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Abstract. We present PredictUS, a novel Quantitative Ultrasound
(QUS) parameter estimation technique with improved resolution and
precision using augmented ultrasound data. The ultrasound data is gen-
erated using a sequence-to-sequence convolutional neural network based
on WaveNet. The spectral-based QUS techniques are limited by the well-
studied trade-off between the precision of the estimated QUS parameters
and the window size used in estimation, limiting the practical utility of
the QUS techniques. In this paper, we present a method to increase the
window size by predicting the next data points of a given window. The
method provides better estimates of local tissue properties with high
resolution by virtually extending the property to a larger region. Our
proof-of-concept study based on attenuation coefficient estimate (ACE),
an important QUS parameter, attains a resolution reduction up to 50%
while maintaining comparable estimation precision. This result shows
the promise to extend the precision-resolution trade-off, which, in turn,
would have implications in small lesion detection or heterogeneous tissue
characterization.

Keywords: Quantitative Ultrasound · Attenuation coefficient
estimate · WaveNet · Sequence-to-sequence neural network

1 Introduction

Quantitative Ultrasound (QUS) Imaging has introduced a paradigm shift in
the field of biomedical imaging. Extending beyond qualitative B-mode ultra-
sound imaging, QUS presents clinically significant parametric images, which are
descriptive of underlying tissue microstructure. Recent studies show that QUS
potentially provides effective, non-invasive, and system independent biomarkers
for non-alcoholic fatty liver disease (NAFLD) detection and monitoring, cervical
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ripening detection, placenta characterization, and breast lesion characterization
[1–3].

QUS extracts acoustic scattering and attenuating properties using algorithms
based on estimates of power spectra of ultrasound radiofrequency (RF) signal
backscattered from the interrogated tissue. The spectral based QUS techniques
allow the normalization of the backscattered RF signal and thus filter out the
system-dependent factors such as focusing, diffraction and transducer electrome-
chanical response [1,4]. Unfortunately, the power spectral estimation, typically
obtained from FFT based periodogram of windowed RF signal, imposes a fun-
damental trade-off on QUS between image resolution and estimation precision.
Smaller windows provide high spatial resolution, a desirable property for many
imaging applications such as characterization of thin (e.g. human skin) or hetero-
geneous (e.g. placenta) tissue. However, smaller windows yield noisy and inac-
curate power spectra estimates due to limited spectral resolution and spatial
variation noise inherent in ultrasonic scattering. Larger windows improve accu-
racy and precision of power spectra estimates and therefore the estimation of
QUS parameters, with an expense of reduced spatial resolution [5,6]. One study
found that the trade-off between spatial resolution and the variance of QUS
parameter is optimized with a window size of 10 independent scanlines laterally
and 10 times the wavelength axially [6].

To expand the precision-resolution trade-off, different modifications of peri-
odogram have been investigated. Welch method was found to yield the most
accurate and precise spectral estimate with reasonable computational cost [6].
Alternatively, autoregressive (AR) techniques have been reported to exceed the
performance of FFT based periodogram, especially for smaller windows [7]. How-
ever, AR techniques show degraded performance with increasing depth in higher
attenuating media due to violation of the stationarity assumption. More recently,
deep neural networks such as WaveNet [8], have significantly improved state-of-
the-art performance in fields of forecasting non-stationary and non-linear pro-
cesses, such as speech and financial time-series [8,9].

In this work, we present PredictUS, a spectral based QUS technique based
on US RF signal prediction using a sequence-to-sequence convolutional neural
network (CNN) modelled with a WaveNet inspired architecture. Given a small
windowed RF signal, this method predicts the next data points, resulting in a
larger window. Therefore, the method yields better estimates of power spectra as
well as can characterize local tissue properties with high resolution by essentially
extending the property to a larger region. We demonstrate the applicability of
PredictUs for improved measurement of attenuation coefficient estimate (ACE),
a QUS parameter.

