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ABSTRACT

Developing state-of-the-art custom silicon can be a prohibit-

ively expensive and risky undertaking, due in no small part

to the need to perform thorough design verification. Field-

Programmable Gate-Arrays offer a flexible platform for con-

structing prototypes to aid in their verification, but unlike

software simulation, observability into these prototypes is

a major challenge. Designers can choose to insert trace-

instrumentation to enhance on-chip observability, but doing

so often requires re-compiling the entire design for each

new trace configuration. This work presents two contribu-

tions: to explore the limitations of incremental-synthesis for

trace-buffer insertion, and to propose CAD optimizations ex-

clusive to this application for improving runtime and routabil-

ity. We find that 99.4% of all used cluster outputs (driving

both combinational and sequential circuit signals) can be

incrementally-traced to 75% of the free memory-capacity on

an FPGA, an order of magnitude quicker than the original

compilation and with a nominal impact on circuit delay, for

a 20% minimum channel width (10% area) increase.

1. INTRODUCTION

As the capacities of Field-Programmable Gate Arrays (FP-

GAs) grow, ensuring that a design is functionally correct

(verification and validation) and finding the sources of any

observed incorrect behaviour (debugging) has become in-

creasingly difficult. This is due both to increasing device

capacity (and the corresponding increase in system complex-

ity) as well as limited on-chip observability. Support for

effective debugging has been identified as a key technologi-

cal requirement as device densities increase [1].

Verification and debugging both make extensive use of

software simulators. Simulation provides full-chip visibility

(any signal can be examined in simulation) and fast turn-

arounds between design changes. However, the simulation of

large designs can be extremely slow. As an extreme example,

Intel reported that software simulations of their Core i7 chip

ran one billion times slower than on real silicon, with the

sum of all their simulation efforts on a large server farm

culminating in no more than a few minutes of actual chip

operation [2]. Clearly, the simulation of common tests (such

as booting an operating system) are not practical.

Because of this, designers regularly rely on hardware

validation to complete the verification and debugging of their

designs. By mapping designs to an actual FPGA, the design

can be run at-speed (or close to at-speed) meaning much

deeper traces are possible. In addition, testing the FPGA

in-situ may allow realistic input stimuli, since the device

can be connected to the other chips in the target system. A

primary challenge with hardware validation is the limited

observability of the signals on-chip. Only signals connected

to output pins can be directly observed, which may make it

difficult to understand the behaviour of a system and isolate

a design error. Some FPGAs allow a “snapshot” of all state

bits to be taken, which can later be read-out using a JTAG

interface, however, this does not easily allow for tracing

signals over time.

To enhance observability, tools such as SignalTap II [3],

ChipScope [4], and Certus [5] instrument a user design by

instantiating trace-buffers on the chip. These trace-buffers

are memories that record the activities of selected signals

over a number of cycles. By carefully selecting which sig-

nals are recorded, on-chip observability can be enhanced,

simplifying the debugging task [6]. In addition to trace-

buffers, these tools instantiate connections (or networks) that

connect the traced signals to these buffers. In most cases,

after these tools add debug instrumentation, the user design

must be recompiled from scratch. This has a number of

drawbacks: (1) recompilation can be slow, especially in pro-

totyping systems consisting of multiple FPGAs, (2) a recom-

pilation may cause timing differences which may obscure (or

even eliminate) the bug that was being sought, and (3) addi-

tional routing stress may cause a previously routable design

to become unroutable.
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Fig. 1: Incremental-trace flow



Rather than recompiling an entire design, it is sometimes

possible to leave the user design mapping unmodified, and

incrementally add connections between the trace-buffers and

the signals that the user wishes to observe. This flow is il-

lustrated in Figure 1. These additional connections could

be created using routing tracks that were not used during

the original circuit mapping. If this is possible, a full re-

compilation is not necessary, leading to significantly faster

debug cycles and increased debug effectiveness. We refer to

this technique as incremental-tracing. Intuitively, it should

often be possible to make such connections. FPGA vendors

typically over-provision their routing architecture, so there

should often be sufficient unused routing tracks. However,

for some parts of the design in which congestion is high, or if

there are a large number of signals that need to be observed,

this incremental-tracing may not be possible for all signals.

