
IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 1

Incremental Trace-Buffer Insertion for FPGA Debug
Eddie Hung and Steven J. E. Wilton

Abstract—As integrated circuits encapsulate more functionality
and complexity, verifying that these devices operate correctly
under all scenarios is an increasingly difficult task. Rather
than use traditional verification techniques such as software
simulation, more and more designers are taking advantage of
the significantly higher clock speeds that can be achieved by
using Field-Programmable Gate Array based prototypes. A key
challenge to these prototypes is the lack of on-chip observability
during debug; one popular solution is to insert trace-buffers
into the design to record a limited set of internal signals, but
modifying this trace configuration often requires the entire circuit
to be recompiled. In this work, we propose that the original
circuit mapping is fully preserved and incremental techniques
are used to eliminate the need for a full recompilation, thereby
accelerating the debug process. By exploiting two opportunities
available during trace-insertion: the ability to connect from any
point of a signal to any trace-pin, and the internal symmetry of
the FPGA architecture, we find that incremental trace-insertion
can be 98X faster than a full recompilation, return a routing
solution with a shorter wirelength, and have a negligible effect
on the critical-path delay of the original circuit when reclaiming
75% of the leftover memory capacity for tracing.

Index Terms—Design verification, Field-Programmable Gate
Array (FPGA) debug, Trace-Buffer, Incremental Compilation

I. INTRODUCTION

W ITH current state-of-the-art integrated circuits now
reaching multi-billion transistor counts, designing these

complex devices is far from trivial. In many cases, verifying that
a circuit functions correctly under all expected (and unexpected)
operating conditions is often even harder than the initial design
phase. To combat this, many designers have turned to Field-
Programmable Gate Array, or FPGA, -based prototyping to
increase their verification coverage beyond that achievable
using traditional software simulations. A study by IBM found
that a full chip-level testing using a multi-FPGA prototype was
100,000x faster than software simulations, and 400x slower than
the fabricated ASIC; in context, for every one second required
to boot Linux on the ASIC, almost 5 years were required in
simulation, but only 7 minutes on their FPGA system [1].

Circuits can be prototyped on FPGA platforms in a fraction
of the time and cost required for a fabrication spin, with
the result able to reach clock frequencies many orders-of-
magnitude higher than in simulation. This allows designers to
explore circuit behaviour that would otherwise be beyond reach.
Despite these advantages, the primary challenge for debugging
on these devices lies with on-chip observability. That is, whilst
simulators can provide full visibility into all the intermediate
signals of a circuit, for physical prototypes, normally only the
signals that interact with the outside world would be observable

E. Hung and S. Wilton are both with the Department of Electrical and
Computer Engineering, University of British Columbia, Vancouver, BC,
Canada; e-mail: {eddieh,stevew}@ece.ubc.ca

using external equipment. One common solution to this problem
is to instrument the prototype using trace-buffers to record a
subset of internal signals into on-chip memory for subsequent
analysis; tools such as ChipScope Pro, SignalTap II and Certus
can be used for this task [2], [3], [4], [5].

By embedding trace-buffers into a circuit, designers can
transparently, and in real-time, sample a small window of the
internal circuit values into on-chip memory during regular
device operation. Once recording is complete, designers can
then extract this trace data onto a computer and view them as
waveforms, just as with a simulation flow; the key difference
being that these traces can be captured from much further into
the device operation than would be feasible to achieve in a
simulator. This concept is illustrated by Figure 1. Crucially,
the choice of which signals to connect to a trace-buffer must
be made before the device is tested. Observing a different set
of signals requires a different set of connections to be made,
which often requires a new circuit mapping to be constructed.

In this work, we explore the effect of using incremental
synthesis techniques in order to reduce both the time needed
to perform the initial instrumentation of a circuit, and the
turnaround time between debugging iterations where designers
wish to modify the signals connected to these trace-buffers.
Rather than discarding the original circuit mapping, incremental
techniques aim to make the minimum set of modifications on
this preserved mapping in order to implement the requested
changes. The advantages to this are many: besides being able to
achieve significant CAD runtime savings, the modified circuit
will retain most of the original mapping result and allow
designers to debug something as close to the uninstrumented
circuit as possible, as well as the ability to better preserve any
low-level optimizations and timing closure.

Specifically, we propose that trace instrumentation is inserted
directly into the post place-and-routed FPGA circuit mapping —
without moving any existing logic blocks nor ripping up any of
the existing routing — instead, using only the spare resources
that were originally left unused. To make this feasible, we
present novel techniques to increase the incremental routing

PC
External
Stimuli

Real-time data collection Off-line analysis

FPGA

User Design

Trace BufferCtrl

a

b

c

d

e

Waveform

Instrumented
FPGA

Fig. 1. Trace-based debugging

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 2

flexibility of trace-buffer insertion. We show the value of our
techniques by comparing the effect of instrumenting before
(pre-map insertion) and during the FPGA mapping procedure
(mid-map) with doing so incrementally (post-map).

The key contributions of this paper is that it presents novel
techniques to rapidly accelerate the turnaround time between
FPGA debugging iterations by employing a form of incremental
compilation specific to trace-buffer insertion. Unlike existing,
general-purpose incremental compilation methods, our tech-
niques are optimized for observing (as opposed to modifying)
an existing circuit, which allows designers to add or change
the signals connected to their trace-buffers up to 98X faster
than a full recompilation when utilizing 75% of the available
trace-buffers, assuming 20% routing slack exists.

To evaluate this work, we have made a complete and
detailed comparison between our proposed post-mapping
insertion technique and pre-map trace insertion, which requires
the entire circuit to be recompiled, and mid-map insertion,
which recompiles only part of the circuit. When targeting an
architecture based on the Altera Stratix IV 40nm family of
devices supporting heterogeneous RAM and DSP blocks, along
with realistic wire delays, we find that our proposed technique
returns a circuit solution with a shorter wirelength than the
pre-map and mid-map strategies, with only a small (average
at 0.6%) but stable impact on critical-path delay. Furthermore,
we find that our work can outperform the general-purpose
incremental-compilation feature present in Altera Quartus II.

An earlier version of this work investigating just the post-
map technique was first presented in [6]. Since that paper, we
have further improved our CAD optimizations and re-evaluated
our work on a more realistic FPGA architecture using a bigger
set of benchmarks and compared against pre-map and mid-map
trace insertion methods, as well as with a commercial tool.

II. BACKGROUND

A. Enhancing Observability

Methods to enhance device visibility during hardware
validation can be divided into two broad categories: scan-
based and trace-based. Scan-based techniques rely on the serial
connection of all (or just a subset) of the flip-flops in a circuit so
that their contents can be shifted out for observation, and new
values shifted in for controllability. Direct implementation of
complete scan chains using FPGA soft logic has a prohibitively
high cost (84% area and 20% delay overhead [7]). However,
some modern FPGAs typically have hardware support (device
readback) to read not only the value of its configuration bits,
but also all the state bits in a design. These techniques can
typically offer simulator-like visibility into all sequential signals
of the circuit, but only at a cycle-by-cycle basis due to the
need for the circuit to be halted before the scan-out procedure
can take place. Reference [8] reported that viewing any register
in this manner can take between 2 to 8 seconds, precluding its
use for real-time debugging.

With trace-based approaches, like that illustrated by Figure 1,
a designer pre-inserts a set of trace-buffers into their circuit
at compilation, so that during debugging, a history of signal
values can be recorded without interrupting circuit operation.

This capability allows the circuit to be tested using real-world,
real-time stimulus, and increases the likelihood of reproducing
difficult-to-catch errors, such as those that cross multiple clock-
domains. Due to limited on-chip resources however, only a
small subset of internal circuit signals can be pre-selected for
tracing, and this selection remains fixed until the circuit is
recompiled. Choosing which signals to observe can be a time-
consuming task, though a number of automated techniques
have attempted to combat this [9], [10].

B. Incremental Synthesis
The key idea behind incremental synthesis is to allow the

functionality of a fully place-and-routed circuit implementation
to be modified whilst preserving as much of the original
solution as possible. Within the context of FPGAs, the aim
is to move the fewest number of placed blocks, and rip-up
and re-route the fewest number of existing nets to achieve this
result. Owing to the general-purpose nature of FPGAs, this is a
much more feasible task than in custom ASICs, as FPGA CAD
tools have the flexibility to use any of the prefabricated logic or
routing resources that were not employed in the original circuit.
The motivations behind this technique are many: to minimize
recompilation effort during the design phase, to preserve timing
closure when undertaking Engineering Change Orders (ECOs),
or for improved fault and defect resilience [11]. However, the
penalty for incremental synthesis is often regarding to be a
small loss in circuit performance.

