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Abstract—An acoustic shadow is an ultrasound artifact occurring at boundaries between significantly different
tissue impedances, resulting in signal loss and a dark appearance. Shadow detection is important as shadows can
identify anatomical features or obscure regions of interest. A study was performed to scan human participants
(N = 37) specifically to explore the statistical characteristics of various shadows from different anatomy and with
different transducers. Differences in shadow statistics were observed and used for shadow detection algorithms
with a fitted Nakagami distribution on radiofrequency (RF) speckle or cumulative entropy on brightness-mode
(B-mode) data. The fitted Nakagami parameter and entropy values in shadows were consistent across different
transducers and anatomy. Both algorithms utilized adaptive thresholding, needing only the transducer pulse
length as an input parameter for easy utilization by different operators or equipment. Mean Dice coefficients
(§ standard deviation) of 0.90 § 0.07 and 0.87 § 0.08 were obtained for the RF and B-mode algorithms, which is
within the range of manual annotators. The high accuracy in different imaging scenarios indicates that the shad-
ows can be detected with high versatility and without expert configuration. The understanding of shadow statis-
tics can be used for more specialized techniques to be developed for specific applications in the future, including
pre-processing for machine learning and automatic interpretation. (E-mail: rhu@ece.ubc.ca) Crown
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Biology. All rights reserved.

Key Words: Acoustic shadow, Ultrasound, Speckle, Radiofrequency, Segmentation.
INTRODUCTION

Ultrasound devices have become increasingly affordable

and portable, encouraging applications such as point-of-

care ultrasound (Bouhemad et al. 2011), novice usage (Sip-

pel et al. 2011) and analysis by machine learning (Ghose

et al. 2013). However, ultrasound is susceptible to unique

artifacts that increase the difficulty of interpretation and

processing of images. One artifact is an acoustic shadow,

which occurs when an ultrasound wave crosses a boundary

of two materials with high impedance differences (Kremkau

and Taylor 1986). The wave is almost completely reflected,

and depicted beyond the boundary are a continuous dark

region and a loss of anatomical features. Shadows occur in

air�tissue, tissue�bone and tissue�lesion interfaces. Shad-

ows can aid interpretation, such as identifying gall stones

(Good et al. 1979) or spinal levels (Galiano et al. 2005).
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However, shadows, such as from poor transducer contact,

can lead to misinterpretation of anatomy, particularly by

novice users and automated processing algorithms. Thus,

the identification of shadows is an important pre-processing

step in many applications.

Several methods described in the literature have

been used to detect shadows, and illustrative exam-

ples are discussed. Geometric techniques model the

path of an ultrasound signal for an expected image

along the scanline using a random walk (Karamalis

et al. 2012). Pixels are then flagged as a shadow if it is

below a heuristic confidence threshold of 0.25. How-

ever, geometric techniques require knowledge of

ultrasound transducer properties to parameterize ran-

dom walk weights, such as the focal length, radius of

curvature and thickness. The technique is therefore

challenging to implement across different ultrasound

equipment. This also reduces applicability for

machine learning applications as accurate transducer

parameter labels are required for each image.

mailto:rhu@ece.ubc.ca
mailto:rhu@ece.ubc.ca
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ultrasmedbio.2019.04.001&domain=pdf
https://doi.org/10.1016/j.ultrasmedbio.2019.04.001
https://doi.org/10.1016/j.ultrasmedbio.2019.04.001
https://doi.org/10.1016/j.ultrasmedbio.2019.04.001


Acoustic shadow detection � R. HU et al. 2249
Pixel gray level methods ignore the transducer prop-

erties and analyze only the graphical properties of an

image (Hellier et al. 2010). Shadows have been detected

on brain images by analyzing the entropy along a scanline

to flag pixels of sudden low entropy as a potential shadow.

These techniques achieved a comparable Dice similarity

coefficient as geometric methods, but require specific

thresholding, window sizing, filtering and image mask

parameterization for different anatomy and transducers.

The drawback is again the need for parameterization and

tuning, which requires image processing expertise and

prior knowledge of specific applications.

