
  

  

Abstract— In biomedical applications including classification 

of endoscopic videos, class imbalance is a common problem 

arising from the significant difference between the prior 

probabilities of different classes. In this paper, we investigate 

the performance of different classifiers for varying training 

data distribution in case of bleeding detection problem through 

three experiments. In the first experiment, we analyze the 

classifier performance for different class distribution with a 

fixed sized training dataset. The experiment provides the 

indication of the required class distribution for optimum 

classification performance. In the second and third 

experiments, we investigate the effect of both training data size 

and class distribution on the classification performance. From 

our experiments, we found that a larger dataset with moderate 

class imbalance yields better classification performance 

compared to a small dataset with balanced distribution. 

Ensemble classifiers are more robust to the variation in 

training dataset compared to single classifier.  

I. INTRODUCTION 

With its introduction in 2000 [1], capsule endoscopy (CE) 
has played a significant role in the diagnosis and 
management of gastrointestinal (GI) tract diseases. As a 
patient friendly alternative to traditional wired endoscopy, 
CE has eased the endoscopic process by replacing the 
insertion of tubular structures containing fiberoptic bundles 
and multiple channels through the body cavity opening with a 
swallowable capsule.  Typically at a frame rate of 2-6 fps, a 
commercial capsule transmits 14,000-72,000 images of GI 
tract during its battery life span of 8-12 hours [2]. Examining 
these frames poses significant burden on the clinicians, 
requiring the investment of time and undivided attention. 

In the last 15 years after the inception of CE, a large 
number of research works have been published proposing 
computer-aided screening and decision systems based on CE 
images [3]. The majority of these works are based on 
supervised learning, since supervised approaches have been 
reported to achieve higher accuracy compared to an 
unsupervised one [3]. The performance of the supervised 
learning depends on the quality of training data. For medical 
images, class imbalance is a common phenomenon where a 
positive instance can typically only be seen after observing 
thousands of negative instances [4].  
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To deal with class imbalance problem, different 

approaches have been proposed in the literature including 

data sampling and cost sensitive learning framework [5], [6], 

[7]. Data sampling methods involve the modification of an 

imbalanced data set by some mechanisms to provide a 

balanced distribution, which is typically performed by 

undersampling the majority class or oversampling the 

minority data following specific rules. On the other hand, the 

cost-sensitive learning methods use different cost matrices to 

describe the misclassification cost for different classes. 

Although these techniques have exhibited significant 

improvement in case of class imbalance, it would be 

interesting to investigate whether there is any advantage of 

using a certain classifier over others, in absence of any of 

these techniques to address the class imbalance problem.  

Besides, in this paper, we have tried to address the 

important question of how to select class distribution of 

training set to get optimum classification performance in 

case of limited training data size. It is believed that for a 

fixed sized training set, balanced dataset would  give more 

accurate classification results [8]. However, for an available 

dataset with class imbalance, we can select a smaller training 

set to achieve balanced class distribution, or a larger training 

set keeping the original class distribution constant. There is 

no empirical study in the field of endoscopic image 

classification to show the relative importance of these two 

factors, namely training data size and class distribution. In 

this paper, we have experimented with five different 

classifiers with different training data size and class 

distribution to address the above mentioned issues. We have 

selected the extensively visited problem of bleeding 

detection in CE images for our experiment. The classifiers 

we have selected for our experiments are: SVM, decision 

tree, kNN, and neural network.  In a previous work, it was 

established that ensemble classifiers are more robust against 

imbalanced training dataset compared to single classifier for 

bleeding detection [9]. Therefore, RUSBoost, an ensemble 

classifier is included to provide a reference for the 

performance measure. The detailed empirical study should 

be helpful in providing a better understanding of the role of 

specific classifier, class distribution and training data size on 

classification performance in case of class imbalance for 

bleeding detection in capsule endoscopic images. 

The rest of the paper is organized as follows: section II 

describes the proposed methodology, section III details the 

experimental results and section IV concludes the study.   
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TABLE I.  DESCRIPTION OF DATASET 

Dataset Total Bleeding Non-bleeding 

Total 8248 836 7448 

Test 2071 209 1862 

 

Training for 
Experiment 1 

 

660 

Varied between 
5% to 95% of 

total training set 
with 5% 

increment 

Varied between 
5% to 95% of 

total training set 
with 5% 

increment 

 

Training for 
Experiment 2 

 

Varied 

627 

(All bleeding 
samples available 

for training) 

Varied with a 
ratio between 
8:1 to 1:8 with 

increment 1 

 

Training for 
Experiment 3 

 

660×n   

n=0.1:0.1:1   

Varied between 
5% to 95% of 

total training set 
with 5% 

increment 

Varied between 
5% to 95% of 

total training set 
with 5% 

increment 

 

II. METHODOLOGY 

A. Image Feature Extraction and Feature Selection 

From the 256x256 capsule endoscopic images, bleeding 

and non-bleeding regions have been extracted following the 

steps originally proposed in [10], [11]. From the extracted 

regions, histogram based first order features (i.e., mean, 

standard deviation, energy, entropy, and skewness) have 

been selected from each of RGB and HSV planes, yielding a 

feature space of dimension 30. Applying ant colony 

optimization to select the optimum feature subset [12], we 

get a feature subset consisting of mean of red, mean of 

green, mean of saturation and standard deviation of red color 

channel.  