In this paper, we evaluate the potential and the limitations

of incremental-tracing. In particular, we evaluate under what

conditions a set of signals can be connected to trace-buffers

using incremental techniques. Of particular interest is the

number of signals that can be simultaneously traced in this

way, since this will dictate when this technique is effective

in practice. Intuitively, the ability to make these incremental

connections will also depend on the architecture of the FPGA;

we examine these interactions. Finally, we present a number

of CAD techniques which can increase the effectiveness of

incremental-tracing.

2. BACKGROUND

2.1. Enhancing Observability

Methods to enhance device visibility during hardware vali-

dation can be divided into two broad categories: scan-based

and trace-based. Scan-based techniques rely on the serial

connection of all (or just a subset) of the flip-flops in a cir-

cuit so that their contents can be shifted out for observation,

and new values shifted in for controllability. Direct imple-

mentation of complete scan chains using FPGA soft logic

has a prohibitively high overhead (84% area and 20% delay

overhead [7]). However, some modern FPGAs typically have

hardware support (device readback) to read not only the value

of configuration bits, but also all the state bits in a design.

These techniques can typically offer simulator-like visibility

into all combinational and sequential signals of the circuit,

but only at a cycle-by-cycle basis due to the need for the

circuit to be halted before the scan-out procedure can take

place. Reference [8] reported that viewing any register in

this manner can take between 2 to 8 seconds, precluding its

use for real-time debugging.

With trace-based approaches, like that illustrated by Fig-

ure 2, a designer pre-inserts a set of trace-buffers into their

circuit at compilation, so that during debugging, a history

of signal values can be recorded without interrupting circuit
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Fig. 2: Trace-based debugging

operation. This capability allows the circuit to be tested using

real-world, real-time stimulus, and increases the likelihood of

reproducing difficult-to-catch errors, such as those that cross

multiple clock-domains. Due to limited on-chip resources

however, only a small subset of internal circuit signals can

be pre-selected for tracing, and this selection remains fixed

until the circuit is re-compiled. Choosing which signals to

observe can be a time-consuming task, though a number of

automated techniques have attempted to combat this [6, 9].

Regardless, these techniques all require inserting addi-

tional logic into the design early in the compilation flow,

which will affect the final place-and-routed solution due to

the inherently noisy and heuristic nature of CAD algorithms.

Rubin and DeHon [10] found that even small perturbations

in the router inside the VPR CAD tool can cause the critical

path delay to vary between 17–110%.

2.2. Incremental Synthesis

The key idea behind incremental synthesis is to allow a fi-

nal, place-and-routed circuit implementation to be modified

whilst preserving as much of the original solution as possible.

The motivations behind this technique are many: to minimize

re-compilation effort during the design phase, to preserve

timing closure when undertaking Engineering Change Orders

(ECOs), or for improved fault and defect resilience [11].

Incremental synthesis techniques for FPGAs are not new

however [12, 13], nor is their application in design prototyp-

ing and debug [14]. Many of the techniques cited are targeted

at modifying the user circuit for functional purposes and go

beyond the requirements for incremental-tracing (which are

explained in detail in a following section) including provi-

sions for incremental re-packing and re-placement.

An approach much more similar to what we are investi-

gating is taken by Graham et al. [15], who pre-insert uncon-

nected embedded logic analyzers (trace-buffers) into their

Xilinx FPGA ahead of time, and subsequently perform low-

level bitstream-modification using incremental techniques [16]

to connect them to the desired signals. However, this tech-

nique still requires some pre-reservation of FPGA resources,

preventing their use by the original design. More importantly,

what we are interested in are the limitations and scalability



of incremental-tracing — this work examined a trace set of

only 128 signals, and only supports existing Xilinx devices,

precluding the open investigation of FPGA architectures.

Incremental-compilation design is also supported by com-

mercial vendor tools. Specifically, both Altera’s SignalTap II

trace IP solution, and SignalProbe, which multiplexes and

routes signals directly to the I/O pins for connection to an

external analyzer, is supported under this flow [3]. Again,

these products can only target real FPGA devices using pro-

prietary software from which we cannot acquire detailed

performance metrics.