Machine learning methods have become of signifi-

cant interest in medical imaging analysis. To our knowl-

edge, no machine learning method has demonstrated the

capability of general shadow detection from multiple

types of anatomy. Deep learning methods have identified

features in specific image sets that contain shadows, such

as neuroanatomical regions in a cranial scan (Milletari

et al. 2017) or spinal levels in a posterior scan (Hether-

ington et al. 2017). Although machine learning has the

potential to provide automated feature recognition in

multiple applications, a large data set is required for an

algorithm to recognize certain features. Ultrasound

imaging is highly variable because of the unique arti-

facts, operator techniques and equipment. In addition,

shadows are a common feature that occur in various

imaging scenarios. Previous techniques focused on a
Fig. 1. Processing steps for radiofrequency (RF) and B-mode
available and involves fitting the Nakagami distribution onto
thresholding using the Otsus method. In many cases, there m

entropy map is computed and similar adaptive
single anatomical region, and training data were from a

consistent imaging scenario. However, it is difficult to

construct a training data set with the generality required

to recognize shadows in different scenarios usable for a

variety of ultrasound applications.

There were two objectives in the study described

here. First, to address the need to understand the general

characteristics of shadows, a study was conducted to

scan multiple types of anatomy and transducers specifi-

cally to analyze the statistics of different types of shad-

ows. Second, to address existing needs for versatile

detection with minimal parameterization, previous meth-

ods were then extended utilizing statistical thresholding

of radiofrequency (RF) or brightness-mode (B-mode)

data to detect shadows from various imaging scenarios.

The two methods are illustrated in the flowchart in

Figure 1.
METHODS

Data collection

Ultrasound RF and B-mode data were acquired by

scanning 37 adult participants with informed written

consent, approved by the University of British Columbia

Research Ethics Board (Study ID: H18-01199). The

scans included a forearm scan near the distal end of the

pronator quadratus, an elbow scan near the cubital fossa

and a rib scan on the anterior surface of right ribs 11 and
shadow detection. RF processing is used if RF data are
the echo envelope of each RF scanline before adaptive
ay only be access to B-mode image data, for which an
thresholding is used to detect shadows.



Table 1. Transducer properties for different imaging scenarios

Transducer Anatomy Frequency (MHz) Depth (cm) Gain Pulse length (mm)

Linear (L14-5/38) Forearm 11.0 5.0 50% 0.6
Elbow 11.0 5.0 40% 0.6
Rib cage 5.0 10.0 30% 1.7

Curvilinear (C5-2/60) Forearm 4.0 5.0 50% 2.6
Elbow 4.0 5.0 40% 2.6
Rib cage 3.3 10.0 30% 5.5
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12. Each scan was taken with both a curvilinear (Model

C5-2/60, Ultrasonix Medical Corp., Richmond, BC,

Canada) and linear (Model L14-5/38, Ultrasonix Medi-

cal Corp.) transducer. Different transducer settings were

used for each anatomical region and transducer, summa-

rized in Table 1. Shadows were expected to occur

because of superficial and deep bones and from an air

gap created by the lateral edges of the transducer not

being in flush contact with the skin. The experiment was

designed to generate a data set from various imaging

scenarios to explore general shadow characteristics and

to validate the versatility of the two simple shadow

detection methods. The pulse lengths measured for the

different transducers are reported in Table 1.

Radiofrequency speckle analysis

To analyze shadows, windows of speckle were ana-

lyzed on the RF signal. Speckle occurs from interference of

randomly distributed microscopic scatterers, resulting in a

granular appearance on the image. To produce B-mode

images, manufacturers often employ image enhancement

algorithms, such as logarithmic compression, to non-linearly

alter speckle patterns. B-Mode image formation can also be

manipulated by an operator by visually enhancing an image,

for example, by adjusting time-gain compensation or

dynamic range. Thus, the underlying speckle analysis in RF

signals can provide shadow detection usable across different

machines and operators. However, the original speckle pat-

tern contains information related to the acoustic interactions

in tissue (Burckhardt 1978). By analyzing the RF signal dis-

tribution, we can statistically characterize the distributions in

tissue compared with shadow regions. We expect tissue to

resemble speckle modeled by known distributions and

expect shadow to resemble different distributions, which

may be a mixture of lessened speckle resulting from the sig-

nal loss and background electronic noise. Previous studies

have attempted to use despeckling methods on images con-

taining shadows (Aysal and Barner 2007) by using filters

based on a Rayleigh-like distribution. As such, even if

shadow regions do not exactly resemble known speckle dis-

tributions, they may still be characterized to a sufficient

extent with known distributions for a maximum likelihood

fit. The fitted parameters can then be used to differentiate

between shadow and non-shadow regions.
One of the first models for speckle is the one-param-

