
“targetWindow.cnnad showAd is not a function” appears in

fast mode, but does not appear in the other two modes.
Similarly, the error “window.parent.CSIManager is undefined”
appears in slow mode, but not in other modes. For mail.ru, the
error “b is null” appears in fast mode, but not in the medium
and slow modes.

Further, the tables show that some errors are more fre-
quent in one mode compared to others. For example, the
error message “Permission Denied for ad.doubleclick.net to
call method Location.toString on www.cnn.com” appears an
average of 12.33 times and 10.00 times in fast and slow mode,
respectively, but only appears an average of 4.33 times in
medium mode.

C. Appearance of Non-deterministic Errors

In this section, we present observations regarding the ap-
pearance of non-deterministic errors in Web 2.0 applications.
Recall that a non-deterministic error is one whose frequency
varies across multiple executions of the web application in the
same testing mode.

Observation 4: Non-deterministic errors occur in many
Web 2.0 applications.

Data: Tables II and III
Explanation: Tables II and III show the actual number of

appearances of several errors in different runs. From this data,
it can be seen that for a given testing mode, the number
of actual occurrences of some errors vary across different
executions. These are classified as non-deterministic errors.
For example, the error “Permission Denied for view.atdmt.com
to call method Location.toString on www.cnn.com” in CNN
(second row) in slow mode, appears 25 times in the first
run, 20 times in the second run, and 16 times in the third
run. Similarly, for mail.ru, in fast mode, the error “b is null”
appears twice in the first and third runs, but appears three
times in the second run.

Non-deterministic errors are caused by different factors in
each of the modes. Non-deterministic errors in the fast and
medium modes are typically caused by switching pages (i.e.,
navigating to a new webpage) in the middle of accessing
a member of the “parent” or “window” objects. During the
switch, the value of the “parent” and/or “window” object
changes because the values of these objects are dependent on
the page being visited. As a result, if the switch happens while
a member of these objects is being accessed in the previous
page, the objects will be undefined during the transition,
leading to the error. Such errors only occur if the switch
happens during execution of the specific line of code that uses
“parent ” or “window”; since the switch does not always align
with the execution, it is non-deterministic in nature.

To verify the above explanation, a subset of the test suites
was run with pauses introduced between each page switch in
both fast and medium modes. The non-deterministic errors no
longer appeared, indicating that the sudden page switches were
responsible for the non-deterministic errors in both modes.

In contrast, most of the non-deterministic errors in slow
mode are caused by advertisements, mainly due to permis-
sion denied errors. In some runs, the advertisement appears

TABLE II: Actual number of appearances of errors in CNN across different runs (long error messages have been shortened to save space).

Fast Mode Medium Mode Slow Mode

Error Message Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average

Permission Denied for
view.atdmt.com to call
method Location.toString on
marquee.blogs.cnn.com

4 4 4 4.00 1 3 3 2.33 2 2 3 2.33

Permission Denied for
view.atdmt.com to call
method Location.toString on
www.cnn.com

20 17 20 19.00 22 22 16 20.00 25 20 16 20.33

Permission Denied for
ad.doubleclick.net to call
method Location.toString on
www.cnn.com

8 16 13 12.33 3 6 4 4.33 7 12 11 10.00

targetWindow.cnnad showAd is
not a function

0 2 5 2.33 0 0 0 0.00 0 0 0 0.00

window.parent.CSIManager is un-
defined

0 0 0 0.00 0 0 0 0.00 1 1 0 0.67

TABLE III: Actual number of appearances of errors in mail.ru across different runs (long error messages have been shortened to save space).

Fast Mode Medium Mode Slow Mode

Error Message Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average Run 1 Run 2 Run 3 Average

missing ; before statement 7 7 7 7.00 7 7 7 7.00 7 7 7 7.00

b is null 2 3 2 2.33 0 0 0 0.00 0 0 0 0.00
TABLE IV: Average number of distinct errors for each web applica-
tion type

Website Average Average Number of
type Errors Non-deterministic errors sites

Search Engine 2.17 1.50 6

Media Download 4.25 3.50 8

News 5.35 4.00 17

Blogs 2.00 2.00 3

Shopping 4.67 3.33 3

Social Networking 3.50 3.00 2

Business 2.64 1.09 11

in a given page, but in other runs, the advertisement may
not appear, explaining the non-deterministic behaviour. This
behaviour is not as prominent in fast and medium modes
because in these modes, the test suites are switching between
pages so quickly that the erroneous JavaScript code is not
triggered during testing.