Incremental synthesis techniques for FPGAs are not new
however [12], [13], nor is their application in design prototyping
and debug [14]. In this work, we refer to the use of incre-
mental techniques for transparently inserting trace-buffers as
incremental-tracing. Many of the techniques cited are targeted
at modifying the user circuit for functional purposes and go
beyond the requirements for observe-only incremental-tracing
(which are explained in detail in a following section) and
include provision for incremental re-packing and re-placement.

An approach much more similar to what we are investigating
is taken by Graham et al. [15], who pre-insert unconnected em-
bedded logic analyzers (trace-buffers) into their Xilinx FPGA
ahead of time, and subsequently perform low-level bitstream-
modification using incremental techniques [16] to connect them
to the desired signals. However, this technique still requires
some pre-reservation of FPGA resources, preventing their use
by the original design. More importantly, what we are interested
in are the limitations and scalability of incremental-tracing
— this work examined a trace set of only 128 signals, and
only supported existing Xilinx devices, precluding the open
investigation of FPGA architectures.

Incremental-compilation design is also supported by commer-
cial vendor tools. Specifically, both Altera’s SignalTap II trace
IP solution, and SignalProbe, which multiplexes and routes
signals directly to the I/O pins for connection to an external
analyzer, is supported under this flow [3]. We benchmark our
work against this in Section VI.

C. Multi-FPGA ASIC prototyping
The main application that this work is most applicable, and

one where functional debug is crucial due to simulation being

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 3

HDL source
e.g. Verilog

Logic
Synthesis

Packing &
Placement Routing

Simple Logic Floorplan Floorplan
with Routing

Pre-map
(No incremental techniques)

Mid-map Post-map

Generate
Bitstream

VPR

(Using incremental techniques)

Fig. 2. Pre-, mid-, post-map stages of the FPGA compilation flow

impractical, is ASIC prototyping. In this use case, large ASIC
circuits will often not fit onto a single FPGA device and
will typically have to be partitioned (manually) over multiple
boards each containing multiple FPGAs. The key issue during
partitioning is the number of inter-FPGA connections that can
be made — and given that FPGA devices have a limited number
of I/O pins (Altera’s largest Stratix IV device supports 1104
user I/Os) — this is often the constraining factor which prevents
devices from being fully utilized, nor maximum clock frequency
being reached [17]. This slack — both in terms of memory
and routing, as well as with regards to timing, represents a
unique opportunity for a non-intrusive debug technique.

The Dini Group, who manufacture multi-FPGA boards for
ASIC prototypes, currently assume that (and suggest to) their
customers that each FPGA is filled only to 60% utilization [18],
whilst Intel reported that they were able to build a highly-
tuned prototype of their Nehalem (Core i7/i5) processor
over 5 FPGAs, with a maximum logic utilization of 89%
(average 84%) and memory utilization of 83% (average 55%).
Importantly, they reported that due to I/O limitations, time-
division multiplexing of connections was required which limited
their user clock frequency to 520 KHz [19]. A study by an
industrial and academic collaboration [20] states that very high
(>85%) logic utilization is rare due to pin limitations, and that
the average post-partitioning utilization they have observed in
the field is less than 50%. Despite this, we do not believe that
our techniques are exclusive to the ASIC prototyping space;
in Section VI, we show that our methods degrade gracefully
when the amount routing slack is reduced.

III. TRACE-INSERTION

Current FPGA trace solutions such as Xilinx ChipScope Pro,
Altera SignalTap II, Synopsys Identify and Tektronix Certus [2],
[3], [4], [5] all operate primarily on the pre-mapped circuit.
That is, these tools will instrument the original user circuit with
trace-buffers and their connections before place-and-routing
the combined design, although several of these tools can also
support a limited amount of post-mapping reconfiguration. A
simplified illustration of what we have defined to be the pre-
map, mid-map, and post-map stages of the FPGA compilation
flow is shown in Figure 2. In this section, we will first describe
the assumptions that were made, before elaborating on the
differences between performing FPGA trace-insertion at each
of these stages in order, before arriving at the main focus of
this paper: post-map trace insertion.

A. Assumptions
In this work, we have made a number of simplifying

assumptions for trace-based debugging. Firstly, we do not

consider any overheads incurred by triggering logic. Because
only a limited subset of signals can be connected to trace-
buffers, and a limited window for which their signal values can
be recorded, triggering logic allows designers to control when
to start and stop tracing (for example, only in the clock cycles
immediately surrounding the occurrence of the error) in order
to make the most effective use of this finite memory capacity.
One scenario where this assumption would be realistic is if
this trigger event was driven by an external source (perhaps
off-chip) that is used to halt the clock signal. Alternatively, this
trigger logic may be inserted manually into the circuit using
soft-logic, perhaps using more general-purpose incremental
synthesis techniques. We believe that any trigger-logic would
require far fewer routing wires (for example, triggering on a
status flag, a state machine or a bus address) than for the trace-
buffer connections, and would hence have a small impact on
the circuit. Another option would be for such trigger logic to
be implemented using fixed-circuitry as opposed to soft-logic;
doing so would make it transparent to the user-circuit. The
area overhead of this hard-logic can be reduced by amortizing
it over several trace-buffers (for example, one trigger block
per memory column).

A second simplifying assumption that we have made is
the ability for free memory resources to convert into trace-
buffers without the need for any additional control circuitry.
We believe this is also realistic, as commercial devices allow
memory blocks to be operated as wide shift-registers which
can then be used to record a sliding window of signal data.
The second requirement to enable this feature is the ability to
unload the signal data once tracing was complete: we believe
that this can be achieved by using existing IP solutions for
low-bandwidth access over the JTAG interface [3], or through
using device readback techniques [15].

The third assumption is that, due to our CAD tools, we
are only able to synthesize (and hence instrument) circuits
operating in a single clock-domain. For trace-based debug to
support multiple clock-domains, each observed signal must be
sampled by a trace-buffer operating in its clock-domain. We
believe that our methods can be extended to support this by
adding these requirements as additional synthesis constraints.

We note that adding trace-instrumentation to the circuit after
logic synthesis, where the circuit has already been transformed
from a high-level description (such as Verilog) into low-level
FPGA primitives (lookup-tables) means that the designer is
restricted to only observing gate-level signals. These gate-level
signals, through logic optimizations and technology-mapping,
may not have a direct correspondence to the original HDL
signals. We believe several approaches exist to alleviate this
mismatch: firstly, unless register re-timing is performed, both
commercial and academic CAD tools are able to preserve the
HDL-to-gate mapping for flip-flops in the circuit. Designers
can therefore use these elements as fixed points of reference
into their Verilog code, or to use the data collected for off-line
simulation to compute all intermediate, combinational signals.
Secondly, designers are able to manually specify additional
points of reference by using synthesis attributes to force
the CAD tool to maintain this HDL-to-gate correspondence:
(* syn_keep *) is supported by Synplify and Quartus II

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 4

X M

M

(a) Baseline uninstrumented circuit

T

T

T

T

T

T

T

TM M

X

(b) Instrumentation without incremental tech-
niques (pre-map; utilizing 8/10 free memories)

X M

M

T T T

T T T

T T

T T

(c) Instrumentation with incremental-techniques
(mid-/post-map; utilizing 10/10 free memories)

Fig. 3. Placement results when instrumenting the or1200 benchmark with identical signals: X = multiplier, M = memory, T = trace-buffer (shaded)

tools, whilst ISE users can apply the S (SAVE_NET) attribute
to do so. Implicitly, existing trace IP such as ChipScope Pro,
SignalTap II and Certus already do this when instrumenting a
circuit pre-synthesis.

Lastly, during ASIC prototyping, where typically I/O is the
limiting factor and spare logic resources may be abundant,
it may be feasible to optimize the circuit less aggressively
so that more combinational signals can be preserved for
instrumentation without requiring a larger FPGA or impacting
circuit delay. This approach is not dissimilar to debug for
software applications, where performance is often traded for
visibility in debug binaries; in fact, the latest version of GCC 4.8
supports a new “-Og” optimization level which addresses
the need for fast compilation and a superior debugging
experience [21].

B. Pre-Map Trace Insertion

Performing trace-insertion at the pre-map stage involves
instrumenting the user circuit with trace IP early in the
implementation flow, whilst the design is still described at a
high-level of abstraction, and is the primary mode of operation
in many of the existing trace solutions. For example, Xilinx
ChipScope Pro allows instruments to be instantiated manually
into the HDL source, or inserted directly into the synthesized
circuit (but still prior to the place-and-route mapping procedure)
using the Xilinx PlanAhead and ChipScope Pro Core Inserter
tools [2]; whilst the Tektronix Certus product automatically
modifies the HDL source to add all necessary trace infras-
tructure [5]. There are many advantages to this approach:
by operating on the circuit early in the implementation flow,
any trace IP can be described at an equally high-level which
allows for increased portability across device families (and
even FPGA vendors). Furthermore, because the instrumented
circuit is treated as a single entity by the subsequent CAD
stages, theoretically, the circuit can be globally optimized as a
unit to create a more efficient result.