3. CONTEXT

The first contribution of this paper is to investigate the limi-

tations of using incremental-synthesis techniques for trace-

based debug, which we have termed incremental-tracing. The

key challenge during incremental-tracing is to connect all of

the signals that a designer wishes to observe to a trace-buffer,

whilst minimizing the number of changes that are made to

the original circuit mapping. As stated in the Introduction,

there are many reasons for why this is desirable: reduced re-

compilation runtime leading to improved debug productivity,

and preserving the original timing of the circuit under debug.

Specifically, in this paper we look at how the feasibil-

ity of applying incremental-tracing to a circuit that has not

been previously instrumented (i.e. where trace-buffers have

not been pre-inserted [15]). We investigate where and why

this technique fails, and how this is affected by the FPGA

architecture, as well as the number of signals traced simul-

taneously. In addition, we compare the CAD run-time of

incremental-tracing versus a full re-compilation, and mea-

sure the effect that these techniques have on the circuit’s

critical-path delay.

3.1. Assumptions

To support our interpretation of incremental-tracing, a num-

ber of simplifying, but realistic, assumptions have been made.

Firstly, we have assumed that the embedded memory blocks

on an FPGA can be configured as a trace-buffer without re-

quiring any additional control circuitry, as this would need

to be implemented using soft-logic resources located in its

vicinity. At a minimum, each memory block would need

to support a ring-buffer configuration, whereby any signals

connected to it would be continuously recorded until the chip

is halted, and to also support a method for the trace contents

to be efficiently extracted. We believe that these two require-

ments will incur a negligible overhead with respect to the

size of each memory block — a wrap-around incrementing

address counter can be efficiently implemented using T-type

flip-flops, and existing IP solutions already exist to allow

a memory’s contents to be accessed using the JTAG inter-

face [3], or through device readback techniques as in [15].
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can be incrementally swapped for greater trace flexibility

Secondly, we have assumed that external triggering is

used to determine when the trace-buffer stops (and possibly

even starts) recording. This trigger may be driven by an

off-chip signal that halts the clock, or manually inserted by

the user on-chip, perhaps using other incremental-synthesis

techniques. Alternatively, it may also be possible to imple-

ment simple triggering logic using fixed-circuitry that can be

amortized over several memory blocks.

4. INCREMENTAL-TRACING OPTIMIZATIONS

The second contribution of this paper is the proposal of sev-

eral CAD techniques that can be used to improve incremental-

tracing. Because incremental-tracing differs from incremental-

synthesis where the application is functional circuit modifica-

tion, a number of new opportunities exist for CAD optimiza-

tions to improve runtime and routability.

A key property of this incremental-tracing problem is

that all trace-buffer inputs on the FPGA can be considered to

be logically equivalent. Unlike user designs, making ECO

changes, or increasing fault tolerance, there is no hard re-

quirement that nets must reach a specific sink for it to be con-

sidered a valid routing solution — reaching any free trace-pin

regardless is sufficient for the signal to be observable. To

take advantage of this, an incremental-tracing algorithm can

be modified to search for any unoccupied trace-pin, and exit

as soon as one is found. Besides having implications for

routing runtime, this modification enables tracing flexibility

to be significantly increased.

An orthogonal opportunity also exists from taking advan-

tage of the logical symmetry of elements within an FPGA

logic cluster. At a high level, the soft-logic fabric within an

FPGA consists of a 2D grid of logic clusters, each of which

contains N logic elements connected through a local routing

network, as illustrated in Figure 3. Here, a circuit path is

shown passing through three logic elements in logic cluster 1,

and then two elements of logic cluster 2. In this path, there

are three local nets emanating from logic elements A, B and

D, and one global net from C. Should a designer wish to

observe net C, the algorithm would then connect any part of

the global route between its source and sink to a trace-buffer.