Overall, when all distinct errors across all websites are
considered, fast mode exposes a total of 82 non-deterministic
errors; medium mode exposes 90, and slow mode exposes
100 non-deterministic errors (not shown in the table). Thus,
counter-intuitively, slow mode actually exposes the most non-
deterministic errors across the modes.

Observation 5: Non-deterministic errors are more promi-
nent than deterministic errors in Web 2.0 applications, and
constitute 72% of the total distinct errors.

Data: JavaScript Errors, Table I

Explanation: From Table I, the total number of distinct
errors found across all websites is 194 (summation of the
“JavaScript Errors” column). Of these 194 errors, 139 are non-
deterministic in one or more of the three testing modes (the
summation of the “non-deterministic errors” column).

D. Web Application Type

We categorized the fifty websites in our study based on
the category of content they serve. The categories are roughly
based on the the categorizations provided in CyberPatrol15.
Table IV shows the number of websites in each category, the
average number of errors in each category, and the average
number of non-deterministic errors.

Observation 6: News websites have the highest average
number of errors and non-deterministic errors across all ap-
plication types.

Data: Table IV
Explanation: On average, news websites have 5.35 errors,

which is higher than any other web application type. This is
also true for non-deterministic errors. Although this behaviour
requires further investigation, we believe that the prominence
of errors in news websites has to do with the overall structure
of these kinds of websites. News websites tend to be very
dynamic in structure, containing advertisements and flashing
content, and allows many interactive features such as polls. In
other words, news websites look “busier” compared to other
website types and hence are more likely to exhibit errors.

E. Correlation with Static and Dynamic Characteristics

In this section, we study the correlation of JavaScript errors
with the static and dynamic characteristics of the tested web-
sites. We use the Spearman rank correlation coefficient because
it is non-parametric and hence does not require the data to
be normally distributed [9]. Table V shows the Spearman
coefficients between each error category and each static char-
acteristic of the web application. Table VI shows the Spearman
coefficients of the JavaScript errors with the dynamic web
application characteristics. The higher the magnitude of the
coefficient, the higher the correlation (a positive correlation
means one value has the tendency to increase as the other

15www.cyberpatrol.com/research/sitereview.asp

TABLE V: Spearman rank correlation coefficients between error
categories and static web application characteristics. Correlations at
the 0.05 level are marked with a *, while those at the 0.01 level are
marked with **.

Correlations

Error
Category

Alexa
Rank

JavaScript Size (Bytes) Domains Domains
with
JavaScript

PD 0.222 0.166 0.465** 0.450**

NE 0.213 0.401** 0.334* 0.312*

US 0.374** 0.246 0.152 0.200

SE 0.339* 0.305* 0.420** 0.435**

All Errors 0.375** 0.273 0.397** 0.396**

increases, while a negative correlation means one value has a
tendency to decrease as the other increases).

As mentioned in Section IV-D, dynamic characteristics data
were available for only 29 of the 50 websites. Of these 29
websites, only two incurred syntax errors. As a result, we do
not report the values for this category. Further, we study the
correlations with seven dynamic characteristics in their study.

As always, it is important to remember that correlation does
not imply causation. However, correlations can still provide
explanations as to the possible causes of the JavaScript errors,
which can be verified through additional investigation. We
have not investigated causations in this study, and hence our
explanations for the results are anecdotal at this point.

We now report the significant trends in the correlation
coefficients. We base our interpretation of the correlation coef-
ficients on the guidelines suggested in [10], as follows: values
of 0.00 to 0.35 represents no correlation or low correlation,
0.35 to 0.50 represents a medium correlation, and values
higher than 0.50 represent a high correlation.