eter Rayleigh distribution to model the probability density

of a random walk (Burckhardt 1978). The Rayleigh distri-

bution is capable of modeling fully developed speckle,

which does not occur in limited scattering (Tuthill et al.

1988). More generalized models have been applied to

characterize speckle, such as the Rician, homodyned-K

and Nakagami distributions (Destrempes and Cloutier

2010) The utility of speckle to classify tumorigenicity of

breast lesions (Byra et al. 2016) or levels of liver fibrosis

(Ho et al. 2012) by categorizing image regions based on

the speckle pattern has been described. Shadow character-

ization poses a simpler problem as shadow and non-

shadow regions contain significantly different speckle

patterns. Thus, the Nakagami distribution expressed as

F x;m;vð Þ ¼ 2
m
v

� �m 1

GðmÞ x
2m�1ð Þe

�m
v x

2 ð1Þ

was chosen to model speckle, where x is RF intensity, m

is the shape parameter or Nakagami m parameter, v is a

scale parameter and G(m) is the gamma distribution. The

Nakagami distribution provides greater generality than

the Rayleigh distribution while being more computation-

ally efficient than the Rician or homodyned-K distribu-

tion (Destrempes and Cloutier 2010).

To characterize shadows, the raw RF data were first

processed by computing the echo envelope of each scanline

with a Hilbert transform. This was performed on an aver-

aged RF signal from three image frames. This creates a

pre-scan converted image, visually similar to B-mode but

without filtering to alter speckle. Next, the RF image was

divided into overlapped windows with a width of a single

RF scanline and a length of three times the pulse length. We

expect the width of a single RF scanline to be on the order

of magnitude of a resolution cell, which is on the same order

of magnitude as the correlation length (Wagner and Insana

1988). The window length was described in the literature to

be sufficiently large to capture multiple wavelengths and

scattering events while being small enough to be useful in

differentiating different regions on the millimeter scale

(Byra et al. 2016). Next, each window was fit to a Nakagami

distribution using a maximum likelihood estimate to com-

pute a map of Nakagami parameters m and v, as illustrated

in Figure 2.



Fig. 2. Visualization of the B-mode and radiofrequency (RF) parameter maps. The (b) entropy map was computed from
processing of the (a) original B-mode image and the (d) Nakagami v map was computed from the (c) echo envelope.
Note that the echo envelope contains noticeable speckle, which has been used to fit a Nakagami distribution to character-
ize shadow. The region at depth 2.50 cm and scanlines 32�40 is attenuation and not a shadow. This is an important dis-

tinction in shadow detection, and both maps depict the region as below a threshold to flag a shadow boundary.

Acoustic shadow detection � R. HU et al. 2251
Then, for each ultrasound image, the Otsu’s method

was applied to its Nakagami v map to automatically com-

pute a v threshold for each individual image as we expect

separate distributions for shadow and non-shadow regions.

This was sufficient as the v parameter is significantly differ-

ent for shadow regions with abundant speckle and

non-shadow regions with minimal speckle. Then, for each

scanline, the axially deepest data point that is above the

threshold is labeled as the shadow boundary, and all data

points below are labeled as a shadow.

The Nakagami shape parameter, m, was also inves-

tigated, though there was not sufficient delineation

between parameter values in shadow and non-shadow

regions for this parameter to be effective in thresholding.