Circuit 6LUTs FFs FPGA Size I/O Logic Clusters Multipliers Memories Nets

mkSMAdapter4B 1977 983 18x18 400/576 199/234 0/8 5/9 2329

or1200 2963 691 25x25 779/800 298/475 1/18 2/12 3483

mkDelayWorker32B 5580 2491 42x42 1064/1344 560/1302 0/50 41/42 7439

LU8PEEng 21954 6630 59x59 216/1888 2583/2596 8/98 45/72 27657

mcml 99700 53736 119x119 69/3808 10436/10591 30/435 38/285 106555

Table 1: Benchmark summary (values in bold indicate the constraining resource)

However, should a designer wish to observe any of the

local nets A, B or D, then the problem becomes significantly

harder; here, the incremental tool can only connect to the

dedicated cluster output pins corresponding to that particular

net. By taking advantage of the fact all logic elements are

fully symmetric within a logic cluster — due to the local

routing being a fully-populated crossbar (i.e. any input can

be multiplexed onto any of its outputs) — the algorithm can

change the ordering of the logic elements within a cluster

without affecting circuit functionality. Hence, elements A

and B can be re-ordered, as can D and F. The benefit of this

technique is that the incremental tool now has the flexibility

of forming a trace-buffer connection with any of the local

cluster outputs. This technique is only applicable to logic ele-

ments that generate local nets used exclusively inside a logic

cluster — elements which connect to the global network can-

not be re-ordered otherwise its global route will no longer be

valid. For incrementally-tracing local nets, we have modified

our algorithm to treat all local OPINs as logically equivalent

sources, and allow Pathfinder to arbitrate their access.

5. METHODOLOGY

Whilst it is possible to move existing placed-blocks or routes

in order to increase the feasibility of incremental-tracing (this

option is taken by Altera’s SignalTap II), in this work, we

explore the more constrained case where this is not allowed.

Specifically, we incrementally route signals in a placed-and-

routed circuit solution to a spare trace-buffer input, without

affecting any part of the original circuit — without moving

any placed blocks, nor ripping up any existing routes. This

constraint is especially relevant during debug, where it is not

likely that the original circuit will change between debugging

iterations — only the additional instrumentation circuitry

will — until the design error has been identified and a fix

is to be applied. Furthermore, designers may not wish to

modify any part of their original design for fear of changing

the very behaviour of the bug they are trying to hunt down,

such as those of an non-deterministic nature.

In order to explore our incremental-tracing techniques,

the VPR 6.0 FPGA CAD tool, made available as part of the

VTR project [17] was extended to support an incremental-

tracing flow. This new, non-intrusive flow makes absolutely

no modifications to the initial packing-placement-routing

algorithms, instead only operating on the final circuit solution

produced by VPR (in fact, our incremental-tracing flow can

read in and start from a pre-routed solution).

From this final solution, breadth-first search routing is

performed from each of the nets selected for tracing (expand-

ing from all points on the existing net) until any free memory

pin is reached. Unlike the original routing stage, a directed

search algorithm is not used due to this flexibility of needing

to reach only one-of-many sinks. Similarly, the search win-

dow is not constrained within any sort of bounding box to

maximize routability. Although we do not allow any of the

existing user-routes to be ripped-up and re-routed, we do how-

ever allow incremental routes to negotiate for the most critical

resources using the standard Pathfinder algorithm. By recog-

nizing that incremental-routes need not negotiate with any

of the user routing, a loss-less optimization can be applied:

during breadth-first expansion, only routing-resource nodes

that are not already fully occupied by the original solution is

added to the routing priority-queue. In this work, we have

used the heterogeneous benchmark circuits included in the

VTR suite, which are summarized in Table 1.

6. RESULTS

6.1. OPIN Accessibility: Individual Signals

Due to the existence of symmetry between the logic elements

inside a cluster that was described in Section 4, we can run ex-

periments to determine the fraction of all used cluster output

pins (OPINs) in a circuit that can be individually connected

to a trace-buffer using incremental techniques. We term this

metric its “accessibility”. Figure 5 shows the accessibility

values for four different benchmark circuits when mapped to

identical FPGAs with varying channel widths (normalized

to the minimum value possible: W min), averaged over 10

different placement seeds. Channel width (W) is a measure

of an FPGA’s routing capacity: larger W indicate a wider

and more flexible network for connecting logic, but occupies

more silicon area. Each circuit was mapped to the default

VTR heterogeneous FPGA architecture with representative

parameters of logic cluster size N=10, look-up table size K=6

(non-fracturable), channel segment length L=4, and cluster

input and output flexibilities of Fc in=0.15 and Fc out=0.1.