Observation 7: There is a medium correlation between the
total number of JavaScript errors and the number of domains
and the number of domains containing JavaScript code.

Data: Table V
Explanation: Table V indicates that JavaScript errors have

a 0.397 correlation with the total number of domains, and a
0.396 correlation with the number of domains with JavaScript,
suggesting that applications using more domains tend to be
less reliable. Further, permission denied errors have a 0.465
correlation with the total number of domains, and a 0.450
correlation with the number of domains with JavaScript. The
reason for this behavior is that permission denied errors
occur when JavaScript code from one domain tries to access
resources from another domain. Thus, the more domains there
are (with or without JavaScript), the higher the chances of
different domains trying to access resources from one another.

Observation 8: There is a low correlation between the total
number of distinct JavaScript errors and the JavaScript code
size (i.e., number of bytes).

Data: Table V
Explanation: The Spearman rank correlation coefficient

between the total number of distinct JavaScript errors and
the JavaScript code size (in bytes) is 0.273. Thus, there is a
low correlation between these two parameters, suggesting that

smaller code sizes will not necessarily lead to fewer errors
because even with few lines, many functions may be called
while the web application is running. However, null exception
errors have a medium correlation of 0.401 with the JavaScript
code size. A source code-level analysis of the JavaScript
program may be required to explain this latter result.

Observation 9: There is a medium correlation between the
total number of distinct JavaScript errors and the Alexa rank
of the website.

Data: Table V
Explanation: The Spearman rank correlation coefficient

between the total number of distinct JavaScript errors and
the Alexa rank is 0.375. Thus, there is a medium correlation
between these two parameters, suggesting that less popular
websites may have higher number of errors. This result
suggests that heavily visited websites are likely to be more
reliable. Further investigation across a wider range of Alexa
ranks is needed to substantiate this result.

Observation 10: There is a medium correlation between the
total number of distinct null exception errors and the number
of functions called dynamically by the web application.

Data: Table VI
Explanation: As shown in Table VI, the Spearman rank

correlation coefficient between the total number of distinct
null exception errors per web application and the number of
functions called at runtime is 0.426. This medium correlation
could be explained by the fact that null exception errors are
often caused by failed accesses to the DOM of the web appli-
cation (e.g., undefined DOM element ids causing a variable to
be null after a call to getElementById). This is also supported
by the next observation. Because DOM manipulation is one
of the most common usages of JavaScript [11], an increase in
the number of functions called at runtime would increase the
number of DOM accesses, thereby increasing the likelihood
of null exception errors.

Observation 11: There is medium correlation between the
number of null exception errors and the average number of
element/property deletions in the JavaScript code.

Data: Table VI
Explanation: The correlation coefficient between the num-

ber of null exception errors and the average number of property
and element deletions is 0.448, signifying a medium correla-
tion. We believe this behaviour is also due to the relationship
between null exception errors and DOM accesses (see previous
observation). Specifically, if a DOM element is deleted and the
JavaScript code tries to subsequently access that element, the
resulting value will be null, thus resulting in a null exception.

Observation 12: There is medium correlation between the
number of undefined symbol errors and the average number
of object inheritance overridings in the code.

Data: Table VI
Explanation: The Spearman coefficient between the num-

ber of undefined symbol errors and the average number of
object inheritance overridings is 0.490, signifying a medium
correlation. If we assume that object inheritance overridings
is a proxy for the amount of polymorphism in the application,

TABLE VI: Spearman rank correlation coefficients between error categories and dynamic web application characteristics. Correlations at the
0.05 level are marked with a *, while those at the 0.01 level are marked with **.

Correlations

Error Function Variadic Eval Properties Properties Inheritance
Cat. Calls Function Calls Calls Added Deleted Overriding

PD 0.159 -0.053 0.126 -0.005 0.056 -0.070

NE 0.426* 0.235 0.195 0.152 0.448* 0.269

US 0.074 0.240 0.200 -0.069 0.033 0.490**

Total 0.308 -0.003 0.257 0.099 0.128 0.186

then this number reflects the fact that programmers are more
likely to be confused about the identity of objects when the
code has a lot of polymorphism. For example, if an object B
inherits from object A, and object B has a method called b()
which object A does not have, then, a call to A.b() would lead
to an undefined symbol error.