However, there are also several downfalls to instrumenting
the circuit prior to physical mapping. Firstly, because this
method inserts additional logic into the original user circuit,

the CAD tools will need to work harder in order to place-and-
route the circuit — not only because there exists more objects
to solve for, but also because of the additional constraints
that they impose. For example, each user net that the designer
wishes to observe introduces at least one additional fan-out
(the trace-buffer input) for the placement and routing stages to
consider. This increased complexity can manifest as increased
compilation runtime. Although prior work found that tracing
10% of the signals in a large design using SignalTap II incurred
only a 10% increase to runtime over the uninstrumented
baseline [22], this problem is compounded by the need to
perform a full recompilation every time the designer wishes to
modify the observed signal set.

Secondly, due to the chaotic and unpredictable nature of
the heuristic algorithms used in CAD tools, the very act of
modifying the circuit (even by a little) may alter, or even hide,
the bug under investigation. Rubin and DeHon found that small
perturbations just in the routing stage of the VPR CAD tool
caused the critical-path delay to vary between 17–110% [23];
hence, it is not implausible to imagine a scenario whereby
instrumenting the erroneous circuit would cause the faulty
path to be implemented entirely differently, one in which the
bug was much more difficult (if not impossible) to reproduce.
Whilst this point may not apply to strictly-functional bugs (i.e.
those that are caused solely by designer errors in the HDL
source) this may be of critical importance when attempting to
locate non-deterministic timing faults such as those introduced
by underspecified timing constraints or multiple clock-domains.

Figure 3 illustrates the difference in the placement results
between the original, uninstrumented circuit in Fig. 3a and the
circuit instrumented pre-mapping in Fig. 3b, when using the
VPR tool [24]. Square blocks on the peripheries indicate I/O
blocks, whilst the square blocks in the centre of the diagram
represent logic clusters: a dark shading means that the block
is occupied. The columns of rectangular blocks interspersed
in the logic fabric represent heterogeneous resources: each X
indicates a used multiplier, whilst M represent a used memory
block. In the instrumented circuit, T indicates a free memory
block that has been converted into a trace-buffer. A clear
difference exists between the placement results before and

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 5

after pre-map instrumentation: the act of instrumentation has
significantly affected circuit placement, with the original user
memory (annotated with M) have now been pushed away from
the centre of the circuit, with trace-buffers (T) taking its place.
This effect is due to the CAD algorithms being unable to
differentiate between the existing memory blocks and any of the
newly inserted trace-buffers, and so optimizes for them equally.

C. Mid-Map Trace Insertion

An opportunity for trace-insertion also exists mid-mapping,
in which trace instrumentation is inserted part-way through
the FPGA mapping procedure; specifically, as illustrated
in Figure 2, between the placement and routing stages of
the compilation flow. This approach offers a compromise
between pre-map and post-map trace-insertion — the original
packing and placement of the circuit is left untouched (which,
as revealed in Section VI, comprises the majority of the
compilation runtime).

Between the placement and routing stages, we propose that
the trace-buffers are incrementally-placed into the unoccupied
memory resources of the FPGA — initially similar to the post-
map approach — but with the difference that both the original
and instrumented net connections are subsequently routed in
a combined fashion. Hence, mid-map trace-insertion can be
expected to offer a trade-off between the quality-of-results
gained by pre-map insertion and the fast runtime achievable
using post-map insertion. Because the existing routing is ripped-
up and re-routed, there still remains the possibility that any
timing-bugs may also be obscured with this approach.

D. Proposed Technique: Post-Map Trace Insertion

The final opportunity for applying trace instrumentation,
and forming the main focus of this paper, is for trace support
to be added at the end of a normal FPGA compilation flow,
an approach that we have termed post-map insertion. Here,
only at the very end of the compile flow would incremental
techniques be used to make the minimal set of changes required
to accommodate the trace instruments. This allows designers
to preserve as much of their circuit as possible, in order to
improve CAD runtime for a small loss in circuit quality.

Besides pre-map trace-insertion, Altera SignalTap II also
supports a post-map flow in which the entire instrumentation
procedure can be completed using the general incremental-
compilation features available in the Quartus II tool [3].
Through experimentation, we have discovered that Quartus II
appears to take a best-effort approach to inserting trace IP
— in many cases, it can preserve over 99% of the circuit’s
original placement and routing (though this is not guaranteed
as for our techniques) for moderate runtime savings — this
is quantified in Section VI-F. The Synopsys Identify product,
however, provides an incremental flow specifically for allowing
designers to quickly modify and re-route the observed signal set
but only once the design has been successfully instrumented [4].

In this work, we make the guarantee that during post-
map trace-insertion, all placement and routing of the original
circuit will be preserved: all new trace instruments must be
incrementally inserted using only the fully-buffered routing

resources that were previously unoccupied. We believe this is
an important requirement for FPGA debug, and one that is
necessary in order to minimize the possibility that timing-bugs
will be altered, or even obscured, by the act of instrumentation.
Due to trace-instrumentation being overlaid on top of and
without affecting the existing user-circuit, an interesting side-
effect is that as soon as the debug infrastructure is no longer
required (for example, in a production bitstream) it can simply
be ignored and the circuit run back at its original clock
frequency prior to any instrumentation. This can help preserve
timing-closure in a sign-off circuit.

Of course, imposing the strict constraint that none of the
user circuit can be modified can cause the newly instrumented
circuit to no longer be routable, or require a larger FPGA;
this overhead is quantified in Section VI. Figure 3 shows
the difference between no instrumentation (Fig. 3a) and post-
map instrumentation (Fig. 3c). Unlike pre-map previously,
instrumenting the circuit after placement means that the original
circuit placement is unaffected; additional blocks (and routing,
which isn’t shown) are mutually exclusive to the resources
used in the original result.

E. Framework

This work applies our techniques to the open-source VPR 6.0
FPGA mapping tool, which is part of the academic Verilog-To-
Routing (VTR) project, version 1.0 [24]. We employ the VTR
suite to synthesize our Verilog benchmarks into a technology-
mapped BLIF netlist, which is fed into VPR for timing-driven
packing, placement and routing for mapping onto a custom
FPGA architecture. For routing, VPR employs PathFinder:
a popular FPGA routing algorithm which allows nets to
temporarily over-use routing resources, which is then iteratively
resolved to allow access to only the most timing-critical nets
in a process termed negotiated congestion [25].

Using this tool, circuits are mapped to an FPGA architecture
based on the Altera Stratix IV device, with a cluster-size
N=10, look-up table size K=6 (fracturable into two K=5 LUTs)
and channel segment length L=4. The cluster input flexibility
Fc in=0.15, and the cluster output flexibility Fc out=0.1.
The targeted architecture is heterogeneous and based on the
Stratix IV 40nm family with support for RAM and DSP blocks,
as well as realistic wire delays; advanced architectural features
such as inferring carry-chains and shift-registers for the user
circuit are not currently supported. However, given that these
optimizations are used primarily to improve area and delay-
efficiency, we believe that integrating these in the future would
not affect the conclusions presented. For example, PLL/DCM
clock synthesis and distribution often use their own dedicated
set of FPGA resources and hence will not affect the user circuit.

The routing architecture employed is a modern, unidirec-
tional fully-buffered network, which means that adding extra
fan-out loads to existing nets will not affect the original circuit
timing. The dedicated memory resources of this architecture
can be configured either as a 72 bits wide by 2048 entries deep
shift-register — that is, each memory block can be configured
as a trace-buffer capable of recording a sliding window of 72
signals for the last 2048 cycles — or as 36x4096, 18x9182

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 6

M

M

M

(a) Original FPGA layout

T

T

T

M

M

M

T

(b) Layout with potential trace-
connections

Fig. 4. Illustration of the many-to-many routing flexibility available in post-
map insertion: solid red lines indicate user-routing, green dashed lines indicate
potential trace-connections of which only one is sufficient

or 9x18194. In this work, we have chosen the widest memory
configuration of 72x2048 to investigate the limits of applying
the maximum amount of pressure onto the routing interconnect.

IV. INCREMENTAL CAD FOR POST-MAP TRACING

In order to effectively implement post-map incremental trace
insertion, we have developed a number of CAD optimizations
to take advantage of the unique nature of this problem.

