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Abstract. We present a spatially weighted total variation regulariza-
tion based method for measuring the ultrasonic attenuation coefficient
estimate (ACE). We propose a new approach to adapt the local regular-
ization by employing envelope signal-to-noise-ratio deviation, an indica-
tor of tissue inhomogeneity. We evaluate our approach with simulations
and demonstrate its utility for hepatic steatosis detection. The proposed
method significantly outperforms the reference phantom method in terms
of accuracy (9% reduction in ACE error) and precision (52% reduction
in ACE standard deviation) for the homogeneous phantom. The method
also exceeds the performance of uniform TV regularization in inhomoge-
neous tissue with high backscatter variation. The ACE computed using
the proposed method showed a strong correlation of 0.953 (p = 0.003)
with the MRI proton density fat fraction, whereas the reference phantom
method and uniform TV regularization yield correlations of 0.71 (p =
0.11) and 0.44 (p = 0.38), respectively. The equivalence of SWTV-ACE
with MRI proton density fat fraction, which is the current gold stan-
dard for hepatic steatosis detection, shows the potential of the proposed
method to be a point-of-care tool for hepatic steatosis detection.

Keywords: Attenuation coefficient estimate · Nonalcoholic fatty liver
disease · Steatosis · Proton density fat fraction · Envelope
signal-to-noise ratio deviation

1 Introduction

Accompanying the pandemic spread of obesity, nonalcoholic fatty liver disease
(NAFLD) is emerging as the most common cause of chronic liver disease with an
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estimated global prevalence of 25% [5]. From the early stage defined as simple
hepatic steatosis (excessive fat accumulation in liver cells), NAFLD can poten-
tially progress into advanced fibrosis, cirrhosis and malignancy. Liver biopsy is
not feasible for routine screening due to its potential risk and prohibitive cost.
Thus, there is a significant interest in developing reliable, inexpensive and non-
invasive biomarkers to detect and monitor the progression of NAFLD.

Fat droplets in the fatty liver cause cellular ballooning, which affects the
ultrasonic scattering process, resulting in an increase in attenuation coefficient
estimate (ACE). Based on this principle, ACE can be utilized as a promising tool
to detect and quantify hepatic steatosis [9]. Unfortunately, ACE methods based
on a sliding window approach suffer from the trade-off between image resolution
and estimation precision and accuracy. Larger windows improve accuracy and
precision by reducing the spatial variation noise inherent in ultrasonic scatter-
ing, whereas smaller windows better resolve the underlying structure [7]. More
recently, researchers have shown that regularization incorporating a spatial prior
can improve ACE results in terms of precision and resolution in homogeneous
regions [1,11]. However, variation in scatterer size and concentration inevitably
creates inhomogeneity in tissue, which results in a large error in ACE estimation
[8]. This issue, while unaddressed in [1], was tackled using different regulariza-
tion weights for inhomogeneous phantoms (variable backscatter with uniform
ACE) than that used for homogeneous phantoms (variable ACE with uniform
backscatter) in [11]. Clearly, different regularization weights for different phan-
toms would not be applicable for biological tissue, where variation in ACE and
backscatter may occur simultaneously. Moreover, using uniform regularization
across the image as in [1,11], would lead to over-smoothing in homogeneous
regions in an attempt to compensate for the local inhomogeneities.

In this work, we propose, for the first time, a spatially weighted total vari-
ation regularization based reference phantom method for ACE estimation. The
contributions of the paper are: (1) modulating the amount of regularization
depending on the inhomogeneity information, (2) derivation of the spatially
weighted regularization parameters from the tissue inhomogeneity indicator:
envelope signal-to-noise ratio deviation [2], and (3) introducing the novel use
of spatially weighted regularization within the ACE computation framework.
We validate the proposed method on simulation and phantom data. Finally, we
demonstrate the successful application of the proposed method in computing
ACE for liver in vivo and in assessing the extent of hepatic steatosis with Mag-
netic Resonance Imaging Proton Density Fat Fraction (MRI-PDFF) imaging as
a reference.

