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ABSTRACT
The rising complexity of verification has led to an increase
in the use of FPGA prototyping, which can run at signifi-
cantly higher operating frequencies and achieve much higher
coverage than logic simulations. However, a key challenge is
observability into these devices, which can be solved by em-
bedding trace-buffers to record on-chip signal values. Rather
than connecting a predetermined subset of circuits signals to
dedicated trace-buffer inputs at compile-time, in this work we
propose that a virtual overlay network is built to multiplex
all on-chip signals to all on-chip trace-buffers. Subsequently,
at debug-time, the designer can choose a signal subset for
observation. To minimize its overhead, we build this network
out of unused routing multiplexers, and by using optimal
bipartite graph matching techniques, we show that any sub-
set of on-chip signals can be connected to 80–90% of the
maximum trace-buffer capacity in less than 50 seconds.

Categories and Subject Descriptors
B.7 [Integrated Circuits]: Design Aids—Verification
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1. INTRODUCTION
As the achievable capacities of digital integrated circuits

grow, the verification and debugging tasks are becoming
increasingly difficult. A Mentor Graphics study found that
whilst silicon density doubles every 18 months, designer pro-
ductivity only doubled every 39 months, and that half of
all designer effort was spent performing functional verifi-
cation [5]. Designers make extensive use of simulation to
verify that their designs operate as expected and to hunt
for the cause of incorrect behaviour, however, simulation
is slow; IBM engineers reported that software simulation
was only able to reach 10Hz while their custom ASIC had a
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target frequency of 1.6GHz — a difference of over 8 orders
in magnitude [2].

A growing number of designers are now opting to proto-
type their design using one or more Field-Programmable
Gate Arrays (FPGAs). The same Mentor study found that
55% of industry employed FPGA prototyping techniques in
2010, an increase from 41% in 2007 [5]. FPGA prototyping
enables significantly higher verification coverage compared to
simulation, allowing designers to exercise their design using
realistic scenarios (e.g. booting an operating system).

The primary challenge during FPGA prototyping is one of
visibility. Unlike software simulation, in which the designer
can view the behaviour of any signal in the design at any time
step, in prototyping only those signals which drive output
pins can be observed. This significantly limits debug produc-
tivity, since it is often difficult to deduce internal behaviour
by only observing output signals. Providing simulator-like
visibility to an FPGA platform is seen as one of the key
technologies required as FPGAs scale to larger and larger
capacities [18]. This paper is a step in this direction.

A common technique for increasing visibility is to insert
trace-buffers into a circuit, and use these trace-buffers to
record a history of a subset of internal signals during normal
device operation. Altera and Xilinx provide tools enabling
this [24, 1] and third-party solutions are also available [19,
17]. A key constraint of this method, however, is that the
signals that a designer wishes to observe must be predeter-
mined at compile-time, before the circuit is operational, and
often, before the exact nature of the bug is known. As a
result, a designer wishing to change the set of signals that are
recorded would have to recompile his or her design. Recom-
piling and/or reconfiguring the design to observe different
signals is referred to as a turn in [22]; often many turns are re-
quired during debug to narrow down the cause of unexpected
behaviour. References [8, 6, 1] all show how incremental
routing can be used to connect signals to trace-buffers or
output pins without a complete recompile, however, these
techniques are still slow (in [8], a re-route time of 2,000
seconds for a 100,000 LUT circuit is reported).

In this paper, we propose a method which accelerates
the debug process by significantly reducing the amount of
time required to perform a turn. We do this by allowing
the designer to change which signals are to be connected to
the trace-buffer without recompiling the design, and with-
out requiring a re-route of signals between debug iterations.
We achieve this by, at compile-time, embedding a flexible
overlay network which multiplexes almost all combinational
and sequential signals of the gate-level circuit into these
trace-buffers. Unlike [19], the network is not built using



the normal soft FPGA logic. Instead, we reclaim unused
routing multiplexers within the FPGA fabric and use them
to implement this network. As a result, the area overhead
due to this network is essentially zero. At debug time, we
then configure this network by setting a small number of
routing bits to connect selected signals to the trace-buffers.
Using our technique, we can forward any signal selection of a
designer’s choosing to 80–90% of the on-chip trace capacity.

Although our approach falls short of a software simulator
in that we can only observe a limited number of signals and
for a limited number of clock cycles as constrained by trace-
buffer capacity, crucially, we will show that our technique
allows the designer to defer the selection of which signals to
observe to debug-time. This negates the need to recompile
the circuit whenever the signal selection is changed, greatly
accelerating debug productivity.