A. Many-to-Many Trace Flexibility

During post-map trace insertion, one rather unique oppor-
tunity not previously available when mapping the original
user-logic exists: a selected signal need only be incrementally-
routed to any free trace-buffer input pin for its signal values
to be observed. This differs from user-logic in that signals do
not need to be connected to all of its sinks in order to create a
valid routing solution; for incremental-tracing, by treating all
inputs-pin of all trace-buffers of the FPGA as potential sinks,
a connection to any pin is sufficient to allow observability.

Figure 4 illustrates this concept — any trace-pin connection
along the dashed routes (or along any other combination of
routes not shown) will be sufficient. Recall that, due to our
assumptions, we can convert every unused memory block
into a trace-buffer. In addition, for nets which utilize the
fully-buffered global interconnect such as that shown, any
point of the net can be tapped to make this connection. This
many-to-many capability provides two advantages: significantly
improved routing flexibility and CAD runtime, both of which
are especially important given the self-imposed constraint that
during post-map insertion, we prevent any existing user-routing
from being ripped up. Routing algorithms can then be modified
to search for any trace-pin and finish as soon as one is found.
These algorithms are commonly coupled with PathFinder with
which our techniques are also compatible.

B. Logic Element Symmetry

For local nets, which are entirely absorbed within a logic
cluster and do not venture out onto the global interconnect, an
additional optimization can be applied. Figure 5 illustrates an
example FPGA signal path: the nets connecting Logic Element

Logic Cluster 2Logic Cluster 1

Local
Routing

Logic
Element

Logic
Element

Logic
Element

Local
Routing

Logic
Element

Logic
Element

Logic
Element

A

B

C

D

E

F

OPIN

OPIN

 Global
 Routing

OPIN

OPIN

OPINOPIN

Fig. 5. Example signal path; logic elements A & B and D & F can be
incrementally swapped for greater trace flexibility

A to B, B to C, and D to E, are all local as they do not exit
the cluster. On the other hand, the connection from C to D
is global. Tracing local nets is possible by tapping its cluster
output pin (OPIN) which would otherwise be unused, and
forming a new global connection to a trace-buffer. Because the
local routing inside logic clusters is formed of a fully-populated
crossbar in which any cluster input can be switched to any logic
element input, logic elements within FPGA logic clusters can be
considered symmetric. This observation allows an incremental
CAD tool to reorder certain logic elements inside a cluster
without affecting the functional or timing behaviour of the
original user circuit, but only those driving local nets. Logic
elements driving global nets cannot be swapped, as doing so
would cause the global net to be driven by a different OPIN for
which a new global-routing solution would also be necessary.
In Figure 5, logic elements A & B, and D & F, can be swapped
as they both drive local nets, whilst logic elements C or E
cannot be moved. However, extra care must be taken if those
logic elements contain fractured LUTs.

The ability to swap logic elements allows greater routing
flexibility in tracing local nets, which can compensate somewhat
for the lack of any existing presence on the global interconnect
from which a trace connection can tap off. Experimental data
on this phenomenon can be found in [6]. Any routing algorithm
can therefore be modified to treat all local logic elements as
sources, and perform routing expansion from any of them.
PathFinder can then be used to iteratively arbitrate between
multiple trace-connections until a valid solution (where each
OPIN is used only once) is found.

C. Timing-Driven Directed Search

In previous work [6], we pursued a breadth-first search rout-
ing strategy (with the two optimizations described previously)
during post-map incremental-tracing in order to maximize
circuit routability. Even though breadth-first search is an
exhaustive algorithm, we found that incremental-tracing was
still an order of magnitude faster than the original circuit
placement. In this work, we improve on this result with a
timing-aware directed search technique, which is able to route
slightly fewer signals, but provide better timing, all for much
lower computational effort.

With the optimizations described in the previous subsection,
the nature of the problem is now a one- or many-to-many
routing search. For this reason, it is now unclear what the
target of any directed-search algorithm should be; previously,

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 7

MT

(a) Breadth-first trace search [6]

MT

(b) Directed trace search

Fig. 6. Illustration of breadth-first and directed search routing strategy

T
1

2
A

B
Net 1 is given priority
for trace-pin A because
its wirelength is longer,
even if Net 2 is closer.

Fig. 7. Heuristic for pre-assigning suggested targets during directed search

with breadth-first search, the algorithm can expand outwards
from any part of the existing net and end as soon as any trace
sink is reached, as illustrated in Fig. 6a. However, this can
require high computational effort, as the CAD tool will need
to exhaustively search all routing resources in an expanding
wavefront — even if they are unlikely to lead to a trace-buffer.

A more efficient routing algorithm would first explore the
routing resources that are most likely to lead to a valid solution,
yet not forget about the less likely resources in case the
preferred resources are congested. By default, the VPR CAD
tool adopts a directed search approach, such as that shown
in Fig. 6b. However, a key difficulty in adopting the directed
strategy used in routing user-logic during tracing is that there
is not one or more unique targets that any route must connect
to. Instead, during tracing, we only require that any free trace-
buffer input is reached in order for the signal to be observed.
Conveniently, because incremental-tracing works on top of a
complete and legally routed circuit, the timing slack of each
signal to be traced is fully known in advance — this value can
be used to adjust its priority over any congested trace-buffer
and routing resources to minimize its timing impact.

To achieve this, we developed a heuristic to preassign a
suggested trace-buffer input for each selected net. The heuristic
works by first sorting all nets by their decreasing manhattan
distance to the nearest available trace-buffer and weighting
this by its timing slack, after which the nets furthest away are
allocated their first-choice trace-buffer, as in Figure 7. When
any trace-buffer is full, all nets are re-sorted according to the
remaining buffers and this procedure repeats. The objective of
this algorithm is to suggest trace-buffers that minimize the post-
placement wirelength of all trace-signals, whilst considering
their timing criticality; importantly though, signals do not have
to connect to their suggested input — due to the many-to-many
trace flexibility optimization, signals can connect to any input
that can be more easily reached.

New
Net 1

2

3 Exist.
Net

During routing expansion of
New Net, the CAD algorithm
will not consider neighbour 2
as it is already occupied by
Exist. Net which cannot be
ripped up.

Fig. 8. Incremental-tracing neighbour expansion: consider free routing
resources only (1 and 3) as existing user-net cannot be ripped up

D. Neighbour Expansion

A final, but small, optimization that we make is to reduce
the search space during incremental-routing. During post-map
insertion, because we do not allow any existing user-routes to
be ripped up, we can improve incremental-routing efficiency by
preventing resources that are already fully utilized from ever
being considered. This is achieved by modifying the neighbour-
expansion routine of PathFinder, which is responsible for
adding new routing resources to the priority queue of candidates
to search, to only add those resources that have free capacity as
illustrated in Fig. 8. In addition, we keep track of the utilization
from user-routing and incremental-tracing separately, thereby
allowing the routing algorithm to assign capacity only to the
traces that need it the most. Essentially, we have subtracted
all existing routes of the user circuit from the routing resource
graph, and treat the graph that remains as an entirely new
routing problem.

V. METHODOLOGY

In this work, we have looked at the effect of tracing 100
random signal selections, which consume between 5% and
100% of the leftover memory capacity in eight different
heterogeneous circuits, each placed using 5 different seeds
across six different channel widths, for a total of 192,000
data points per insertion strategy. The details of these circuits
are shown in Table I, where the Wmin column represents
the minimum channel width of the baseline, uninstrumented
circuit (explained in the following subsection) and the traceable
nets column represents the number of gate-level nets, both
combinational and sequential (including all RAM and DSP
outputs) that can be connected to a trace-buffer. For DSPs that
employ inputs/output registers, we can observe their values by
tracing the input net before it enters the DSP, and its output
net after exiting. These benchmark circuits are supplied with
the VTR flow [24] and represent realistic, sizable, designs
which include an open-source processor core, or1200, a matrix
decomposition core, LU8PEEng, and the largest circuit at over
100,000 LUTs, a Monte Carlo hardware simulator, mcml. The
number of heterogeneous DSP and RAM resources used by
each benchmark can also be found in Table I. Although we
could apply automated signal selection techniques to these
circuits, such as those described in [26], [10] to trace only the
most influential signals in the circuit, we decided instead to take
multiple random samples of signals to gain an understanding
of our techniques when applied to any signal that a designer
may wish to observe.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 8