2 Method

2.1 Spatially Weighted Regularization Based ACE (SWTV-ACE)

The ultrasound ACE is a measure of ultrasound amplitude dissipation due to the
combined effect of scattering and absorption, whereas the dissipation associated
with the scattering is small compared to absorption (less than 10% for typical
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biological tissue) [3]. The standard way is to compute ACE using the reference
phantom method [12]. According to this method, the radiofrequency (RF) data
are acquired from both the tissue sample and a reference phantom using the
same transducer and system settings.

ACE is computed in a m × n grid using a frequency band discretized at r
points. For a RF signal window centered at (i, j)[i ∈ (1,m), j ∈ (1, n)] location,
the ratio of the power spectrum S from the sample to the reference phantom at
frequency fk, k ∈ (1, r) can be written as [2,11]:
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Here, the s and r superscript denote sample and reference, respectively. A is the
total attenuation effect from the transducer surface to the center of the respective
RF signal window, B is the backscatter coefficient (BSC), z is the axial distance
from the transducer surface to the center of the corresponding time-gated RF
signal window, and α is the effective ACE for the total ultrasound propagation
path z. After taking the natural logarithm, Eq. 1 reduces to:
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Substituting the following variables in Eq. 2 as: ln [RSi,j,k] = Yi,j,k, αr
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= βi,j , we get,

Yi,j,k = −4αi,jfkzi,j + βi,j . (3)

The above equation can be written in a matrix form: y = Ax+η, where η denotes
Gaussian noise with zero mean and standard deviation σ, where
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We propose to solve the following spatially weighted optimization problem for
the reconstruction of x = [α, β] from the noisy estimation Y :

x̂ = arg min
x

{‖y − Ax‖22 + λ1TV (α) + λ2SWTV (β)}, (4)
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Fig. 1. Feasibility test of the proposed SWTV-ACE method on a tissue-mimicking
phantom. (a) Ultrasound image of the phantom with backscatter variation; (b) Spa-
tially weighted matrix formation as a function of the envelope SNR deviation map; (c)
& (d) ACE and BSC results with and without SWTV.

where the first term is the data fidelity term, the second and third terms are
the anisotropic TV based regularization term, and λ1 and λ2 are the regular-
ization weights. The TV operator is defined as: TV (α) =

∑
i,j |αi+1,j − αi,j | +

|αi,j+1 − αi,j |, and

SWTV (β) =
∑

i,j W i,j
β (|βi+1,j − βi,j | + |βi,j+1 − βi,j |).

Here we have employed a spatially weighted total variation regularization on
the BSC term, β. The reason is that a change in scattering affects the power
spectrum of the ultrasound RF data, which should be accounted into the BSC
term, β. However, the assumption of constant backscatter in the reference phan-
tom method and uniform piece-wise homogeneity in uniform TV regularization
fail to account for the change in scattering into the BSC term and consequently
result in inaccurate computation of ACE. For the regions associated with changes
in backscatter, β should be lightly regularized to decrease the penalty on their
variation. Therefore, we propose incorporating a spatially weighted matrix Wβ

into the regularization of β to account for the backscatter variation.

2.2 Derivation of Spatially Weighted Matrix

According to a previous study, envelope SNR deviation is a useful criterion to
indicate inhomogeneity, i.e., variation in backscatter. Envelope SNR Deviation,
ΔSNRe is defined as:

ΔSNRe =
|SNRe − SNRopt|

SNRopt
× 100%, (5)

where SNRe is defined as the ratio of the mean to the standard deviation of
the RF signal envelope. SNRopt = 1.91, which is the average envelope SNR of
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a Rayleigh distribution, the characteristic distribution of a RF signal spectrum,
arising from a large number of randomly distributed scatterers of identical sizes.