B. Classifiers 

For comparison of different classifiers, we selected four 

popularly used classifiers: Support Vector Machine, Neural 

Network, decision tree, and k-Nearest Neighbor.  RUSBoost 

is also included to serve as a reference classifier. 

Support Vector Machine (SVM) has been extensively 

used in classification problem of endoscopic videos [4],[13]. 

However, performance of SVM drops drastically in case of 

training data imbalance, as by design of the underlying 

algorithm, SVM learns a decision boundary which is skewed 

towards the minority class to maximize the margin and 

minimize the classification error [6]. Neural network is 

another classifier with frequent application for classification 

of endoscopic images [14], [11] and also shows 

progressively detrimental effect with increasing class 

imbalance [15].   Decision tree, on the other hand, partitions 

the training set successively into smaller subsets, which are 

then used to form disjoint rules leading to a final hypothesis 

to minimize classification error [5]. In case of imbalanced 

data, successive partitioning results in fewer observations of 

minority class leading to fewer leaves representing minority 

concepts. Thus the rules based on confidence are biased 

towards the majority class. k-nearest neighbor (kNN) 

classifier is an instance-based classifier learning algorithm, 

which finds the k training set examples closest to the test 

example based on a certain distance metric (Mahalanobis 

distance has been used in our experiments) and the label of 

the test example is  determined by the predominance of a 

class in the neighborhood.  Thus, kNN effectively uses the 

prior class information to estimate class labels, resulting in 

suboptimal performance for minority class in case of 

imbalanced dataset [16]. RUSBoost, unlike the above 

mentioned classifiers, is an ensemble learning method, 

which combines weak learners and aggregates their 

predictions to form a new classifier, outperforming each of 

the weak learners. In this paper, we have used decision tree 

as the weak learner, the most commonly used weak or base 

classifier [17]. Ensemble classifiers generally outperform 

single classifier in case of class imbalance [18]. RUSBoost 

is specifically designed to handle class imbalance problem 

[19], and thus is expected to yield better performance 

compared to single classifiers. In this paper, RUSBoost has 

been included to provide a reference for classification 

performance in case of class imbalance. 

III. EXPERIMENTS 

C. Data Acquisition and Experimental Setup  

For our experiment, we compiled a dataset containing a 

total of 8248 images, in which bleeding samples constitute 

the minority class. These images were taken from resources 

available at [18, 19] and captured using Pillcam SB, SB2, 

SB3 (Given Imaging) and EndoCapsule1 (Olympus). We 

ensure that the dataset represents the wide variation of CE 

images arising from different technology, patients and 

clinical condition. We have performed all our experiments 

using MATLAB 2015a. For each experimental iteration, the 

test set is formed by randomly selecting 25% of the original 

dataset (25% of total bleeding and 25% of total non-bleeding 

examples). The remaining data are allocated for training. For 

the first experiment, the training set size is kept constant 

while the class distribution is varied such that bleeding class 

accounts for 5% to 95% of total training data. To ensure that 

the training set size is constant and to make the best use of 

available training data, we set the training set size such that,  

   

0.95

bleeding sample available for training
training set size =  

For the second experiment, we keep the size of the minority 

class, i.e., bleeding class constant. The size of non-bleeding 

class is varied so that bleeding to nonbleeding example ratio 

is varied between 1:8 to 8:1. For the third experiment, first 

experiment is iterated for different training data size while 

maintaining the similar class distribution as of first 

experiment. The description of the dataset and the training 

dataset are given in Table 1. For each classifier, we used 5-

fold cross-validation of the training sets to optimize the 

classifier parameters. All the results are based on 10 

iterations performed on each of the training class distribution 

for each experiment. To identify the optimal range of class 

distribution for each distribution for all the experiments, we 

perform paired t-tests to compare the performance of the 
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(a)                                                           (b)                                          (c)                                                (d) 

 

Fig. 1.  Variation of classifier performance with variation in class distribution of training data for fixed size training data; (a) Sensitivity; (b) 
Specificity; (c) F-measure; (d) AUC; Here the x-axis indices correspond to percentage of bleeding examples in the total training set. 

   

                   (a)                                                       (b)                                                              (c)                                                  (d) 

 

Fig. 2.  Variation of classifier performance with variation in class distribution and size of training data for fixed number of bleeding examples; (a) 
Sensitivity; (b) Specificity; (c) F-measure; (d) AUC; The x-axis indices correspond to nonbleeding to bleeding example ratio in training set. 

best average classifier with the performance of other class 

distributions. A t-test giving p-value<0.05 is considered to 

be statistically significant. 