2. RELATED WORK
On-chip observability can be enhanced using either scan-

or trace-based techniques. Scan-based techniques involve
connecting internal flip-flops sequentially; in FPGAs, this
can be achieved using general-purpose soft-logic as in [21],
where the area and delay costs can be prohibitive, or through
dedicated device readback support [9]. Scan techniques can
provide complete visibility into the state of all flip-flops in the
design, but typically require that the circuit is halted before
scan-out. This can greatly slow down their use for real-time
debugging; reference [9] reported that viewing one flip-flop
using device readback can take between 2 to 8 seconds.

Trace-based techniques operate by utilizing a portion of the
FPGA’s embedded memory resources to record a small subset
of internal circuit values during continued device operation.
Examples of trace IP offerings include Xilinx ChipScope Pro,
Altera SignalTap II and Synopsys Identify [24, 1, 17]. For
these products, the subset of signals that are connected to
trace-buffers must be determined by the designer ahead of
time, before the circuit is compiled. Once trace instrumenta-
tion has been inserted, if a designer wishes to modify the ob-
served signals, the circuit would often need to be recompiled.
To combat this, commercial tools support general purpose
incremental-compilation techniques whilst researchers have
also proposed a trace-specific procedure in [8].

Most similar to our work is Tektronix Certus [19], which
allows designers to specify a large subset of signals to connect
to a proprietary Observation Network during compilation,
from which they can select a smaller subset to trace at
runtime. A related product is Altera SignalProbe [1], which
uses incremental ECO techniques to multiplex up to 256
circuit signals to each reserved I/O pin for external analysis.
Our work differs in that we do not require the designer to
predetermine which signals they can observe — we aim to
provide the designer with complete visibility, nor do we use
general-purpose logic to provide this runtime flexibility.

Authors have also proposed exploiting an FPGA’s unique
reconfiguration capabilities for debug. Reference [7] describes
a method to reclaim spare FPGA resources for debug by
speculatively inserting trace-buffer logic connected to a set
of “influential” signals without any user intervention. Sig-
nals used for this purpose are determined using automated
selection techniques such as those presented in [11, 10]. In
a proposal similar to our approach, Moctar et al. [13] reuse
the local routing multiplexers present inside each FPGA
logic cluster to implement the programmable shift operation
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Figure 1: Virtual overlay network for multiplexing a large
set of circuit signals to a small number of trace-buffer inputs

in floating-point computation, freeing up valuable soft-logic
resources to be more efficiently used elsewhere.

Similar to [8], one important aspect that enables this
proposed work is the realization that circuit signals can
be connected to any free trace-buffer input for it to be
observable. Instead of using a fully-populated crossbar where
every network input can be forwarded to any network output,
this flexibility can be exploited by using a sparse (n,m)
concentrator network [14], which guarantees that any size-m
combination of the size-n input set can be routed through to
its outputs in an arbitrary order. However, because we intend
to connect all circuit signals to our overlay network, and allow
all of them to access as many trace-buffer inputs as possible,
even a concentrator may add too much routing pressure to
the FPGA. In this paper, we pursue a blocking network which
sacrifices the absolute guarantee of any-m-of-n, but as the
results later show, approximately 80–90% of full connectivity
can still be achieved.

3. OUR APPROACH: OBSERVATION
WITHOUT RECOMPILATION

We propose a method to allow the set of signals connected
to on-chip trace-buffers to be modified without requiring
the circuit to be recompiled. These techniques can be used
to greatly reduce the time between debug turns, and hence
rapidly accelerate the debugging flow. The key enabling
component to this work is that, instead of building a custom
FPGA mapping to connect each signal to one dedicated trace-
buffer input as in existing IP [24, 1], we insert a virtual overlay
network which allows multiple signals to be multiplexed to
each trace-input; this is illustrated in Figure 1. Subsequently,
changing the signals that are forwarded over this network will
require only the virtual network to be reconfigured, rather
than a new place-and-route solution.

Existing work pursue a debug flow similar to that shown in
Figure 2a, in which the instrumentation procedure requires
a new FPGA mapping to be constructed for each new set
of observed signals at each debug turn. Whilst incremental
compilation techniques can be used to accelerate this proce-
dure [8], it still requires the entire circuit to be loaded into
the memory of a CAD tool and some amount of additional
routing (and perhaps placement) operations to be performed.
Figure 2b describes our proposed debug flow. This debug
flow consists of two phases: compile-time and debug-time.
During compile-time, the uninstrumented circuit is fully com-
piled as normal, and the resulting mapping is then completely
fixed. Next, the virtual overlay network is then added incre-
mentally, using only the FPGA resources that were leftover
from the initial mapping — this is described in Section 7.
It is also possible to insert the overlay network during the
original full compile, though this option is not explored here.
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Figure 2: Existing and proposed debug flows

At debug-time, this overlay network is then repeatedly
configured with the signals that a designer wishes to observe,
and the device tested at each turn in order to record the
desired signal values, until the root-cause of the bug is located.
By eliminating all forms of recompilation from the inner loop,
each debug turn can now be completed in a matter of seconds.