Fig. 2. ACE results for simulated phantoms: (a) phantom 1 (uniform ACE and BSC);
(b) phantom 2 (variable ACE and uniform BSC); and (c) phantom 3 (uniform ACE
and variable BSC).

To validate the applicability of ΔSNRe as an indicator of inhomogeneity,
we performed a feasibility analysis of RF data acquired from an ultrasound
phantom (Model 040GSE) manufactured by CIRS (Norfolk, VA, USA). The
phantom contains two different types of targets: scattering targets and gray
scale targets (Fig. 1a). The scattering targets are made of nylon monofilaments
and contain scatterers of different size, whereas the gray scale targets contain
scatterers with a different density. As we plot the ΔSNRe map, the targets
can be distinguished with high ΔSNRe values (Fig. 1b). Ideally, the phantom
has a uniform ACE value of 0.7 dB/cm/MHZ, and variable BSC values at the
locations of the targets (BSC values were not reported by the manufacturer).
Interestingly, computing the ACE and BSC using both the reference phantom
and the uniform TV regularization yield high ACE errors at the target locations
while both the methods fail to identify the variation in the BSC term (Fig. 1c).
As a solution to this problem, we propose to form a spatially weighted matrix,
Wβ as a function of ΔSNRe, to adaptively regularize the BSC parameter:

Wβ(ΔSNRe) =
a

1 + exp[b.(ΔSNRe − ΔSNRmin
e )]

, (6)

where a and b are constants. ΔSNRmin
e is a nominal ΔSNRe value for which the

associated regions can be considered to be homogeneous. As ΔSNRe remains
much smaller than ΔSNRmin

e , the weighting has little effect on the regulariza-
tion. On the other hand, the weight will decrease as ΔSNRe increases resulting
in relaxation of the regularization effect on the BSC term. By applying the
proposed spatially weighted TV regularization, the ACE error was significantly
reduced, where the BSC term captures the backscatter variation at the target
locations (Fig. 1d).
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Fig. 3. In vivo human liver ACE from six patients and their correlation with proton
density fat fraction. The error bars show the standard deviation whereas the square
represents the mean calculated over a region-of-interest.

3 Experiments and Results

The proposed method was implemented in MATLAB 2018a (The MathWorks
Inc., Natick, MA, USA). The optimization problem was solved using the con-
vex optimization toolbox CVX in MATLAB [4]. We evaluated the proposed
SWTV-ACE method on several datasets including simulations and liver in vivo.
We compared the performance of the proposed method against the reference
phantom method [12] and uniform TV regularization. The dimensions of the
sliding windows were selected to be 15 scanlines (10 wavelengths) laterally and
8.5 mm (10 wavelengths) axially with an 80% overlap in both directions for all
the methods. We set λ1 = 21, λ2 = 2−1 for the regularization weights and
a = 5, b = 0.09, and ΔSNRmin

e = 15 as the parameters of the spatially weighted
matrix, Wβ (Fig. 3; Eqs. 4 and 6).

3.1 Simulations

We used the k-Wave toolbox to simulate three numerical phantoms [10]. Phan-
tom 1 consisted of homogeneous medium with uniform ACE (0.6 dB/cm/MHz)
and uniform BSC. Phantom 2 had uniform BSC and variable ACE, where
the background ACE was 0.5 dB/cm/MHz, and the inclusion ACE was
0.7 dB/cm/MHz. Phantom 3 had variable BSC and uniform ACE (0.5
dB/cm/MHz), where the inside inclusion had a higher BSC compared to the
background. Also, we simulate a phantom with uniform ACE (0.6 dB/cm/MHz)
and uniform BSC, which would be used as the reference phantom to compensate
for the system dependence.