2 Method

The first signal processing step in spectral-based QUS techniques is the estima-
tion of power spectra from a limited-length RF signal window. The proposed
PredictUS method adds a WaveNet inspired deep neural network before the
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Fig. 1. Overview of the proposed PredictUS method. Blue solid line indicates the orig-
inal input window, whereas the blue dash-dotted line indicates the predicted signal in
the “WaveNet Network” block and the power spectrum obtained from the optimum (i.e.
PredictUS) window in the “QUS Parameter Estimation” block. (Color figure online)

power spectra estimation step (Fig. 1). The network results in a larger win-
dow by sequentially predicting the next samples. The power spectra estimated
from the larger RF signal windows are fed for the subsequent QUS parameter
estimation.

2.1 ACE Computation

The ultrasound ACE is a measure of ultrasound amplitude dissipation due to
the combined effect of scattering and absorption. ACE can be measured using
the reference phantom method [4], a standard method to account for the system
dependent factors.

According to this method, the RF data are acquired from both the tissue
sample, s and a reference phantom, r with known properties using the same
transducer and system settings. For a RF signal window centered at depth z
from the transducer surface, the natural logarithm of the ratio of the power
spectrum S from the sample to the reference phantom at frequency f ∈ (f1, fk)
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can be written as [2,4]:

ln
Sr(f, z)
Ss(f, z)

= −4(αs(z) − αr(z))fz + ln
Bs

Br
. (1)

where α is the effective ACE for the total ultrasound propagation path z and B
is the backscatter coefficient (BSC). Substituting the following variables in Eq. 1
as: ln Sr(f,z)

Ss(f,z) = Y (f, z), αr − αs = α, ln Bs

Br
= β, we get,

Y (f, z) = −4α(z)fz + β. (2)
The above equation can be written in a matrix form: y = Ax + N (0, σNI),
where

A =

⎡
⎢⎣

4zf1 1
...

...
4zfk 1

⎤
⎥⎦

k×2

,y =

⎡
⎢⎣

Y (f1, z)
...

Y (fk, z)

⎤
⎥⎦

k×1

,x =
[
α
β

]

2×1

.

A least square fitting method [11] can be applied to solve for x = [α, β] from the
noisy estimation y as follows:

x̂ = arg min
x

{‖(y − Ax)‖22}, (3)

with the following constraints:

αmin ≤ α ≤ αmax, βmin ≤ β ≤ βmax (4)

Solving Eq. 2 gives us the effective ACE (α) for the total ultrasound prop-
agation path. The local ACE at depth zi can be computed as: αlocal(zi) =
α(zi)zi−α(zi−1)zi−1

zi−zi−1
.

2.2 Network Architecture

We employed a sequence-to-sequence CNN using WaveNet model. First intro-
duced by the researchers from DeepMind, Wavenet is an autoregressive model,
where each predicted sample is conditioned on the previous ones [8]. One key
element of WaveNet is stacked layers of 1-dimensional dilated causal convolu-
tion. Causal convolutions are used to ensure that a prediction at time step t
only depends on the previous time steps, whereas the use of a dilation rate
increased as a factor of 2 results in an exponentially growing receptive field
with depth. For the US RF signal prediction, a receptive field is required which
is large enough to capture several wavelengths. For our application, one wave-
length (λ) is approximately 20 samples for US transmission frequency of 5 MHz
and sampling frequency of 50 MHz. We use 14 dilated causal convolution lay-
ers with a dilation rate of factor 2 with a reset (20, 21, ..., 26, 20, 21, ..., 26) and
64 filters with width of 2. As in original architecture, there are gated activation
unit (combining a hyperbolic tangent and a sigmoid activation branch), residual,
and skip connections (Fig. 1) in each of these layers to speed up the convergence
and enable improved training for deeper models. Finally, the WaveNet output is
passed through a ReLU activation followed by a linear projection.
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3 Experiments and Results

3.1 Data

We used the k-Wave toolbox [10] to generate simulation US RF data. For the
simulation, we use 96 element linear array transducer with 0.2 mm element
pitch. The depth was set to 60 mm. Fixed focusing was used in transmission
(focal depth 60 mm) and dynamic focusing was used in reception. We simu-
late 256 RF lines for each of the 32 different ACE values ranging from 0.1 to
1.65 dB/cm/MHz. The selected ACE range encompasses the observed ACE val-
ues in liver at different NAFLD stages and in placenta. Finally, we divide each
RF line into 13 segments with 25% overlap, resulting in a training set of 106,496
RF line segments. We also created a separate test dataset of 550 examples,
where 50 RF line segments are extracted for each of the 11 different ACE values
(0.5–1.5 dB/cm/MHz).