The distributions of the two parameters are displayed for

shadow and non-shadow regions in Figure 3.
B-Mode scanline analysis

Many ultrasound machines do not provide access to

RF data for speckle analysis. Thus, a previous pixel gray
level shadow detection method on B-mode images was

modified and extended. Scanline entropy was investi-

gated on B-mode images to characterize different types

of shadows, but with the addition of adaptive threshold-

ing of entropy to address the need for usability with min-

imum configuration. B-Mode analysis was performed on

an averaged image from three image frames, similar to

RF analysis. First, the cumulative scanline entropy is

computed for each pixel, similar to the “Rupture

Criterion” (Hellier et al. 2010), with approximate win-

dow size fixed as three times the pulse length, h, as

defined by

Si;j ¼
Z3h

k¼1

I i�k; jð Þlog2 I i�k; jð Þ
I iþ k; jð Þ

þ I iþ k; jð Þlog2 I iþ k; jð Þ
I i�k; jð Þ ð2Þ

where Si,j is the cumulative entropy at pixel i on scanline

j, h is the pulse length and I(i) is the gray level (0�255)



Fig. 3. Histograms of Nakagami parameters and entropy values in shadow and non-shadowing regions. The Nakagami v
and entropy distributions have a more noticeable delineation between shadowing and non-shadowing distributions com-
pared with the Nakagami m parameter, which was not used to threshold shadow boundaries. Entropy is very minimal is

continuous dark shadow regions, which is expected because of the minimal variations in pixel gray level.
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of pixel (i, j). This is the same window size as in the RF

analysis. For the case of curvilinear images, radial scan-

lines were linearly interpolated between the two sym-

metric lateral edges of the image.

Next, Otsu’s method was applied onto the entropy

map of each image to automatically compute a threshold

entropy value, similar to RF analysis. The intuition of

the threshold is different than in RF analysis. In RF anal-

ysis, the threshold separates patches of intense and mini-

mal speckle. In B-mode analysis, the threshold separates

pixels of a shadow boundary, which has high entropy,

and pixels away from shadow boundary, which include

shadow and non-shadow regions. Thus, shadows can be

identified by finding the last pixel on a scanline with an

entropy higher than the threshold, representing a bright

shadow boundary.

Validation

A trained annotator (R.H.) manually outlined the

boundary of the shadow regions on B-mode images. The

manual regions were used as a gold standard, as manual

identification is common in clinical practice and has been

used in previous literature for comparison (Hellier et al.

2010). A Dice coefficient was computed to compare simi-

larity of manual and automated shadow detection. The
manual outline was used to define four regions for classifi-

cation of statistical parameters: a non-shadow region

above the boundary, a shadow region below the boundary,

a “transition region,” which is a window defined as three

pulse lengths long axially below the boundary, and a

“deep shadow region,” which is the data below the transi-

tion region. The validation was repeated with the RF and

entropy window increased and decreased by 50%. The

Ljung�Box Q-test was used to measure residual autocor-

relation of the Dice coefficients. A Wilcoxon rank sum

test has been performed between Nakagami parameter

values in shadow and non-shadow regions and between

entropy values in shadow and non-shadow regions.

As an initial experiment, a gelatin phantom was cre-

ated with slits of wood embedded at 0.75 and 2.50 cm to

create a region of shallow and deeper shadows on both

edges of the phantom. The gain was varied, and both RF

and B-mode methods were employed to test the feasibility

of the methods on a clearly visible shadow, illustrated in

Figure 4. When compared with manual segmentation, all

detected shadows resulted in a Dice coefficient >0.95,

with the lowest score being the entropy method applied on

a high-gain image. This provides support that extreme

operator adjustments on the B-mode image may affect

pixel gray level detection methods more than RF methods.



Fig. 4. Images of both radiofrequency (RF) and B-mode shadow detection performed on a gelatin phantom with two
wooden slits embedded at depths of 0.75 and 2.50 cm. The phantom was made to simulate shallow, deep and non-shadow
regions. The methods were capable of shadow detection with a high accuracy (Dice coefficient >0.95), though notice-
able errors were present at high-gain images for the B-mode method. This is expected as B-mode methods rely on pixel

gray level, which may vary with operator settings.
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RESULTS

Examples of shadows detected by both methods are

highlighted in gray in Figure 5 in different shadow

detection scenarios. The Dice coefficients for both meth-

ods for different anatomy and transducers are listed in

Table 2. The Dice coefficients (mean § standard devia-

tion) were 0.90 § 0.07 and 0.87 § 0.08 for RF and B-

mode methods. Manual annotation was repeated five

times with a mean Dice coefficient of 0.92 § 0.02 for all

images and transducers. The Dice coefficient did not

change by more than 0.03 when the window size was

varied by 50%.