For phantom 1 and phantom 2, the SWTV-ACE method gives similar perfor-
mance as that obtained from the uniform TV regularization as these phantoms
have uniform BSC. In both methods, ACE error is reduced significantly (<1%)
compared to the reference phantom method (10%), whereas the ACE variance
is reduced to ∼1% from 53% obtained using the reference phantom method
(Fig. 2(a)). For phantom 2, both uniform TV and SWTV-ACE method can
identify the ACE transition in the center inclusion (standard deviation ∼11%)
opposed to the reference phantom method where the transition remains occluded
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with high variance of ACE (63%) (Fig. 2(b)). Finally, the SWTV-ACE method
shows superior performance for phantom 3 where both the reference phantom
and the uniform TV regularization exhibit underestimation and overestimation
of ACE centering the high backscatter inclusion (shaded area in Fig. 2(c)) [8]. On
the contrary, the spatial weighting enables the proposed method to reconstruct
the expected uniform ACE map with 16% error and standard deviation <1%.

Fig. 4. (a) An example of ACE computation for in vivo human liver using three dif-
ferent methods. (b) Effect of window size on estimation variance of ACE for a homo-
geneous region-of-interest (top) and inhomogeneous region-of-interest (bottom).

3.2 In Vivo Liver: Steatosis Detection

We validated the efficacy of the proposed method to detect hepatic steatosis
based on six patients, who underwent MRI in a 3.0 T system (Philips Achieva,
Philips Medical Systems). MRI proton density fat fraction (MRI-PDFF) com-
puted from the MRI data was used as a gold standard for hepatic steatosis quan-
tification, which strongly correlates with histological steatosis grading [6]. The
patients also underwent ultrasound examination with an Ultrasonix SonixTouch
machine (Analogic, Canada), the RF data from which were used to compute
ACE. The correlation between MRI-PDFF and ACE values was calculated to
evaluate the performance of the SWTV-ACE method to detect hepatic steatosis.

The correlation between ACE computed using the reference phantom method
to MRI-PDFF was 0.44 (p = 0.3838). The TV method yields a better correlation
performance (r = 0.71, p = 0.1132). The SWTV-ACE method outperforms both
of these methods with a correlation of 0.953 (p =.003). Therefore, SWTV-ACE
method demonstrated an improved correlation with MRI-PDFF even with small
window size, therefore extending the trade-off between window size and precision
inherent in conventional ACE computation.
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We also showed an example of ACE computation for in vivo liver, where an
inhomogeneity indicated by high envelope SNR deviation causes significant varia-
tion of ACE (including negative ACE values) computed using the reference phan-
tom method and the uniform TV regularization method (Fig. 4(a)). However,
SWTV-ACE method yields positive ACE values with low estimation variance.
Additionally, we investigated the effect of axial window size on the the estimation
variation of ACE for a homogeneous region-of-interest (max(ΔSNRe) < 20%)
and an inhomogeneous region-of-interest in liver (mean(ΔSNRe) > 20%). For
the homogeneous case, both uniform TV regularization and SWTV-ACE meth-
ods maintain similar standard deviation for different window sizes, whereas the
reference phantom method exhibits the trade-off where estimation precision
improves with increasing window size. For the inhomogeneous case, however,
SWTV-ACE method outperforms both the reference phantom method and the
uniform TV regularization by maintaining similar standard deviation for dif-
ferent window sizes (Fig. 4(b)). Therefore, SWTV-ACE effectively improves the
quality of ACE computation by reducing the variability in the estimates irre-
spective of window size. The improved resolution will be beneficial to provide
information about the local variation within the liver, whereas the improved
precision would be required to qualify as a reliable diagnostic tool.

4 Conclusion

We propose a new spatially weighted regularization based ACE estimation
method. The goal was to modulate the regularization in the inhomogeneous
regions using a weight function formulated as a function of envelope signal-to-
noise ratio, an indicator of tissue heterogeneity. The proposed method was able
to attain improved precision without compromising the resolution of ACE for
both homogeneous and inhomogeneous regions with high backscatter variation.
The strong correlation of the ACE measurements with the current gold-standard
MRI-PDFF demonstrated the potential application of the proposed method for
the detection of liver steatosis.
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