3.2 Training and Testing

In the training stage, a teacher-forcing procedure is applied where the model
performs a one-step ahead prediction. The model outputs a sequence of n steps,
which is one time-step shifted version of the input sequence. Therefore, the
model is trained using the correct output instead of the predicted output. We
use a batch size of 64 and use Adam optimizer to minimize mean squared error
loss with β = 0.9, β2 = 0.999 and learning rate of 0.001.

In contrast to the training stage, the testing stage makes a n-step ahead
prediction sequentially by feeding each prediction back into the network at the
next time step.

3.3 RF Data Processing and Analysis

For ACE computation, the lateral dimension for the RF signal window was kept
fixed at 5 scanlines. The axial dimension was varied from 5λ (100 samples)
to 10λ (200 samples) to study the effect of PredictUS in improving the trade-
off between resolution and precision. For the power spectrum computation, the
Welch method has been found to yield more accurate and precise estimation com-
pared to rectangular, Hanning, or Hamming windows [6]. Therefore, we used the
Welch method to estimate the power spectrum from the RF scanlines within each
RF window. According to the Welch method, each RF scanline within a window
was subdivided into overlapping sections, with length equal to 67% of the origi-
nal RF scanline and with 50% overlap. Each segment was then multiplied with
a Hamming window. The power spectral density was obtained after averaging
the periodograms obtained from the windowed segments. We considered the −20
dB bandwidth of the received power spectrum as the usable frequency range. To
compute the ACE, we utilize the RF data with ACE of 0.5 dB/cm/MHz as the
reference data.
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Fig. 2. (a) An example of RF line segment prediction using the proposed sequence-to-
sequence CNN. (b) Comparison of power spectra estimation using original large window
(10λ), original small window (7.5λ) and PredictUS large window (10λ) predicted from
7.5λ original window.

3.4 Performance Metrics

We use Mean Absolute Scaled Error (MASE) to measure the performance of
sequence-to-sequence CNN to predict the larger RF window from the smaller
one, where

MASE =
1
T

∑T
t=1 |et|

1
T−1

∑T
t=2 |Yt − Yt−1|

(5)

Here, et is the prediction error, defined as the difference between the actual
value and the predicted value and the denominator denotes the in-sample mean
absolute error from the naive forecast method. A MASE value < 1 indicates a
prediction performance better than the naive forecast method.

As a measure of precision of ACE, we report the standard deviation of the
computed ACE as a percentage of the actual value. We also report the bias in
the estimated ACE, as the difference between the estimated ACE and actual
ACE presented as a percentage of the actual ACE.

3.5 Results

Performance of RF Data Prediction. We apply the trained sequence-to-
sequence CNN on the test dataset. An example of RF data prediction is shown
in Fig. 2a, where a 50-step (2.5λ) ahead prediction was made, given a RF line
segment of 150 steps (7.5λ). We can see a precise prediction for the initial RF
samples, which starts to degrade with increasing time step. We found that the
power spectra estimate obtained from the PredictUS window of length 10λ (gen-
erated from 7.5λ segment) gives similar estimates as obtained from a larger win-
dow (10λ segment) and outperforms the estimates obtained from the original
7.5λ segment (Fig. 2b).
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Fig. 3. RF data prediction performance: (a) for n-step ahead prediction with varying
n, and (b) for varying ACE in term of mean absolute scaled error (MASE).