6-input FPGA Logic DSP RAM Traceable Max Trace-
Circuit LUTs FFs Size Wmin I/O Clusters Blocks Blocks Nets Buffer Inputs
or1200 3054 691 25x25 90 779/800 258/475 1/18 2/12 3807 720
mkDelayWorker32B 5590 2491 42x42 94 1064/1344 468/1302 0/50 41/42 7918 72
stereovision1 10290 11789 36x36 118 278/1152 866/936 38/45 0/30 16653 2160
LU8PEEng 22634 6630 54x54 136 216/1728 2175/2255 8/91 45/63 29001 1296
stereovision2 29943 18416 84x84 184 331/2688 2338/5208 213/231 0/154 47882 11088
bgm 32884 5362 64x64 150 289/2048 2987/3072 11/128 0/80 37639 5760
LU32PEEng 76211 20898 101x101 200 216/3232 7470/7575 32/325 150/208 97563 4176
mcml 101858 53736 95x95 164 69/3040 6680/6745 30/276 38/180 113994 10224

TABLE I
HETEROGENEOUS BENCHMARK SUMMARY, UNINSTRUMENTED (VALUES IN BOLD INDICATE THE CONSTRAINING RESOURCE)

1) Pre-Map Insertion: To implement pre-map trace insertion,
we directly modified the synthesized BLIF netlist to add
one additional sink — a trace-buffer pin — for each signal
selected for observation. A unique single-port RAM slice
was instantiated for each selected signal using the .subckt
construct, with the responsibility for packing each of these
1-bit slices left to VPR. Currently, VPR packs to minimize
resource utilization, and hence returns the result seen in Fig. 3b
where only the minimum number of memory blocks are used.

2) Mid-Map Insertion: In mid-map insertion, the packing
and placement of the circuit has been computed, but not any of
its routing. At this stage, the number, and location, of all free
memory blocks (which can be transformed into trace-buffers
at no cost) are also known. The challenge here is to ensure
that each of the selected signals is allocated to one available
trace-pin, before routing can commence. This is achieved using
the same heuristic as described in Section IV-C, where nets
are iteratively assigned their nearest trace-buffer input based
on their manhattan distance, but without timing information.
The key difference here, besides mid-map insertion requiring
the entire circuit to be re-routed from scratch, is that these
signals must be connected exactly to their assigned pins for
the circuit to be deemed legal.

3) Post-Map Insertion: For post-map insertion, we allow
VPR to complete its entire packing-placement-routing pro-
cess unmodified, before performing any incremental-tracing.
Even though the constraint to prevent user-routing from
being moved appears to create a more restrictive problem,
this is countered by the additional flexibility enabled by
the techniques described in Section IV. For this work, we
use the timing-driven directed search algorithm described
previously, and remove the bounding-box search window
(i.e. the router considers resources that do not lie on a
shortest-path) in order to maximize routability. In addition,
we have increased the overuse penalty factors used by the
PathFinder routing algorithm (experimentally, a reasonable set
of values were found to be --first_iter_pres_fac 10
and --initial_pres_fac 15) so that routing congestion
is penalized more heavily, and also restrict the number of
incremental-routing iterations to 5 rounds after which all
conflicting trace-nets are sequentially discarded until a legal
solution remains.

Average Avg. Routing Average
Circuit Pins/Net Utilization Wirelength
or1200 3.7 39% 21.1
mkDelayWorker32B 3.2 30% 22.9
stereovision1 2.4 45% 15.6
LU8PEEng 4.6 47% 28.9
stereovision2 2.5 33% 29.0
bgm 4.7 45% 29.5
LU32PEEng 4.8 45% 40.1
mcml 3.4 41% 26.9

TABLE II
BENCHMARK SUMMARY, UNINSTRUMENTED (AT Wmin+20%)

stereo2 LU32PE mcml
Device EP4SGX110
LAB (logic cluster) utilization 33% 89% 99%
Average routing utilization 8% 35% 35%
Peak routing utilization 21% 67% 47%

TABLE III
ROUTING UTILIZATION WHEN MAPPED ONTO ALTERA STRATIX IV.

A. Routing Slack of Minimum Channel Width Wmin+20%

A result that has commonly been used as a metric for
routability is the minimum number of FPGA tracks — or
channel width — required to implement a circuit. A smaller
channel width is desirable as it means a more optimized
implementation which requires a smaller FPGA area (and
hence cost) to realize. Whilst the minimum channel width
(Wmin is an important metric for measuring circuit routability
during FPGA architecture and CAD research, it is however,
not realistic nor relevant when targeting real FPGAs, which
contain a prefabricated channel width that the CAD tool must
not exceed.

In order to eliminate channel width as an independent
variable from the experiments that follow, we have opted to
map each circuit to an FPGA architecture with Wmin+20%
routing tracks of the uninstrumented case. The average routing
utilization at of these circuits are shown in Table II and average
to 41%. Whilst routing at Wmin represents the absolute best-
case of routing-efficiency possible, it would be expected that
FPGA vendors would provision some additional slack in their
devices to cope with stubborn circuits within a reasonable
runtime. Due to the proprietary and closed nature of commercial
CAD tools, we are unable to find the exact channel width
that are employed on these FPGAs, nor to make an exact
comparison with the VTR flow; however, we are able to

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 9

(a) Signals traceable as a function of trace-demand, at Wmin+20%

(b) Signals traceable as a function of Wmin slack, at trace demand = 0.75

Fig. 9. Average fraction of signals traceable using post-map insertion

infer a relative amount of routing slack by mapping our same
benchmark circuits to a set of similar parts. The results of
these experiments are shown in Table III. Even in the worst
case for a mid-sized circuit, the peak routing utilization by
Quartus II v12.1 is only 67% — when not searching for the
minimum utilization possible. The average routing utilization
for all three circuits is lower on these Altera devices than in
our theoretical architecture; hence, we believe that assuming
a FPGA implementation with 20% routing slack above the
best-case Wmin is reasonable.

VI. RESULTS

A. Signals Traceable using Post-Map Insertion

The objective of post-map insertion is to add trace-buffer
connections incrementally on top of an existing design —
without re-placing or re-routing any of the user circuit. Under
this constraint, it may not be possible to connect all selected
signals to a trace-buffer due to unresolvable routing congestion,
either between the existing user circuit and the new trace
connection, or between two new connections, where no solution
exists. To prevent the router from searching for such impossible
solutions, we force post-map trace insertion to run for five
PathFinder iterations to resolve any congestion, after which
we iteratively discard illegal trace-nets (i.e. those which have
routing resource conflicts) until a legal solution is found.

The fraction of signals that can be traced using post-map
techniques, as a function of the trace-demand — the number
of signals selected for tracing — is shown in Figure 9a. The
results show an expected trend: requesting more signals for
tracing means that a smaller proportion (but still a higher

absolute number) of them can be successfully traced. However,
even in the worst case when all left-over memory blocks from
the smallest circuit are reclaimed as trace-buffers, over 96%
of all requested signals can still be successfully connected.
Figure 9b shows how the number of signals traced varies
with the amount of channel width slack. Intuitively, the more
slack that exists, the less the routing congestion and the more
signals that can be connected. Importantly, our techniques are
able to degrade gracefully even when there is little routing
slack — this allows post-map insertion to operate on a circuit
routed at minimum channel width, when pre-map and mid-map
techniques would fail to route. From Fig. 9b, it appears that
increasing the channel with slack produces diminishing returns.
The “knee” of the curve appears to lie at either 10% or 20%
slack, with further estimates using an FPGA area model [27]
also indicating that the best traceability-per-area is achieved
when 0%–20% routing slack exists.

B. CAD Runtime
Figure 11 shows the CAD runtime (on a log scale) for each of

the different stages of physical mapping, across all benchmark
circuits. The results are broken down into the runtime for
the individual packing, placement and routing stages of the
flow at a fixed channel width of Wmin+20%. The number
of signals selected for each circuit is fixed at 0.75 of the
leftover memory capacity. As expected, pre-insertion incurs
a runtime penalty over the baseline case in which the circuit
has not been instrumented, followed by mid-insertion, and
post-insertion, both of which utilize past results and are faster
than a full recompilation. Incidentally, the stereovision2, bgm
and mcml circuits instrumented pre-map were unroutable at
our assumed 20% routing slack. Excluding those, on average,
post-map insertion was 98X faster than pre-map insertion, and
22X faster than mid-map insertion.

For pre-insertion, the circuit is instrumented prior to mapping
and hence all three VPR stages — packing, placement, routing
— must be re-run. Inherently, this instrumented circuit will
be more complex than prior to instrumentation, rendering a
more difficult (and a more constrained) problem for the CAD
algorithms to solve. During mid-insertion, the original circuit’s
packing and placement results are re-utilized, on top of which
the trace-buffers are incrementally placed and connected to
the traced nets. Here, the two most computationally expensive
parts of the mapping flow — packing and placement — do
not need to be re-executed, leaving only the routing stage.