First, VPR was run through the entire (timing-based)

packing-placement-routing flow to find its minimum chan-

nel width via binary-search, and for each subsequent chan-

nel width, the minimum value was inflated by the specified



0 3 6 9 12 15 18 21 24 27 30

Max Manhattan Distance Reached

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

accessible
inaccessible

0 3 6 9 12 15 18 21 24 27 30

Max Manhattan Distance Reached

0

100

200

300

400

500

600

Fr
eq

ue
nc

y

accessible
inaccessible

(a) or1200: W min (left), W min +20% (right)

0 6 12 18 24 30 36 42 48 54 60 66 72

Max Manhattan Distance Reached

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

accessible
inaccessible

0 6 12 18 24 30 36 42 48 54 60 66 72

Max Manhattan Distance Reached

0

50

100

150

200

250

300

Fr
eq

ue
nc

y

accessible
inaccessible

(b) mkDelayWorker32B: W min (left), W min +20% (right)

Fig. 4: Histogram of the maximum manhattan distance reached during breadth-first search
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amount and the circuit re-routed using the identical circuit

placement. Interestingly, it can be seen that even at a circuit’s

minimum channel width, over 75% of all OPINs can still be

incrementally-traced, with this fraction rising with channel

width and circuit size. The nets (and their OPINs) that exist

within a placed-and-routed design can be divided into two

categories: local and global. The proportion of each type is

shown in Figure 6, sub-divided into those that are accessi-

ble (A) and inaccessible (I). From this chart, it can be seen

that local OPINs dominate the majority of failing cases. The

reasoning for this trend is intuitive: global OPINs connect

onto the global interconnect, making it possible to tap any

point on the existing route to branch-off to a trace-pin. No

such luxury exists for local OPINs, however, as there is far

less flexibility for a trace connection to be made.

This is reinforced by Figure 4, which shows a histogram

of the maximum manhattan distance reached during breadth-
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Fig. 7: Net accessibility: effect of Fc out and channel width

first search routing, distinguishing between accessible (indi-

cating the distance of the successful route) and inaccessible

OPINs (the maximum distance reached before giving up, due

to an empty priority queue). As seen, the vast majority of in-

accessible OPINs possess a distance of zero which indicates

they are unable to routed out onto the global network. Even

though we have only shown the two circuits in which this

finding is most prominent, this trend holds for all the other

circuits we investigated.

This conclusion explains our previous observation in Fig-

ure 5 that increasing channel width increases a design’s ac-

cessibility: by increasing the routing flexibility in exiting the

cluster, as well as in easing any routing congestion around

the cluster. Given this to be the problem, another key archi-

tecture parameter that determines the cluster output flexibility

is Fc out: the fraction of tracks that an OPIN can connect to.

The results of varying this parameter, in combination with

the channel width, again averaged over 10 placement seeds

for each of the four circuits mkSMAdapter4B, or1200,

mkDelayWorker32B and LU8PEEng is shown in Fig-

ure 7. As expected, increasing either parameter improves

accessibility. In the case of the Fc out parameter, this gain

flattens out in the region of Fc out=0.3 — the rationale here

is that it doesn’t matter how many tracks each cluster output

pin can reach, if all of those tracks are occupied then the

trace will remain unrouteable.

At this point, the most straightforward solution for im-

proving accessibility appears to be to increase the FPGA

channel width. Using an area model developed from the
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detailed transistor-level delay model described in [18], we

have been able to estimate that for the four circuits explored,

tolerating a 10% area increase will result in an average ac-

cessibility of 0.9907, whilst sacrificing 20% will return a

0.9997 payoff. For full accessibility, the area penalty is al-

most 30%. It is worth noting, at this point, that the minimum

channel width is only an artificial metric used to measure

the routing demands of a circuit. Physical FPGAs can only

be manufactured with a fixed channel width, and in this and

previous work [19], it has been observed that in commercial

architectures the routing resources and flexibility are suffi-

ciently over-provisioned to ensure routability even with the

most stubborn circuits.