Observation 13: There is a low correlation between the
total number of distinct JavaScript errors and the number of
calls to the eval function.

Data: Table VI
Explanation: The correlation coefficient between the total

number of distinct JavaScript errors and the number of eval
calls is 0.257. In previous studies [5], [4], it has been suggested
that calls to eval tend to compromise the security and privacy
of the web application. On the other hand, our study suggests
that the number of eval calls does not correlate with the
frequency of errors in the web application. A possible reason
could be that eval is used primarily for JSON and other
mundane reasons [12].

F. Inter-Category Correlations

In this section, we present the inter-category correlations we
found in our study, namely those among different categories
of errors identified in Section V-A. Due to space constraints,
we do not report these results in the tables.

Observation 14: The correlations of each non-
miscellaneous error category (permission denied, null
exception, and undefined symbol) with syntax errors range
from medium to high.

Data: Table I
Explanation: After calculating the Spearman rank correla-

tion coefficients, the correlations between total syntax errors
and total permission denied, null exception, and undefined
symbol errors are 0.378 (medium), 0.635 (high), and 0.409
(medium), respectively. This result suggests that syntax errors
often lead to errors belonging to other categories (except
miscellaneous). Table I supports this observation — all the
websites in which an syntax error appeared, one or more errors
from the non-miscellaneous categories appeared.

Observation 15: There is a high correlation between the
number of non-deterministic null exception errors and the
number of non-deterministic undefined symbol errors.

Data: Table I
Explanation: We found the Spearman rank correlation

coefficient between non-deterministic null exception errors
and non-deterministic undefined symbol errors to be 0.560,
suggesting that there is high correlation between these two

TABLE VII: Average number of distinct errors for each framework

JavaScript Average Number of
Framework Errors sites

jQuery 4.04 26

Yahoo UI 3.67 6

Prototype 3.00 3

Mixed 5.25 4

None 2.10 10

error categories when it comes to non-deterministic errors.
This behaviour requires further investigation.

G. JavaScript Framework

We now analyze the relationship between errors in a web
application and the JavaScript framework(s) they use. Ta-
ble VII shows the classification of websites by framework.
websites using multiple frameworks are classified as “Mixed”,
while those using no frameworks are classified as “None”.
Framework categories encompassing fewer than three websites
are not shown as they may not be significant.

Observation 16: Websites using multiple JavaScript frame-
works have a higher number of JavaScript errors compared to
websites using only a single framework.

Data: Table VII
Explanation: Websites using multiple JavaScript frame-

works had an average of 5.25 errors — higher than the
average for websites using only a single framework. It has
been suggested that using multiple frameworks for a single
website can affect the performance of Web 2.0 applications,
as it forces the client to download more JavaScript code[13].
Based on our result, another reason to avoid mixed framework
usage is that it can cause the web application to become unre-
liable, perhaps due to inconsistencies between the frameworks,
and the difficulty of maintaining code written using multiple
frameworks. Another noteworthy result is that websites that do
not deploy any framework do not have significantly different
number of errors than those that use frameworks.

VI. Threats to Validity
An internal threat to the validity of our results is that the

number of web applications considered in our study is limited.
In addition, we restricted our study to the most visited websites
according to Alexa. It is possible that some of our observations
may not hold for websites with lower Alexa ranks.

An external threat to validity is that we performed our study
on only one browser (Firefox). We believe the Firefox browser
is a fitting choice to carry out our empirical study because of

its popular usage. However, future work may have to consider
the behaviour of web applications in other commonly-used
browsers such as Internet Explorer, Safari, and Opera.

In our study, we have also assumed that all the JavaScript
error messages displayed by the Firebug console are actual
bugs, and that bugs are representative of the reliability of
the web application. JavaScript bug reports may be used to
confirm the nature of these error messages; unfortunately,
such bug reports are often not available even for popular web
applications such as the ones we studied. As such, we consider
this a potential construct threat to our results’ validity.