We analyse the performance of the network for n-step prediction for varying
values of n. It was found that, on average, the network can make a 16-step
prediction when MASE < 1. This performance is comparable to the previous
work on time-series forecasting using WaveNet model, which reports MASE for a
single-step ahead prediction [9]. Additionally, we investigated whether the ACE
amplitude has an effect on the prediction performance. We computed MASE for a
15-step prediction for data with ACE varying from 0.5 to 1.5 dB/cm/MHz. From
Fig. 3, we see that the MASE remains within a range of 0.52–0.58 for ACE ≤
1 dB/cm/MHz, and after that MASE starts to degrade with increasing ACE.
This result agrees with previous finding from the AR based techniques where
higher attenuating medium showed inferior QUS estimation performance [7].

Performance of ACE Computation. We investigate the performance of
the proposed PredictUs method in extending the resolution-precision trade-off
inherent in QUS parameter estimation. According to [6], an axial dimension
of 10λ has been defined to be the optimum keeping the variance and bias of
QUS parameter estimation within 10%. Taken these numbers as the baseline,
in this study, we examined the limit to which the trade-off can be extended by
simulating three cases with increasing difficulty as follows:

1. Case I: PredictUS window of length 10λ with 2.5λ predicted using 7.5λ win-
dow;

2. Case II: PredictUS window of length 10λ with 5λ predicted using 5λ window;
3. Case III: PredictUS window of length 10λ with 7.5λ predicted using 2.5λ

window;

Here, PredictUS window refers to the window obtained by concatenating the
original input window and the predicted window. For each case, the precision as
well as the bias in ACE computation have been compared with the original ‘large’
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Fig. 4. PredictUS performance for case I (top), case II (middle), and case III (bottom).
(a) Example RF line segments and their divisions; (b) ACE error for different ACE
values; (c) Standard deviation of ACE for different ACE values.

RF window with length equal to the PredictUS window, and with the original
‘small’ RF window with length equal to the original data used in computing
PredictUS window. The ACE computation results for these three cases have
been demonstrated in Fig. 4.

For case I, the small window (7.5λ) with original data attains a precision
and accuracy performance where ACE error and the standard deviation remain
within 4% and 7%, respectively. The large window (10λ) with original data
improves both the precision and the bias where ACE error and the standard
deviation both remain within 2% and 6%, respectively. The ACE estimation
using PredictUS window outperforms the estimation from the small window and
achieves performance equivalent to that obtained from the large window.

In case II, the difference between the ACE measures obtained from small
window (5λ) and the large window (10λ) is more prominent, where small win-
dow results in a bias up to 7.3% and standard deviation as large as 19.7%.
Interestingly, the PredictUS window, using original data of length 5λ only, can
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attain a precision within 5.5%, slightly larger than that obtained from the
large window (4%). The PredictUS window gives moderate bias (within 6%)
for ACE < 1.1 dB/cm/MHz.

Finally, for case III, the PredictUS window only includes 2.5λ original data,
however, achieves a standard deviation within 10%. Although, the increasingly
accumulated error in the prediction of RF data affects the accuracy, resulting in
a larger ACE error compared to the small original window.

In summary, compared to the optimum trade-off, the PredictUS method can
reliably maintain similar precision and accuracy while improving the resolution
to 75% of the optimum value. Moreover, the proposed method can still achieve
comparable precision and accuracy for low ACE values with a resolution improve-
ment of 50%. However, reducing the resolution to 25% of the optimum exhibit
degraded ACE measurement, which can be attributed to the error accumulation
in the n-step ahead prediction. Unlike the case of RF data prediction, high ACE
does not have any distinct effect on the performance of ACE computation.

4 Conclusion

We propose a novel QUS parameter estimation method, PredictUS, utiliz-
ing ultrasound RF signal prediction. The method shows promising results by
predicting larger RF windows from the smaller ones. We conduct a proof-of-
concept study based on extensive simulation analysis. The proposed sequence-
to-sequence convolutional neural network based on WaveNet model was able to
estimate RF signal samples to a reasonable accuracy and therefore improve the
power spectral estimate. A resolution reduction, as high as 50%, while maintain-
ing comparable estimation precision introduces a paradigm shift by challenging
the insistent trade-off between precision and resolution, inherent in ultrasound
spectral estimation. Future research will address the issue of error accumulation
in the n- step prediction by further improving the CNN structure.
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