6.2. Circuit Traceability: Multiple Signals

In the previous subsection, we looked at the feasibility of

incrementally-tracing one signal at a time. Let us now con-

sider the more realistic case where multiple signals are con-

nected to trace-buffers at the same time. We term the number

of signals that are observed simultaneously to be the trace

demand, which is normalized to the maximum number of

free memory pins available in the FPGA. For each of the

10 placement seeds, 1000 signal selections were randomly

chosen for each trace demand to achieve a sufficiently large

sample size to draw conclusions from. In order to observe the

effect of congestion-related failures only, we have restricted

the OPINs eligible for selection to those that are known to be

independently accessible from the previous subsection. This,

however, does not restrict the designer to only being able to

select the fraction of signals corresponding to its “accessi-

bility” value as in Figure 5; this metric actually represents

a lower-bound of signals that can be selected due to the LE

re-ordering technique described previously. Should a partic-

ular combination of signals be un-traceable, a designer can

fallback onto a lengthy re-compile of the whole design.

We term the fraction of successfully traced routes (where

the entire signal selection is simultaneously connected to a

trace-pin each) over the 1000 random selections across the

10 placement seeds, to be its “traceability”. If a circuit fails

to route, this is due solely to congestion that cannot be re-

Trace Dmnd W min Inflation

(FFs) +0% +10% +20% +30%

0.05 (889) 887 (6) 888 (5) 889 (8) 889 (7)

0.10 (1778) - 1777 (8) 1778 (10) 1778 (9)

0.20 (3557) - 3555 (15) 3557 (18) 3557 (17)

0.30 (5335) - 5332 (23) 5335 (33) 5335 (32)

0.40 (7114) - - 7114 (49) 7114 (50)

0.50 (8892) - - 8892 (152) 8892 (133)

0.75 (13338) - - - 13338 (1864)

1.00 (17784) - - - -

Table 2: mcml (53736 FF) signals incrementally-traced (run-

time in seconds; c.f. placement runtime = 19507s)

solved within 50 Pathfinder iterations, if at all. The results

in Figure 8 show this traceability value for selection sizes

indicated on the x-axis. The scale of the x-axis is normal-

ized to the trace capacity of each circuit, which varies for

each circuit due to the number of free memory-blocks that

exist in each physical implementation, which is specified

in Table 1. We have omitted the traceability results for the

memory-constrained circuit mkDelayWorker32B, which

have high traceability values exceeding 0.98 for all trace de-

mands, even at minimum channel width. In this architecture,

we have elected to configure each memory-block at its widest

configuration which enables each to sample up to 72 signals

simultaneously to fully stress the routing fabric. For these

results, Fc out has also been fixed at a moderate value of 0.2.

Our results show that incremental-tracing is very much

feasible, even when channel width is only inflated by a small

amount. For a 20% channel width increase (approximately

1.1X area) there is a greater than 90% probability that a signal

selection utilizing 75% of the available memory capacity of

the FPGA can be fully traced. Further increasing the channel

width to 40% above minimum allows all of the free memory

on the FPGA to be utilized for debug. The difference between

the dotted and solid-lines represent the improvements gained

by our LE re-ordering optimization.

To further validate this conclusion, we have successfully

traced an intelligently selected signal set (using the method

described in [19]) from the largest circuit at our disposal:
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mcml. Table 2 shows that at least 50%–75% of the trace-

capacity can be fully utilized at W min +20%–30%, when

inaccessible global OPINs are ignored as previously. We have

found these to be surprising results, and a testament to the

flexibility of FPGAs devices.

6.3. Effect on Flow Runtime and Circuit Delay

Two additional performance metrics that designers care about

during FPGA debug is the effect of instrumentation on the

compilation flow runtime and the circuit delay. Figure 9

shows the incremental-tracing runtime for a successful route

when utilizing 75% of the available trace capacity. To put

this into perspective, the red error bars have been used to

indicate the original VPR placement runtime, which was

the lengthiest portion of the full compilation flow when the

binary-search for the minimum channel width is omitted. As

these results show, incremental-tracing can be much more

computationally efficient than a full re-compilation, even for

large circuits. Currently, we are using the default Pathfinder

routing parameters, which are tuned to routing user-logic.

We anticipate that, by tuning these parameters to penalize

congestion sooner, the runtime can be further improved.