With the benefit of a varied data set, general statis-

tics of shadows can be analyzed, as summarized in

Tables 3 and 4. The distributions of Nakagami parame-

ters and entropy for the different regions are illustrated

in Figure 3. For shadow detection, the parameters differ-

entiating a shadow and non-shadow are of particular

interest. Shadows were observed to have a mean Naka-

gami v parameter of 4.14 § 0.40 and a mean entropy of
1.03 § 0.29, whereas non-shadows were observed to

have a mean v of 6.24 § 0.92 and mean entropy of 2.20

§ 0.81. Wilcoxon rank sum p values were <0.002

between Nakagami v parameter distributions in shadow

and non-shadow regions and <0.001 between entropy

distributions in shadow and non-shadow regions, indicat-

ing that shadow and non-shadow regions have statisti-

cally different distributions for Nakagami v parameters

and entropy. The values of entropy and Nakagami v are

consistent across different transducers and anatomical

regions. The variance of entropy and Nakagami v in one

imaging region and transducer setting is less than the

variance across different regions and transducers for

shadows and non-shadows.

DISCUSSION

The RF and B-mode shadow detection methods

developed achieved a Dice similarity coefficient compa-

rable to that of manual detection for all anatomy and

transducer types (p < 0.025). The previous studies using



Fig. 5. Comparison of the original B-mode images, the detected shadows manual detection, radiofrequency (RF) detec-
tion and B-mode detection. Both detection methods perform similarly to manual detection. Both methods perform
slightly less accurately on curvilinear images, likely because of the reduced resolution from interpolation of the scan-
lines. Most errors in RF detection occur near the shadow boundary, likely because of the transitioning speckle from non-

shadow to shadow.

Table 2. Mean Dice coefficients for different imaging
scenarios

Radiofrequency B-Mode

Linear (L14-5/38) Forearm 0.91 § 0.05* 0.89 § 0.06
Elbow 0.94 § 0.06 0.90 § 0.07
Rib cage 0.87 § 0.09 0.84 § 0.06

Curvilinear (C5-2/60) Forearm 0.89 § 0.05 0.86 § 0.08
Elbow 0.93 § 0.04 0.90 § 0.09
Rib cage 0.83 § 0.08 0.83 § 0.10

Mean All anatomy 0.90 § 0.07 0.87 § 0.08

* Mean§ standard deviation.
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B-mode entropy reported a mean Dice coefficient of 0.91

§ 0.07 between manual annotators (Hellier et al. 2010).

An important feature of shadow detection is its ability to

differentiate between a shadow and simply high attenua-

tion of the signal. Both scenarios result in an eventual

loss of signal. Shadow detection, however, has a charac-

teristic high gray level shadow boundary before a signifi-

cant loss in signal, compared with gradual signal losses

in attenuation. The high Dice similarity coefficient indi-

cates that both methods were capable of this distinction.

This is also illustrated in Figure 5, where regions of low

gray level without a bright shadow boundary were cor-

rectly labeled as a non-shadow. The high accuracy sup-

ports the versatility of the detection method as both
methods are able to identify shadows across different

anatomy and transducers with a minimum configuration.

For a general observation for shadows, the computed

Nakagami v parameters of all manually outlined shadows

indicate that there is a statistically significant difference

between shadow and non-shadow regions, regardless of

anatomy and transducer and even with the error in the

transition regions considered. The speckle and its statistics

from shadows are thus distinct from the speckle created

by tissue, muscle or fat. This observation can be utilized

in the future for further analysis of shadows.