VII. Related Work
There have been several studies analyzing the causes of

errors that occur at the server-side of web applications and
their ensuing reliability [14], [15], [16]. Other studies have ex-
amined the end-to-end availability of internet applications [17],
[18]. Our study differs in that we focus on errors in JavaScript
code, which executes on the client (i.e., web browsers).

Recent work has investigated the client-side reliability of
web applications. Methods such as user behaviour analysis
[19], robustness testing [20], invariant extraction [21], and
web fault taxonomy creation [22] have been used to improve
the detection of client-side errors. Further, static analysis has
been used to find errors in web applications [7], [8], [23].
Record and replay tools such as Mugshot [24] and WaRR [25]
aid in the reproduction of client-side errors. However, unlike
our work, these papers do not conduct an empirical study of
JavaScript errors in web applications.

A number of papers have studied the dynamic behavior of
JavaScript programs. For instance, Richards et al. [2] conduct
an empirical study of dynamic JavaScript behaviour based on
collected traces; similar work was done by Ratanaworabhan
et al. [26] with their JSMeter tool. Fortuna et al. [27] perform
a limit study on the parallelism available in JavaScript code.
However, none of these papers investigate the reliability of
web applications.

Empirical studies on the security [28], [4], [8] and privacy
[5] of Web 2.0 applications have been conducted on the Alexa
top websites and popular widgets. These papers also differ
from our study in that they do not study web applications’
errors, which may or may not lead to security vulnerabilities.

VIII. Summary and Implications
Summary: In this paper, we have performed an empirical

study of JavaScript error messages logged by fifty of the top
100 websites. Our results show that errors: (1) abound in
these web applications, (2) fall into well-defined categories,
(3) are often non-deterministic in nature, and (4) exhibit
correlations with both static and dynamic characteristics of the
web application, and (5) depend on the speed of interaction.

The high frequencies of errors is surprising given that these
are highly popular and mature, production websites, and that
our test cases constitute normal interactions with them. One
reason for this result may be that many of the errors occur due
to the interaction of the JavaScript code with the the webpage’s

DOM, and because they are non-deterministic. This makes
the errors difficult to find during the development and testing
phases of the web application.

We emphasize that this study is only a preliminary step.
A more comprehensive study of websites beyond the most
popular ones in Alexa may reveal other classes of errors
beyond that found in our study. Such a study would reveal
to what extent the reliability of a website correlates with
its popularity (Observation 9 suggests an inverse correlation),
which can quantify the benefits of reliability improvement.

We therefore believe that there needs to be a concerted effort
on the part of programmers, testers and tool developers (static
and dynamic analysis) to improve the reliability of JavaScript
based Web 2.0 applications. We examine the implications of
our results on these three groups.

Implications for Programmers: For programmers, our
observations could act as guidelines that help them write
more reliable JavaScript code. For instance, Observation 12,
which states that object inheritance overriding correlates well
with undefined symbol errors, suggests that inheritance in
JavaScript is best avoided unless absolutely essential. Methods
such as namespacing and reuse of methods across objects
have been suggested as alternatives to inheritance, which is
error-prone due to the complicated nature of Prototype-based
inheritance in JavaScript [29]. In addition, Observation 7
suggests that using fewer domains could result in fewer errors.
Finally, Observation 16 suggests that mixing of JavaScript
frameworks should be avoided. Finally, the categorization of
JavaScript errors (Observation 2) can also help programmers
shift their attention towards preventing these common errors.

Implications for Testers: One of the most significant
implications of our results is that JavaScript testing should be
done in different testing speeds (i.e., testing modes). According
to Observation 3, each testing mode exposes errors that are
different from the others; thus, testing in only one mode would
allow the tester to catch only a (small) subset of the errors.