For the proposed technique, post-insertion, this is taken one
step further: results from all three VPR stages are re-utilized
(the bar shown for tpack represents the time required to load the
pre-packed netlist into the CAD tool). This time, trace routes
are incrementally connected to a trace-buffer without affecting
this previous routing by using only the routing resources that
were not used in the original circuit mapping. This has the
effect of reducing the solution space as compared to a complete
re-route, and coupled with the CAD techniques described in
Section IV where any connection to any trace-pin will be
sufficient, results in a more efficient algorithm.

Figure 10 compares the runtime (shown on a linear scale)
of all three trace-insertion strategies when applied to the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 10

Pre-Map Trace Insertion Mid-Map Trace Insertion This Work: Post-Map Trace Insertion

Baseline
troute26

4

26
7

28
0

29
7

31
7

33
8

41
2

51
1

45 48 49 49 51 54 63 74

Fig. 10. Runtime breakdown, as a function of trace-demand, for benchmark LU8PEEng only

post

post

post

post

post

post

post

post This work: post-map

unrouteable at W_min+20%

unrouteable at W_min+20%

unrouteable at W_min+20%

post

Fig. 11. Runtime breakdown (at trace-demand = 0.75, shown on a log scale)
across all circuits

Fig. 12. Post-map routing runtime (log scale, at trace-demand = 0.75) as a
function of channel width, across all circuits

LU8PEEng circuit, across all trace-demand values from 0.05
(65 signals) to 1.0 (1296 signals). For all three strategies, it
can be seen that increasing the trace-demand (and hence the
complexity of the mapped circuit) increases runtime for each
of the mapping stages. In all cases, post-map trace insertion is
faster than a full re-route of the circuit, which is required for
pre-map and mid-map insertion strategies.

Lastly, the sensitivity of post-map insertion runtime, as a
function of the channel width slack, is investigated in Figure 12
(shown on log scale). Here, it can be seen that routing runtime
is highly dependent on the circuit channel width. Despite the
existence of two conflicting factors: an increase in the size
of the solution space balanced against a reduction in routing
congestion, as the channel width of a circuit increases, the latter
factor dominates. Due to the directed-search routing strategy,
the algorithm will only explore the routing resources that lead
towards the suggested sink, and hence will not explore all
of the additional resources provided by an increased channel
width. Increasing the channel width though, will reduce the
amount of routing congestion that the algorithm will need to
resolve, leading to a net gain in runtime which flattens off at
Wmin+30% and beyond.

C. Wirelength

The total wirelength, averaged across 100 random signal
selections and 5 placement seeds, normalized to the uninstru-
mented case, is shown in Figure 14. Again, we fix the channel
width to Wmin+20%. This metric represents the number of
FPGA routing resources that are utilized to implement the
circuit; lower values indicate a more efficient circuit mapping,
which can also lead to smaller routing delays. At first glance,
the results shown in these charts are surprising: it would be
expected that by instrumenting the circuit as early in the CAD
flow as possible, the implementation can be optimized with
more degrees of freedom and return the best result. For example,
by completely re-placing the circuit, the algorithm may be able
to situate some trace-buffers more centrally, allowing shorter
connections to be made, as illustrated in Figure 3.

This does not appear to be the case here, however, as
these results shows that in all of the benchmark circuits,
those instrumented pre-mapping have the highest wirelength,
followed by mid- and post-mapping. One explanation may
be that due to the compound and heuristic nature of the

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 11

Pre-Map Trace Insertion Mid-Map Trace Insertion This Work: Post-Map Trace Insertion

Baseline
Wirelength

Fig. 13. Circuit wirelength breakdown, as a function of trace-demand, for benchmark LU8PEEng only

This work: post-map

pre-map unrouteable at W_min+20%

pre-map unrouteable at W_min+20%

pre-map unrouteable at W_min+20%

post

Fig. 14. Circuit wirelength, across all circuits at trace-demand = 0.75

CAD algorithms involved, more degrees of freedom may not
necessarily translate into better results. An example of this
is that during the earliest packing stage, VPR has very little
information to decide which 1-bit trace-nets should be packed
into the same 72-bit trace-buffer. In this way, in attempting
to compromise between the user circuit and the new debug
instrumentation (which, for the pre- and mid-insertion strategies,
is indifferentiable by the CAD tool) it ends up making a
poor global choice. Returning to the example in Figure 3,
during placement, trace-buffers that are situated more centrally
during pre-map insertion (Fig. 3b) have the inadvertent effect of
moving the original memory blocks from the user circuit further
away from the logic blocks that it must connect to. Whilst
this can decrease the wirelength of any trace connections, it
will also cause the length of the original user connections to
increase, possibly in a way that causes the net total to increase.

The wirelength for various trace-demands of the LU8PEEng
circuit is shown in Figure 13. As expected, increasing the
trace-demand also increases the total wirelength for all three
insertion strategies. This chart shows that pre-map insertion
returns the highest wirelength for both the user and incremental
connections, regardless of the number of signals traced. These

+20%

Fig. 15. Post-map circuit wirelength as a function of channel width, across
all circuits at trace-demand = 0.75

results also show that, in attempting to optimize for them both
equally, the CAD tool is actually worse at both. Similarly,
mid-map insertion also returns a larger result than at post-map;
but this time, the user wirelength is affected by a much smaller
amount. At trace demand 0.5 and below, post-map insertion
returns shorter trace wires than mid-map insertion, and even
at the maximum demand of 1.0, the post-map trace wirelength
is still within 2% of its mid-map value. In all cases, post-
map returns a shorter total wirelength. Lastly, the sensitivity
of this metric to the amount of routing slack is presented in
Figure 15, which shows that as the channel width increases,
the instrumented wirelength decreases — due to the router
being able to find more direct, uncongested, paths to each
trace-buffer.

D. Critical-Path Delay

A metric that is important to many designers is the effect
that instrumentation has on the critical-path delay of their
circuit. Figure 16a measures the average critical-path delay
of all three trace-insertion strategies, when normalized to the
uninstrumented case, at a fixed channel width of Wmin+20%.
Despite the increase in wirelength observed in the previous
subsection, for all three strategies, on average, there was a
much smaller effect on the critical-path delay of each circuit.
In the worst case, pre-map insertion increased the delay (and
hence, decreased its maximum clock frequency) by 3.8%;
however, even more interesting is that inserting trace-buffers
actually improved the critical-path delay of three circuits:

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 12

pre-map unrouteable at W_min+20%

pre-map unrouteable at W_min+20%

This work: post-map

pre-map unrouteable at W_min+20%

post

(a) Critical-path delay, across all circuits at trace-demand = 0.75

This work: post

(b) Critical-path delay for stereovision1 only (error bars indicate stdev)

(c) Post-map delay, as a function of channel width at trace-demand = 0.75

Fig. 16. Critical-path delay of instrumented circuits

mkDelayWorker32B, LU8PEEng and LU32PEEng, by 1.4%,
1.8% and 1.2% respectively. We believe this can be attributed
to the chaotic nature of CAD algorithms, as reported by [23].

Whilst pre-map and mid-map insertion can both potentially
return a smaller delay than the uninstrumented circuit, this
is not possible for post-map insertion, where existing routing
connections are never ripped up and re-routed for an even
better solution. Our experiments found that mid-map trace-
insertion returned a solution within 0.1% of the original delay.
For post-map trace-insertion, this overhead was on average

Signals Runtime Wirelength T crit
Traced (s) (ns)

This work: stereo0 1318 27 118569 3.61
No dir-search [6] 1322 38 117528 3.67
No many-to-many 1287 44 127175 4.48
No LE symmetry 1300 31 122172 3.73
No n. expand opt. 1318 28 118569 3.67
No optimizations 1311 97 129692 3.94
This work: mcml 7665 151 1603771 66.15
No dir-search [6] 7666 2802 1605644 66.15
No many-to-many 7666 256 1641781 66.15
No LE symmetry 7665 185 1621184 66.15
No n. expand opt. 7665 216 1611983 66.15
No optimizations 7664 3261 1650272 66.15

TABLE IV
POST-MAP CAD OPTIMIZATION BREAKDOWN

higher by 0.6%, which we believe is acceptable for our target
application of ASIC prototyping.

Figure 16b fixes the benchmark to the circuit with the
smallest critical-path delay (and hence, the most sensitive to
extra routing): stereovision1, and plots the effect that varying
the number of signals traced has on its delay. Again, these
results show that the effect is small for the mid-map and post-
map techniques, up until the maximum trace-demand. This
indicates that there is enough flexibility in the routing fabric
to comfortably support incremental-tracing. Noticeably though,
there are small perturbations in the delay when using pre-
map trace-insertion, where the delay varies by a small and
unpredictable amount with the number of signals traced. This
effect is also supported by the error-bars which show a much
higher variance for pre-map than for the other two strategies.