A number of key technical challenges have to be overcome
in order to realize such a proposed flow, and these will be
described as follows: Section 4 presents the details of our
virtual overlay network, which seeks to connect all combi-
national and sequential signals of the user-circuit to the
available trace-buffers. Section 5 describes the graph-based
method we employ for computing a valid network configura-
tion Lastly, Section 6 describes how this configuration can
be programmed into the device.

4. VIRTUAL OVERLAY NETWORK
In this section, we will describe the details of our vir-

tual overlay network. The key purpose of this network is
to multiplex all on-chip signals to all trace-buffer inputs.
With previous work, it is necessary to compile a custom
point-to-point network for each new signal selection, gener-
ating a mapping such as that illustrated by Figure 3a where
each observed signal is connected exclusively to a single
trace-buffer input via a set of dedicated routing multiplexers.
Instead, we propose that an overlay network is created out
of these routing multiplexers, as shown in Fig. 3b, where a
total of 4 signals: A, B, C and D are now connected to the
same trace-input. The select-lines to each of these routing
multiplexers are driven by the FPGA configuration mem-
ory — methods to reprogram their values are covered in a
subsequent section. The reconfigurable nature of FPGAs
arises from the abundance of multiplexers inside, and by
utilizing routing multiplexers to build this overlay network
instead of general-purpose user-logic, this network can be
built much more efficiently. The feasibility of this proposal
is supported by analysis that in mapping our set of uninstru-
mented benchmark circuits to a minimum array size FPGA
with a small amount of routing slack, only 32–51% of the
total interconnect capacity (geomean at 41%) was utilized.

We note that our approach of instrumenting the circuit
after compilation means that only gate-level signals are ac-
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Figure 3: Trace-buffer connectivity

cessible; but due to the effects of optimization or technology-
mapping, such signals may not posses a direct one-to-one
correspondence to those at the RTL or HDL-level signals
that a designer is most familiar with. We believe several
approaches exist to alleviate this mismatch: first, unless reg-
ister re-timing is performed, both commercial and academic
CAD tools preserve the names of all sequential signals in the
design, which designers can use as fixed points of reference.
With sufficient visibility into the sequential signals that af-
fect it, any intermediate combinational signals can then be
re-computed using offline simulation.

Second, designers are able to manually specify additional
points of reference by using synthesis attributes to prevent
combinational signals from being optimized away — the
“syn_keep” attribute is available in Quartus II, and Synplify,
whilst the “S” (SAVE NET) attribute in ISE. Trace IP which
instrument at the RTL or HDL-level (SignalTap II, Chip-
Scope, Certus) implicitly do this. During prototyping, large
circuits are likely to be I/O-bound due to the need to parti-
tion the circuit amongst multiple FPGAs — in those cases,
it would be feasible to optimize the circuit less aggressively
so that more combinational signals can be preserved. This
approach is not dissimilar to debugging software applications,
where speed is traded for visibility; in fact, the upcoming
version of GCC 4.8 supports a new “-Og” optimization level
to address this.

Building the virtual overlay network is essentially a routing
problem. This routing problem can be represented as a rout-
ing resource graph G(V,E). We define V = Vsignals∪Vrouting

∪Vtrace where Vsignals is the set of all circuit signals that can
be traced, Vrouting the set of unused routing multiplexers,
and Vtrace the set of trace-buffer inputs. E is the set of
unused routing tracks that exist between these resources. Ex-
ample routing resource graphs are shown in Figure 4 where
Vsignals is indicated by . triangles, Vrouting as ◦ circles, and
Vtrace as / triangles. Fig. 4a illustrates an example point-
to-point network that would be created by prior work for
observing signals B and D. Here, each routing multiplexer
would be used to carry only one signal.

Figure 4b shows a routing solution for the same resource
graph in which all five circuit signals are connected to either of
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the two trace-buffer pins available. Each routing multiplexer
can have a fan-in of more than one. At debug-time, a designer
can now configure the routing multiplexers in such a way
as to forward just one signal to each trace-input. For this
particular solution, designers can observe any single signal
in their circuit, and a limited selection of any two signals
simultaneously, as defined by the Cartesian product of the
two signal sets {A,B} × {C,D,E}: {AC,AD,AE,BC ...}.