In RF detection, both false positive and false nega-

tive errors most frequently occurred immediately below a

shadow boundary as opposed to B-mode detection, where

errors were in various regions. To study the frequent areas

of error further, the “transition region” immediately below

a manually annotated shadow boundary and a “deep

shadow region” below the transition region was investi-

gated. The Nakagami v parameters of transition regions

of all anatomy and transducers were within a standard

deviation of those of both shadow and non-shadow

regions. The deeper shadow regions were observed to

have a lower Nakagami v parameter than shadow regions

and with a lower standard deviation, as summarized in

Table 3. The spread of the speckle also significantly

decreases after the transition region. This indicates that



Table 3. Mean Nakagami v and entropy values of different anatomy, transducer and shadowing region*

Linear (L14-5/38) Curvilinear (C5-2/60)

Forearm Elbow Rib cage Forearm Elbow Rib cage

Nakagami v (log scale)
Shadow 4.15 § 0.45y 4.18 § 0.45 4.04 § 0.42 4.22 § 0.32 4.19 § 0.40 4.08 § 0.37
Non-shadow 6.19 § 0.96 6.49 § 0.97 6.29 § 0.95 6.54 § 0.88 6.29 § 1.04 5.64 § 0.71
Transition 4.94 § 0.62 5.36 § 0.62 4.96 § 0.38 5.26 § 1.02 5.37 § 0.99 4.59 § 0.92
Deep shadow 4.13 § 0.43 4.16 § 0.43 4.03 § 0.41 3.93 § 0.20 4.09 § 0.30 4.03 § 0.26
Entropy (log scale)
Shadow 0.92 § 0.22 1.10 § 0.36 1.04 § 0.27 1.06 § 0.28 0.96 § 0.21 1.10 § 0.37
Non-Shadow 2.34 § 0.96 2.34 § 0.80 2.14 § 0.82 1.67 § 0.82 1.75 § 1.14 1.88 § 0.42
Transition 2.45 § 0.62 2.56 § 0.53 2.15 § 0.51 2.18 § 1.21 1.93 § 1.10 1.99 § 1.10
Deep shadow 0.71 § 0.43 0.89 § 0.26 0.92 § 0.40 0.98 § 0.21 0.82 § 0.19 1.04 § 0.26

* Values are consistent among different transducers and anatomical regions. The variance of entropy and Nakagami v in one imaging region and
transducer setting is less than the variance across different regions and transducers for shadows and non-shadows.

y Mean § standard deviation.

Table 4. Mean Nakagami v and entropy values of all anatomy
and transducers for different shadowing regions

Mean Nakagami v (log scale) Mean entropy (log scale)

Shadow 4.14 § 0.40* 1.03 § 0.29
Non-shadow 6.24 § 0.92 2.02 § 0.81
Transition 5.08 § 0.77 2.21 § 0.84
Deep shadow 4.06 § 0.34 0.89 § 0.27

* Mean§ standard deviation.
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the transition region cannot be fully distinguished from

either a shadow or non-shadow and presents as if it is sta-

tistically similar to the two. This is likely the cause of the

errors, as the speckle distribution is much more consistent

in the deep shadow regions than in any other region. Phys-

ically, speckle interactions appear to gradually lessen after

the brightest point on a scanline, possibly because of

incomplete total reflection at a boundary. The boundary is

thus is not an instantaneous division between non-shadow

and shadow; rather, there is a transition region with statis-

tics between a shadow and non-shadow before the speckle

fully resembles a shadow.

In the transition region of B-mode images, the entropy

values were similar but consistently higher than the non-

shadow values. This is expected as entropy is highest when

there is the greatest change in pixel gray level, which occurs

at a shadow boundary, even with a non-instantaneous non-

shadow to shadow transition. However, the averaged

entropy of all non-shadow regions has a greater spread than

the Nakagami parameters, likely because of the differing

operator settings used. Thus, B-mode detection may not be

as consistent as RF detection.

Limitations

In our study, although a range of frequencies and

equipment were used, the parameters were still limited,

and not all combinations were explored. To further
validate the detection method, future work should

include a more extensive investigation of these parame-

ters, such as with a random parameter grid search, to

provide more support for widespread clinical use.

As both RF and B-mode images search for a thresh-

old for the shadow boundary, it is possible to misinter-

pret a reverberation artifact as the beginning of a

shadow. Reverberation at a shadow boundary would

cause a similar bright region followed by a dark region,

which visually appears like a shadow boundary despite

being an artifact in a shadow region. This is a limitation

of our method, and future work, including integration of

reverberation identification, such as identifying echo

time duration to determine what pulses correspond to

anatomical interaction (Win et al. 2010), would be

required to reduce reverberation errors.