The impact of trace-insertion, as the circuit channel width
varied, is shown in Figure 16c. Although the number of signals
that can be successfully traced decreases with channel width
(as explored in Section VI-A previously) the critical-path of
the instrumented circuit remains stable.

E. CAD Optimizations for Post-Map Tracing

Given the results thus far show that post-map trace-insertion
is superior to doing so pre-map in terms of CAD runtime,
circuit wirelength, and a more stable critical-path delay, and
also superior to mid-map also in all aspects except for a
slightly higher delay, an interesting question to explore is
how each of the CAD optimizations described in Section IV
contribute to these metrics. Table IV shows the contribution
of each of the CAD optimizations for both a difficult-to-route
circuit, stereovision0, and the largest circuit, mcml. These
figures show that whilst using a undirected, breadth-first search
routing approach can lead to more signals being traceable
and a smaller wirelength due to the solution space being more
thoroughly explored, this can have a huge impact on the runtime.
Disabling the many-to-many flexibility, and the logic element
symmetry optimizations both have the effect of reducing the
number of signals that can connected to trace-buffers, whilst
also increasing its critical-path delay and routing runtime. The
neighbour expansion optimization gives a small increase in
runtime without substantially affecting its other metrics.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 13

Trace Time Logic RAM F max
mcml Demand (s) Elements Blocks (MHz)
Quartus II (Stratix IV EP4SGX180 device, peak routing utilization: 31%)
Uninst. - 3514 52688 (75%) 536 (56%) 29.54
Pre-map 0.27 (4094) 4131 65268 (93%) 667 (70%) 30.94

0.52 (7676) 4715 65859 (94%) 767 (81%) 29.91
Post-map 0.27 (4094) 2451 64708 (92%) 650 (68%) 29.15

0.52 (7676) 2959 70251 (100%) 750 (79%) 29.50
This work, at Wmin+20% channel width
Uninst. - 35526 66685 (99%) 38 (21%) 15.12
Pre-map 0.4 (4090) 41908 66737 (99%) 95 (53%) 15.03

Above 0.4 Circuit unrouteable at Wmin+20%
Post-map 0.5 (5111) 158 66685 (99%) 180 (100%) 15.12

0.75 (7663) 210 66685 (99%) 180 (100%) 15.12
1.0 (10213) 489 66585 (99%) 180 (100%) 15.12

TABLE V
COMPARISON BETWEEN QUARTUS II AND THIS WORK FOR MCML

F. Comparison with Altera Quartus II

In this last subsection, we compare our techniques with
Altera Quartus II’s incremental-compilation feature, which
can be achieved by designating the circuit as “post-fit” design
partition. In this mode, the CAD tool will attempt to preserve all
placement and routing. To instrument the circuit, we employed
the Altera SignalTap II product which inserts the necessary
trace-buffers, supporting logic, and connections to observe
a set of user-specified signals. Key differences between our
work, and that of SignalTap II, is that the latter will insert
approximately 4 pipelining registers for each trace-connection,
whilst we do not perform any pipelining. Additionally, when
operating in post-fit mode, SignalTap II can only instrument
flip-flops in the design, whilst in our work we allow any gate-
level signal (combinational or sequential) to be traced.

Table V shows the runtime, logic utilization (ALMs in
Altera terminology), memory utilization (M9K) and maximum
operating frequency (F max) for the largest benchmark mcml,
when targeting a Stratix IV architecture in Quartus II and
a Stratix IV-like architecture using our flow. For the Altera
post-map flow, inserting trace instrumentation incrementally
is about 40% faster than performing pre-map instrumentation;
we believe the primary reason why this is not accelerated
any further is that trace logic is inserted using the general-
purpose incremental-compilation flow. This general-purpose
flow is designed to cope with functional modifications to the
circuit (e.g. ECO changes, bug fixes) as opposed to a trace-
specific, observe-only flow which seeks to instrument without
modifying, and so still has to perform placement, routing
(and their preparation) steps. Furthermore, no guarantee exists
for the circuit to be fully preserved: for pre-map insertion at
0.27 trace demand, routing conflicts required the whole circuit
to be re-routed from scratch (much like mid-map insertion
would) leading a reduced maximum clock frequency. We have
been unable to instrument any more than 7600 signals due to
exhausting all logic resources.

By comparison, the trace-specific flow presented in this
paper is capable of preserving the circuit entirely (and with
that, its critical-path). Although it takes the academic CAD flow
significantly longer to compile the uninstrumented circuit, the
runtime required to perform trace insertion is almost two orders

of magnitude faster — driven mainly by the ability to skip
packing and placement stages of the mapping flow. Additionally,
because our flow does not perform any pipelining, we are able
to reclaim all 100% of leftover memory resources for tracing;
in particular, taking advantage of the flexibility offered by all
memory blocks even when the trace demand is less than 1.0.

VII. CONCLUSION

Circuit verification is an increasingly difficult, but necessary,
task within IC design. Traditional pre-silicon techniques, such
as software simulation and formal verification, are being
augmented with FPGA prototyping in order to maximize the
verification coverage that can be achieved. Whilst FPGAs
devices can be used to implement circuits that can run at orders-
of-magnitude faster than in simulation, the main challenge of
using this platform is the lack of internal observability: when
something goes wrong, the designer cannot look at signal
values inside the circuit to debug this error.

A common solution for improving on-chip observability
is to embed trace-buffers into the design. This allows a
limited number of signal values to be recorded into on-chip
memory, during real-time device operation, for off-line analysis.
However, the choice of which signals to connect to a trace-
buffer must be made prior to running the prototype, and should
the designer wish to observe a different set of signals, the
circuit must be recompiled.

In this work, we propose that incremental mapping tech-
niques are used to accelerate this trace-insertion (and subse-
quent modification) procedure. Rather than recompiling the
circuit from scratch, we propose that the original circuit map-
ping is completely preserved, and that new trace connections
are made using only the free resources that were not previously
used. For this to be feasible, we made several optimizations to
the incremental CAD algorithms in order to exploit the unique
nature of incremental-tracing: by recognizing that circuit signals
can be observed by connecting any point of its net to any
available input pin of any available trace-buffer, and by taking
advantage of the internal symmetry of the FPGA architecture,
the flexibility for making incremental trace connections was
vastly increased.

We evaluated our incremental-tracing technique, applied after
the FPGA mapping procedure is complete, by comparing it
with two other strategies for trace-insertion: inserting prior to
the mapping procedure, and inserting part-way through this
procedure. We found that, when targeting a realistic FPGA with
a channel width 20% greater than its minimum, our proposed
post-map insertion technique is on average 98X faster than
pre-map trace-insertion, and 22X faster than mid-map insertion
when reclaiming 75% of the leftover memory capacity as trace-
buffers. Furthermore, we find that the post-map solution has
a smaller wirelength than solutions returned by both the pre-
and mid-map strategies, and also that post-mapping insertion
has only a <1% effect on the critical-path delay of the circuit,
with less variance.

We believe that the ideas presented in this paper are
extremely applicable to commercial FPGAs. By their very
nature, FPGA devices contain a prefabricated set of general-
purpose logic and resources that are assembled in such a way to

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 14

support the implementation of ideally, any digital circuit. Due to
this generality, not all resources will be utilized in all situations,
thus, there exists a unique opportunity to reclaim any such spare
resources for debug without any additional silicon area. We
have shown the feasibility of our incremental-tracing idea on
a realistic island-style FPGA architecture based on the Altera
Stratix IV family of devices, and we see no clear reason why our
techniques cannot be realized on those same commercial island-
style devices. Researchers interested in applying or extending
our techniques are invited to download our Inc-Trace patch for
VTR 1.0 from http://ece.ubc.ca/∼eddieh.

ACKNOWLEDGMENT

The authors would like to thank Altera for their support.

REFERENCES

[1] S. Asaad, R. Bellofatto, B. Brezzo, C. Haymes, M. Kapur, B. Parker,
T. Roewer, P. Saha, T. Takken, and J. Tierno, “A Cycle-Accurate, Cycle-
Reproducible Multi-FPGA System for Accelerating Multi-core Processor
Simulation,” in Proceedings of the ACM/SIGDA International Symposium
on Field Programmable Gate Arrays, ser. FPGA ’12, 2012, pp. 153–162.