The key feature of this routing solution is that it is made
up of a disjoint union of trees, each rooted at a trace-buffer
input, with the leaves of each tree being the circuit signals
that it connects. We use a disjoint union of such trees, to
allow signal selections to be made for each trace-buffer input
independently of other trace inputs; it is this constraint which
differentiates and abstracts our virtual overlay network from
the more general routing problem faced when building point-
to-point networks. Whilst each trace-buffer input in the
general routing resource graph G can be considered the root
of a much larger tree which touches all the signals in its fan-in
cone, the union of such trees will not be disjoint and hence
signals for each trace-input cannot be selected independently.

Our virtual overlay network can be described as a graph
G′(V ′, E′) where V ′ now consists of Vsignals∪Vtrace, and E′

the set of edges that describe connectivity between a circuit
signal and a trace-pin. Furthermore, rather than connecting
each signal in the circuit to a trace-buffer input just once as in
Fig. 4b, it is possible for a signal to be a leaf of multiple trees.
A valid routing solution for a network where this is the case
is shown in Figure 4c; here, by occupying a few more routing
resources, each of the five signals can now be connected to two
of the four trace-buffer inputs. The increased flexibility of
this overlay network can now guarantee that any combination
of two signals can be selected for observation, but in practice,
many more signals are possible.

5. NETWORK MATCHING
So far, we have assumed that at debug-time, the designer

chooses which signal they wish to connect to every input pin
of every trace-buffer in their circuit. Once this decision is
made, a simple algorithm can be used to determine the select
bits for each of the Vrouting multiplexers that make up the
overlay network. This algorithm follows a greedy strategy:
starting at the leaf node of the desired Vsignal, move through
all Vrouting multiplexers in the routing resource graph G
belonging to the signal tree towards its root, Vtrace. At
each Vrouting multiplexer encountered, set it to forward the
output from the previous node. However, making the choice
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of which signal to forward to which trace-input is not trivial.
Consider the network in Figure 4c: although the designer
can select any combination of two signals, they can only
select a limited combination of three signals — defined by
the Cartesian product of all sets. Given that each signal can
be connected to one of two trace-buffer pins, there exists a
problem of deciding which signals to connect to which pin.
As an example, suppose that a designer wishes to observe
the signals ACD; A can only be forwarded to trace-input
1 or 2, C to 2 or 3, whilst D can be forwarded to 3 or 4.
From this list of constraints, a feasible assignment must be
found: A→1, C→2, D→3 would be one valid solution, as
would A→2, C→3, and D→4. However, assigning A→2 and
D→3 would prevent signal C from reaching any trace-buffer
input. Although this example was easy to compute by hand,
it may not be so simple for circuits containing 10,000s of
signals, connected to 1,000s of trace-inputs, from which 100s
of signals are selected.

To solve this assignment problem, we utilize matching
techniques for bipartite graphs. A bipartite graph can be
described as Gb(Ub, Vb, Eb), where Ub and Vb represent two
disjoint sets of vertices, and Eb the set of edges that connect



between them. Edges must not exist between elements in the
same set: from Ub to Ub, nor from Vb to Vb. The definition
for our virtual overlay network fits this pattern, when substi-
tuting Ub = Vsignals, the set of all circuit signals, Vb = Vtrace,
the set of all trace-buffer inputs, and Eb = E′ — the set of
edges which describe the network connectivity between the
two. The relationship between the virtual overlay network
Gb and the general routing resource graph G is shown in
Figure 5. The bipartite graph capturing the connectivity of
the overlay network from Fig. 4c is shown in Figure 6a.

A maximum matching in a bipartite graph can be com-
puted in polynomial time. A matching of graph Gb represents
a subgraph of Gb in which none of its edges share a common
vertex; a maximum matching is the largest such subgraph
that can be formed. This is a very convenient property for
computing which signal to forward to each trace-pin: given
that each pin can only support one such connection, there-
fore, each node in Vtrace must have at most one edge. The
maximum matching solution for selecting signals ACDE from
its bipartite graph is shown in Figure 6b, which returns the
solution: A→ 1, C → 2, D → 4 and E → 3. The maximum
number of edges that can exist in a maximum matching
is the minimum value of |Vsignals| and |Vtrace|. In typical
circuits, we would expect that more circuit signals exist than
trace-inputs, and hence |Vsignals| >> |Vtrace|.