D. Performance Metric 

For quantitative performance evaluation, we adopted 

sensitivity, specificity, and F-measure as follows: 

   

 
TP

Sensitivity
TP FN

=

+

  

 
TN

Specificity
TN FP

=

+

  

2 sensitivity precision
F Measure

sensitivity precision

⋅ ⋅
− =

+

 

 

Here, TP  and FP  are respectively the correctly and 

incorrectly labeled bleeding examples, and TN  and FN  are 

respectively the correctly labeled and incorrectly labeled 

non-bleeding examples. Precision is the ratio of correctly 

labeled bleeding examples to all the examples labeled as 

bleeding. We omitted accuracy to measure the performance 

as it largely depends on the class distribution and can be 

quite deceiving in case of data imbalance. Sensitivity and 

specificity are not sensitive to changes in data distribution. 

F-measure, however is sensitive to class distribution, 

provides more insight into the functionality of a classifier 

compared to accuracy metric [5]. We also use area under the 

curve (AUC) obtained from the ROC curve, which is 

another evaluation criteria useful to assess the performance 

of a classifier, especially for imbalanced dataset [5].  

E. Experimental Results and Discussions 

In experiment 1, we have kept the training data size the 

same and varied the class distribution to see the effect on 

classification performance for different classifiers. As 

expected, for all the classifiers, sensitivity improves as the 

bleeding class percentage increases in training set and the 

specificity corresponds to percentage of non-bleeding 

examples in the similar fashion. From Fig. 1, we find that 

RUSBoost is the most robust classifier, which can be 

justified as it is specifically designed to handle class 

imbalance. The remaining classifiers can be ranked from 

best to worst in term of robustness as: kNN, Decision Tree, 

Neural Network and SVM. However, from careful 

examination of AUC curve and F-measure curve from Fig. 

1, it is evident that SVM and neural network are the two best 

classifiers in case of balanced class distribution. Therefore, 

the classifier selection should depend on class distribution of 

available dataset. On the other hand, in case a classifier is 

chosen in advance, the class distribution of training set 

should be selected accordingly. 

In experiment 2, we simulate the situation where the best 

use of minority class is ensured. We want to find the 

optimum class distribution in that case given that the 

minority class size is fixed at its highest possible number. 

This experiment will also give an idea of the effect of 

training data size on classifiers. From Fig. 2, we can find 

that though RUSBoost is insensitive to class distribution and 

class size, it gives sub-optimum classification results 

compared to other classifiers. Another important point is that 

the training data size for experiment 2 is larger than 

experiment 1 due to specific class distribution choice. The 
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Fig. 3. Effect of class distribution and training-set size on AUC for 
SVM classifier. X-axis indices correspond to percentage of 
bleeding examples in the training set. The curves correspond to 
different training set size 660×n, where n=0.1:0.1:1.  

overall performance improvement for experiment 2 

compared to experiment 1 is evident from Fig. 1 and Fig. 2. 

This emphasizes the importance of large training set over 

certain class distribution. The stable performance of SVM, 

decision tree and specifically kNN in terms of AUC and F-

measure indicates that it is desirable to utilize all the 

available data rather using downsampling to achieve 

balanced class distribution for ensuring optimum 

classification performance. 

In experiment 3, we have re-emphasized the generally 

accepted idea that for a specific class distribution, a large 

dataset would provide better result. Due to space limitation, 

we only demonstrate a representative graph for SVM in Fig. 

3. Here, it is evident that the performance for a certain class 

distribution improves as the training size increases and for 

an optimum training data size (n>0.4), balanced training 

gives the optimum result. 

IV. CONCLUSION 

From our comprehensive analysis, we provide a useful 
insight regarding the choice of classifier, training class 
distribution and training data size in absence of any measure 
to handle class imbalance. From our experiments, we have 
reached the following conclusions: (1) Choice of classifier is 
important. Ensemble classifier should be chosen in case of 
extreme class imbalance. Among the single classifiers, kNN 
is most insensitive to the variation of class distribution. SVM 
is most suitable in case of balanced distribution. (2) For a 
training set which is fixed and not very small (n>0.4 in our 
case), balanced class distribution provides the best 
classification performance regardless of classifiers. (3) For a 
specific class distribution of training dataset, increasing the 
data size will improve the classification performance. (4) If 
class distribution and data size both vary, there is no certain 
rule according to which classification performance changes. 
Empirically, we have shown that by keeping minority class 
constant and increasing the majority class, better 
classification performance can be achieved using classifiers, 
for example, SVM and kNN. Therefore, it can be concluded 
that downsampling of majority class to achieve balanced 
class distribution is not an optimum choice to handle class 
imbalance problem. In most cases, a large dataset is 
preferable compared to a small dataset with balanced class 
distribution. This paper should serve as useful guideline to 
select the most suitable classifier, training data distribution 

and size to achieve optimum classification performance for 
imbalanced class distribution, in context of CE image 
classification.  
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