During prototyping, it is anticipated that the operating

frequency would not be a primary concern given that the

instrumented FPGAs will remain many orders of magnitude

faster than software simulation; with incremental-tracing,

designers can now sacrifice some circuit speed for acceler-

ated debugging productivity. Figure 10 charts the average

probability that a successful incremental-trace will increase

the critical-path delay, across all 10 placement seeds for each

circuit. As channel width increases, this fraction reduces

due to the easing of any routing congestion in the circuit,

allowing trace connections to take a more direct route. As

trace demand increases, the number of routes affecting T crit

also increases due to a higher contention for trace-pins. We

have found that when the critical path is affected, this in-

crease is on average only 3.4%, 0.6% and 3.6% for mkSM,

or1200 and mkDW respectively, with a maximum of 15%,

10%

20%

30%

Fig. 10: Average probability of incremental-trace affecting

critical path delay

1.4% and 8% over all trace demand and signal selections.

LU8, the largest and logic-constrained benchmark showed a

0.5% maximum increase.

6.4. Future Work

We believe that these results show that there is much promise

in using incremental-synthesis techniques for debug. Even

though these techniques are very much feasible even on cur-

rent architectures, there remains a number of interesting av-

enues for future work to explore. Firstly, there is a huge scope

for investigating architectural changes to improve routing

flexibility beyond, and at a lower cost than, those described

by the current set of parameters, such as W or Fc out, and

increase its accessibility and traceability.

Alternatively, there are also many opportunities for im-

proving the CAD algorithms to achieve this. Routing using

a breadth-first search strategy is known to be more compu-

tationally intensive than a directed approach, which was not

used in this work due to the opportunity for any trace-pin

to be a feasible sink. However, it may still be possible to

accelerate this incremental-tracing procedure by prioritizing

regions for the router to first explore. Looking even further,

it would also be possible to integrate incremental-placement

techniques into this trace flow: opening the door to the on-

demand pipelining for trace signals to minimize its effect

on timing (as the latency of a trace signal does not affect

its observability), improving routing flexibility by passing

through empty BLEs, or even allowing the insertion of com-

plex trigger circuitry.

7. CONCLUSION

In this paper we have explored the limitations of applying

incremental synthesis techniques to the insertion of trace-

buffers for improving on-chip observability. During incremental-

tracing, there exists far more flexibility (and opportunity)

than with functional design changes — a traced signal is not

constrained to reaching one particular sink for example, but



instead, it need only reach any free trace-pin to achieve a

feasible routing solution.

By using the academic Verilog-To-Routing toolchain, we

first observed that even at the most constrained case of min-

imum channel width, at least 75% of cluster output pins

can be connected to a trace-buffer input using incremental

techniques. Although less than 50% of all nets are locally

absorbed inside a logic cluster, we discovered that this cat-

egory made up the majority of the inaccessible cases, and

that within those, most signals were unable to even route out

from its cluster. By inflating the minimum channel width, W,

and varying the cluster output flexibility, Fc out, we found

that our accessibility metric can be improved to 99.1% for a

10% area overhead, and 99.9% for 20% area.

Subsequently, we found equally promising results for

tracing signals concurrently: 75% of the available trace-

capacity can be utilized for a 10% area overhead, with the

full capacity available for 20% area. Furthermore, we show

that incremental-tracing can be significantly more efficient

than a full circuit re-compilation, even for large circuits, and

that under these same conditions for 10% area, the critical

path will be increased on average 7% of the time, by 2%.

We believe that these results show incremental-tracing

to be a highly feasible reality, especially given that we have

stressed our techniques on the most extreme use-case. Real-

world designs will likely not be implemented using minimum-

sized FPGA dimensions, nor will its logic be packed for

maximum density as VPR does. Such circuits will not be

mapped to a minimum routing channel width either; we

have seen some evidence that commercial FPGAs do over-

provision their routing tracks, which provide sufficient slack

for incremental-tracing. Furthermore, because incremental-

tracing is used only to accelerate the debugging flow, we

can see any tool that implements our techniques operating

on a “best-effort” basis — one which may try and trace

as many signals as it possibly can, and should that not be

acceptable, a designer can always fallback onto a lengthy,

full re-compilation run. We anticipate that, with the ability to

trace the majority of all sequential or combinational nodes in

the circuit and to combine these values with signal restoration

techniques, this may be a very rare eventuality indeed.
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