In addition, we have shown in our results that non-
deterministic errors are prominent in web applications (Obser-
vations 4 and 5). Thus, it is important to create testing schemes
that specifically attempt to catch these kinds of errors. In our
results, for example, we found that several non-deterministic
errors were caused by advertisements, particularly in slow
mode (see Observation 4). This observation calls for the need
for more extensive integration testing, in which the JavaScript
code is tested after the advertisements have been integrated.
This could even be offered as a service by advertisement
serving applications such as Google AdSense 16.

Traditionally, testers have used code coverage as a metric
to measure the completeness of their tests. The inherent
assumption in the use of this metric is that the amount of
code in the application correlates with the number of errors.
However, Observation 8 suggests that for web applications
using JavaScript, there is a low correlation between these
two parameters. Thus, when testing the reliability of web

16www.google.com/adsense/

applications, code coverage may not be the appropriate metric.
Instead, path coverage may be a better choice.

Implications for Tool Developers: The dependence of
the appearance of errors on testing mode (Observation 3)
means that more emphasis should be placed on the speed
of interaction when testing JavaScript code. Such tests could
be simplified if JavaScript testing tools are developed to
automatically perform tests in different testing modes. For
example, in Selenium, testing mode needs to be adjusted
manually using a slider, which means only one testing mode
could be considered at each test suite run. It would, however,
be much simpler for testers to specify multiple testing modes
that should be considered prior to running the test suite.

Our observations also suggest the need for static analysis
tools appropriate for JavaScript. Simple syntactic checks no
longer suffice, as the execution of JavaScript code depends not
only on the semantic correctness of individual event handlers,
but also on the order events are triggered and the current state
of the DOM. For example, Observation 11 suggests that the
number of element or property deletions correlates with the
number of null exception errors. Static analyzers of JavaScript
code should therefore consider the DOM in their analysis.
Further, knowledge of the common kinds of errors may enable
targeted checking by static analysis tools.

References
[1] T. Mikkonen and A. Taivalsaari, “Using JavaScript as a Real Programming

Language,” Sun Microsystems Laboratories Technical Report, vol. 168, 2007.
[2] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An analysis of the dynamic

behavior of JavaScript programs,” in Proceedings of the 2010 ACM SIGPLAN
conference on Programming language design and implementation, ser. PLDI ’10,
2010, pp. 1–12.

[3] P. Ratanaworabhan, B. Livshits, and B. Zorn, “JSMeter: comparing the behavior
of JavaScript benchmarks with real web applications,” in Proceedings of the 2010
USENIX conference on Web application development, 2010, pp. 3–3.

[4] C. Yue and H. Wang, “Characterizing insecure JavaScript practices on the web,” in
Proceedings of the 18th international conference on World wide web, ser. WWW
’09, 2009, pp. 961–970.

[5] D. Jang, R. Jhala, S. Lerner, and H. Shacham, “An empirical study of privacy-
violating information flows in JavaScript web applications,” in Proceedings of the
17th ACM conference on Computer and communications security, ser. CCS ’10,
2010, pp. 270–283.

[6] A. Chou, J. Yang, B. Chelf, S. Hallem, and D. Engler, “An empirical study of
operating systems errors,” in Proceedings of the eighteenth ACM symposium on
Operating systems principles, ser. SOSP ’01, 2001, pp. 73–88.

[7] A. Guha, S. Krishnamurthi, and T. Jim, “Using static analysis for AJAX intrusion
detection,” in Proceedings of the 18th international conference on World Wide Web,
ser. WWW ’09, 2009, pp. 561–570.

[8] S. Guarnieri and B. Livshits, “Gatekeeper: mostly static enforcement of security
and reliability policies for JavaScript code,” in Proceedings of the 18th conference
on USENIX security symposium, ser. SSYM’09, 2009, pp. 151–168.

[9] S. Kan, Metrics and models in software quality engineering. Addison-Wesley
Longman Publishing Co., Inc. Boston, MA, USA, 2002.

[10] J. Cohen, Statistical power analysis for the behavioral sciences. Lawrence
Erlbaum, 1988.