[2] Xilinx, “ChipScope Pro 12.3, Software and Cores, User Guide,”
http://www.xilinx.com/support/documentation/sw manuals/xilinx12 4/
chipscope pro sw cores ug029.pdf, September 2010.

[3] Altera, “Quartus II Handbook Version 11.1 Vol. 3: Verification,” http:
//www.altera.com/literature/hb/qts/qts qii5v3.pdf, November 2011.

[4] Synopsys, “Identify: Simulator-like Visibility into Hardware Debug,”
http://www.synopsys.com/Tools/Implementation/FPGAImplementation/
CapsuleModule/identify ds.pdf, August 2010.

[5] Tektronix, “Certus Debug Suite,” http://www.tek.com/sites/
tek.com/files/media/media/resources/Certus Debug Suite Datasheet
54W-28030-1 4.pdf, July 2012.

[6] E. Hung and S. J. E. Wilton, “Limitations of Incremental Signal-Tracing
for FPGA Debug,” in FPL 2012, International Conference on Field
Programmable Logic and Applications, August 2012, pp. 49–56.

[7] T. Wheeler, P. Graham, B. E. Nelson, and B. Hutchings, “Using Design-
Level Scan to Improve FPGA Design Observability and Controllability
for Functional Verification,” in FPL ’01: Proceedings of the 11th
International Conference on Field-Programmable Logic and Applications,
2001, pp. 483–492.

[8] Y. S. Iskander, C. D. Patterson, and S. D. Craven, “Improved Abstractions
and Turnaround Time for FPGA Design Validation and Debug,” in
FPL’11, Proceedings of the 2011 21st International Conference on Field
Programmable Logic and Applications, 2011, pp. 518–523.

[9] E. Hung and S. J. E. Wilton, “On Evaluating Signal Selection Algorithms
for Post-Silicon Debug,” in ISQED 2011, International Symposium on
Quality Electronic Design; Santa Clara, USA, March 2011, pp. 290–296.

[10] H. F. Ko and N. Nicolici, “Algorithms for State Restoration and Trace-
Signal Selection for Data Acquisition in Silicon Debug,” Computer-Aided
Design of Integrated Circuits and Systems, IEEE Transactions on, vol. 28,
no. 2, pp. 285–297, 2009.

[11] S. Dutt, V. Shanmugavel, and S. Trimberger, “Efficient Incremental
Rerouting for Fault Reconfiguration in Field Programmable Gate Arrays,”
in Computer-Aided Design, 1999. Digest of Technical Papers. 1999
IEEE/ACM International Conference on, 1999, pp. 173–176.

[12] O. Coudert, J. Cong, S. Malik, and M. Sarrafzadeh, “Incremental CAD,”
in Computer Aided Design, 2000. ICCAD-2000. IEEE/ACM International
Conference on, 2000, pp. 236–243.

[13] J. Emmert and D. Bhatia, “Incremental Routing in FPGAs,” in ASIC
Conference 1998. Proceedings. Eleventh Annual IEEE International, Sep
1998, pp. 217–221.

[14] S. Trimberger, Field-Programmable Gate Array Technology. Norwell,
MA, USA: Kluwer Academic Publishers, 1994.

[15] P. Graham, B. Nelson, and B. Hutchings, “Instrumenting Bitstreams for
Debugging FPGA Circuits,” in Field-Programmable Custom Computing
Machines, FCCM’01. The 9th Annual IEEE Symposium on, March 2001,
pp. 41–50.

[16] E. Keller, “JRoute: A Run-Time Routing API for FPGA Hardware,” in
Parallel and Distributed Processing, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2000, vol. 1800, pp. 874–881.

[17] D. Lewis, D. Galloway, M. Van Ierssel, J. Rose, and P. Chow, “The
Transmogrifier-2: a 1 million gate rapid-prototyping system,” Very Large
Scale Integration (VLSI) Systems, IEEE Transactions on, vol. 6, no. 2,
pp. 188–198, June 1998.

[18] M. Dini, “The Multi-FPGA Prototyping Platform,” http:
//www.dinigroup.com/files/The%20DINI%20Group%20Multi-FPGA%
20Prototyping%20Platform 9-4-10.pdf, September 2010.

[19] Kaivola, Roope and Ghughal, Rajnish and Narasimhan, Naren and Telfer,
Amber and Whittemore, Jesse and Pandav, Sudhindra and Slobodová,
Anna and Taylor, Christopher and Frolov, Vladimir and Reeber, Erik
and Naik, Armaghan, “Replacing Testing with Formal Verification in
Intel(R) Core(TM) i7 Processor Execution Engine Validation,” in CAV

’09: Proceedings of the 21st International Conference on Computer Aided
Verification, 2009, pp. 414–429.

[20] M. Khalid and J. Rose, “A Novel and Efficient Routing Architecture
for Multi-FPGA Systems,” Very Large Scale Integration (VLSI) Systems,
IEEE Transactions on, vol. 8, no. 1, pp. 30–39, February 2000.

[21] Free Software Foundation, “GCC 4.8 Release Series: Changes, New
Features, and Fixes,” http://gcc.gnu.org/gcc-4.8/changes.html, December
2012.

[22] E. Hung and S. J. E. Wilton, “Speculative Debug Insertion for FPGAs,”
in FPL 2011, International Conference on Field Programmable Logic
and Applications; Chania, Greece, September 2011, pp. 524–531.

[23] R. Y. Rubin and A. M. DeHon, “Timing-Driven Pathfinder Pathology and
Remediation: Quantifying and Reducing Delay Noise in VPR-Pathfinder,”
in FPGA’11, Proceedings of the 19th ACM/SIGDA International Sympo-
sium on Field Programmable Gate Arrays, 2011, pp. 173–176.

[24] J. Rose, J. Luu, C. W. Yu, O. Densmore, J. Goeders, A. Somerville, K. B.
Kent, P. Jamieson, and J. Anderson, “The VTR Project: Architecture
and CAD for FPGAs from Verilog to Routing,” in Proceedings of the
20th ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, 2012, pp. 77–86.

[25] L. McMurchie and C. Ebeling, “PathFinder: A Negotiation-Based
Performance-Driven Router for FPGAs,” in Proceedings of the 1995 ACM
Third International Symposium on Field-Programmable Gate Arrays, ser.
FPGA ’95. New York, NY, USA: ACM, 1995, pp. 111–117.

[26] E. Hung and S. J. E. Wilton, “Scalable Signal Selection for Post-Silicon
Debug,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems (to appear, DOI: 10.1109/TVLSI.2012.2202409).

[27] E. Hung, S. J. E. Wilton, H. Yu, T. C. P. Chau, and P. H. W. Leong, “A
Detailed Delay Path Model for FPGAs,” in FPT 2009: Proceedings of
the 8th International Conference on Field-Programmable Technology;
Sydney, Australia, December 2009, pp. 96–103.

Eddie Hung received the M.Eng. degree in Elec-
tronic and Communications Engineering from the
University of Bristol, Bristol, U.K. in 2008. He is
currently pursuing the Ph.D. degree with the Depart-
ment of Electrical and Computer Engineering at the
University of British Columbia, Vancouver, Canada,
where he is working on harnessing the reconfigurable
and prefabricated nature of FPGA technology for
rapid circuit debug. Along the way, he has also spent
some time with Imperial College London, London,
U.K.; Tektronix, Vancouver, Canada; The Chinese

University of Hong Kong, Hong Kong; ARM, Cambridge, U.K.; Panasonic
PSDCE, Bristol, U.K.; and Motorola, Swindon, U.K. His current research
interests include novel ways of using FPGA architecture and CAD tools to
achieve “simulator-like observability” during post-silicon debug.

IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS 15

Steven J. E. Wilton is a Professor in the Department
of Electrical and Computer Engineering at the Univer-
sity of British Columbia. His research focuses on the
architectures of next-generation Field-Programmable
Gate Arrays and their associated Computer-Aided
Design Tools. Along with his students, he has pub-
lished over 100 papers in many areas related to Field-
Programmable Technology, ranging from flexible
memories, routing architectures, power-efficient archi-
tectures, packing, placement, and routing algorithms,
analytical modeling and debugging techniques. He

has spent time at Imperial College London and IMEC, and has been a consultant
for Altera, Cypress, and Cadence. He was also a co-founder of Veridae Systems
(acquired by Tektronix in 2011), which develops debug solutions for ASICs,
FPGAs, and FPGA-based systems. He received best paper awards at the
International Conference on Field-Programmable Technology in 2003, 2005,
and 2007 and at the International Conference on Field-Programmable Logic
and Applications in 2001, 2004, 2007, and 2008. In 1998, he won the Douglas
Colton Medal for Research Excellence for his research into FPGA memory
architectures.