There is a limitation with analysis using the Nakagami

distribution in that the fitted Nakagami distribution to

model scatterers changes with transducer frequency. It has

been observed that in the frequency range 36�58 MHz,

the Nakagami m parameter decreased near the theoretical

lower limit compared with a higher Nakagami m parameter

value at a 10-MHz signal (Cloutier et al. 2004). This was

reported to be caused by the spatial organization of the cells

being “on the order of a fraction of the wavelength,” and a

Nakagami distribution cannot model the scatterers of red

blood cells at this frequency. Because of this and the limita-

tions of the equipment used in our study, we cannot con-

clude that shadow detection with Nakagami analysis will

be accurate at higher frequencies beyond the values tested.

Future studies are required to analyze the performace of

shadow detection at higher frequencies. Diagnostic ultra-

sound commonly uses a frequency range of 2�15 MHz

(Jensen 2007), and higher frequencies are limited to sub-

specialty cases such as optical ultrasound (Pavlin et al.

1992). Shadow detection is expected be applicable in most

use cases without issues arising from the high-frequency

behavior of the Nakagami distribution.
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There is a limitation to diagnostic use of the pro-

posed shadow method in cases where acoustic shadow-

ing does not exhibit the characteristic bright boundary

followed by a dark region. In cases where there is partial

or incomplete shadowing, such as small calcifications in

the placenta (Abramowicz and Sheiner 2008), there is a

resemblance to a shadow, where the calcification is

brighter and the region below is noticeably darker, but

not with a brightness difference as extreme as the shad-

owing from the ulna, and the regions below retain

speckle similar to tissue. Although calcifications are

pathologically important to recognize, the proposed

shadow detection method would likely be unable to

detect the partial shadowing from these calcifications.

The proposed method would be applicable only in cases

of more complete shadowing, which would still be prac-

tical for significant gall and kidney stones, for example.

Shadows have been defined qualitatively (Kremkau

and Taylor 1986) as a sudden loss of signal and brightness.

The observed transition region in this study suggests that

the qualitative definition of a shadow may be insufficient

for accurate detection. One algorithm may detect the

shadow starting immediately after the brightest location, or

another may use a convention such as a full width at half-

maximum to define where the signal has sufficiently low

gray level to resemble the start of a shadow. A decision

point is required for a clear definition of where a shadow

begins to improve shadow detection accuracy, both from a

signaling perspective for image processing and from a

visual perspective for manual inspection.

The findings in this study have several implications.

First, the statistics of acoustic shadows have been investi-

gated on a data set with shadows occurring from multiple

scenarios as opposed to specific cases where shadows are

observed. This provided a more generalizable observation

that shadows can be characterized by distinctive speckle

distributions in different types of anatomy and equipment

and that there exists a transition region before the loss of

speckle in a shadow. Second, the shadow detection meth-

ods had high accuracy, indicating that the same shadow

detection method can be used with different transducers or

imaging locations. In future studies, the speckle statistics

obtained can be used to develop additional models for ana-

tomical features containing shadows. In machine learning

algorithms, an initial network could be used with the

shadow detection methods presented. Future studies would

also have to take into consideration the most frequent

source of error of shadow detection, the shadow boundary.
CONCLUSIONS

Acoustic shadows from different imaging scenarios

were investigated. RF and B-mode methods requiring

only the transducer pulse length as the input parameter
were developed for acoustic shadow detection. Com-

pared with manual detection, the methods achieved a

Dice similarity coefficient within the range obtained by

manual observers. The work focused on applying

shadow detection and statistical analysis to a varied data

set of three different anatomical locations and two differ-

ent transducers to provide a representative understanding

of general acoustic shadows. The statistics of acoustic

shadows indicate that shadows contain a distinct speckle

distribution compared with non-shadows and that

speckle characteristics transition at the shadow bound-

ary. The statistical findings on shadows can aid interpre-

tation of ultrasound images in the future using speckle

analysis. The versatility of the shadow detection method

gives it the potential to improve the interpretation of

ultrasound images with shadow artifacts or to serve as a

pre-processing step for machine learning methods.
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