[11] H. Bidgoli, The Internet Encyclopedia. John Wiley & Sons Inc, 2004.
[12] G. Richards, C. Hammer, B. Burg, and J. Vitek, “The eval that men do: A large-

scale study of the use of eval in javascript applications,” in ECOOP, 2011.
[13] Pingdom. (2008, Jun.) JavaScript framework usage among top websites.

[Online]. Available: http://royal.pingdom.com/2008/06/11/javascript-framework-
usage-among-top-websites/

[14] J. Tian, S. Rudraraju, and Z. Li, “Evaluating web software reliability based on
workload and failure data extracted from server logs,” IEEE Trans. Softw. Eng.,
vol. 30, pp. 754–769, 2004.

[15] K. Goseva-Popstojanova, S. Mazimdar, and A. D. Singh, “Empirical study of
session-based workload and reliability for web servers,” in Proceedings of the 15th
International Symposium on Software Reliability Engineering, 2004, pp. 403–414.

[16] S. Pertet and P. Narasimhan, “Causes of failure in web applications,” Parallel Data
Laboratory, Carnegie Mellon University, CMU-PDL-05-109, 2005.

[17] M. Kalyanakrishnan, R. Iyer, and J. Patel, “Reliability of internet hosts: a case

study from the end user’s perspective,” Computer Networks, vol. 31, no. 1-2, pp.
47–57, 1999.

[18] V. N. Padmanabhan, S. Ramabhadran, S. Agarwal, and J. Padhye, “A study of end-
to-end web access failures,” in Proceedings of the 2006 ACM CoNEXT conference,
ser. CoNEXT ’06, 2006, pp. 15:1–15:13.

[19] W. Li, M. Harrold, and C. Gorg, “Detecting user-visible failures in AJAX web
applications by analyzing users’ interaction behaviors,” in Proceedings of the
IEEE/ACM conference on Automated software engineering, 2010, pp. 155–158.

[20] K. Pattabiraman and B. Zorn, “DoDOM: Leveraging DOM Invariants for Web
2.0 Application Robustness Testing,” in Software Reliability Engineering (ISSRE),
2010 IEEE 21st International Symposium on, 2010, pp. 191–200.

[21] A. Mesbah and A. van Deursen, “Invariant-based automatic testing of AJAX
user interfaces,” in Proceedings of the 31st International Conference on Software
Engineering, 2009, pp. 210–220.

[22] A. Marchetto, F. Ricca, and P. Tonella, “Empirical Validation of a Web Fault
Taxonomy and its usage for Fault Seeding,” in Proceedings of the 2007 9th IEEE
International Workshop on Web Site Evolution-Volume 00, 2007, pp. 31–38.

[23] Y. Zheng, T. Bao, and X. Zhang, “Statically locating web application bugs caused
by asynchronous calls,” in WWW, 2011, pp. 805–814.

[24] J. Mickens, J. Elson, and J. Howell, “Mugshot: deterministic capture and replay
for JavaScript applications,” in Proceedings of the 7th USENIX conference on
Networked systems design and implementation, 2010, pp. 11–11.

[25] S. Andrica and G. Candea, “WaRR: High Fidelity Web Application Recording and
Replaying,” in Proceedings of the 2011 International Conference on Dependable
Systems and Networks, 2011.

[26] P. Ratanaworabhan, B. Livshits, D. Simmons, and B. Zorn, “JSMeter: Measuring
JavaScript behavior in the wild,” Usenix Conference on Web Application Develop-
ment (WebApps), 2010.

[27] E. Fortuna, O. Anderson, L. Ceze, and S. Eggers, “A limit study of JavaScript
parallelism,” in Workload Characterization (IISWC), 2010 IEEE International
Symposium on, 2010, pp. 1–10.

[28] J. Weinberger, P. Saxena, D. Akhawe, M. Finifter, R. Shin, and D. Song, “An
Empirical Analysis of XSS Sanitization in Web Application Frameworks,” 2011.

[29] R. Nyman. (2008, October) JavaScript namespacing—an alternative to JavaScript
inheritance. [Online]. Available: http://robertnyman.com/2008/10/29/javascript-
namespacing-an-alternative-to-javascript-inheritance/