An additional useful characteristic of the maximum match-
ing algorithm is that it not only returns a pass-fail result,
for cases where a complete match is not possible, it will
return a best-effort partial assignment. Because the virtual
overlay network that we build is blocking, a maximum match
can be used to return partial, but optimal, result where the
maximum number of signals possible are forwarded over the
network. In cases where not all requested signals can be
forwarded, more than one maximum partial-match may exist

— currently, only an arbitrary match is returned. Similarly,
the solution may not capture designer intent in situations
where higher emphasis is placed on certain signals — they
may prefer one high-value signal to be selected over multiple,
lower-value ones. This is a scenario we plan to address in
future work using maximum weighted matching techniques.

6. NETWORK RECONFIGURATION
Once the select bits for each of the Vrouting multiplexers in

the overlay network have been computed, the final task is to
program these bits into the FPGA. For this we propose two
different approaches: one which requires the FPGA to be
powered down and fully reprogrammed, and an alternative
which, with the correct architectural support, would allow
the signal selection of a live FPGA to be changed on-the-fly.

6.1 Static Reconfiguration
The flow employed in existing work [24, 1, 8] is to create

a new point-to-point circuit mapping for each new signal
selection. The resulting bitstream would then be used to fully
reprogram the all of the configuration memory on the FPGA
device. This static reconfiguration procedure is identical to
that which is undertaken during the initial power-on of the
FPGA, and is also responsible for resetting all flip-flop and
memory contents to a known value, destroying any existing
user-state. For this reason, after reprogramming each new
trace configuration, designers must then rerun their tests
from scratch to collect their new signal trace.

In our proposed flow, because we do not recompile the
circuit between each debug turn, we do not automatically
generate a new bitstream. However, with exact knowledge
of where the configuration bits for each routing multiplexer
is located within this bitstream, it would be possible to di-
rectly modify only those bits necessary for configuring our
overlay network. Then, when the FPGA device is statically
reprogrammed, the desired signal selection is forwarded for
observation. Graham et al. [6] adopt this bitstream modifi-
cation approach for creating point-to-point trace networks.

6.2 Dynamic Reconfiguration
Alternatively, it may be possible for the overlay network to

be changed for a new signal selection without losing user-state
or interrupting live FPGA operation by using dynamic, par-
tial reconfiguration. This feature allows circuit designers to
dynamically reprogram only a portion of their FPGA during
runtime, whilst the rest of the device continues functioning
as normal.

Major FPGA vendors support dynamic reconfiguration in
their high-end parts, and provide fine-grained, non-glitching
support [25, 3] which does not corrupt user-state, showing
the feasibility and viability of our application. Altera states
that individual routing multiplexers in their fabric can be
reconfigured; Vansteenkiste et al. [20] have also proposed
that FPGA circuit-specialization be created using such fine-
grained reconfiguration support.

Interestingly, current architectural support for reconfigura-
tion goes beyond the needs of our transparent, observe-only
trace-buffer network, as it enables all aspects of the FPGA to
be reconfigured, including logic elements and lookup-tables,
logic clusters, memory and DSP blocks, as well as their as-
sociated routing resources. Our network requires only the
latter (specifically, only the configuration cells for all rout-
ing switch-boxes, as well as all connection-boxes for just the
memory resources as shown in Fig 3b). Unfortunately, due to
the proprietary nature of commercial FPGAs, we are unable
to quantify what savings can be made here, nor to test our
techniques on a physical device.

7. METHODOLOGY
To evaluate the feasibility of our virtual overlay network,

we implemented our techniques using the FPGA CAD tool
VPR, which forms part of the Verilog-To-Routing academic
project [15]. Using VPR 6.0, we packed, placed and routed
a set of benchmark circuits as normal onto the default VPR
architecture (given in Table 2, but with an increased Fc out
of 0.2 as done in [8]) to generate the baseline data outlined
in Table 1. In this flow, packing is performed with the
objective of minimizing logic cluster usage, and placement
is subsequently performed onto the minimum-sized FPGA
array that will fit the circuit. The minimum channel width,
Wmin, is a measure for the routing efficiency of the CAD
tools and FPGA architecture involved, and describes the
absolute minimum number of routing tracks that is possible
to implement the circuit on the given FPGA.

We make the same assumptions as in [8] that any free
memory-block in the FPGA can be transformed into a trace-
buffer for zero overhead, its contents can be extracted for free
(using device readback techniques, or built in JTAG logic)
and that triggering to control when to start and stop tracing
is specified by the designer manually, or driven externally
from a global pin. We do not believe these to be unrealistic



Circuit 6LUTs Flip-Flops FPGA Size Wmin I/O Logic Clusters Multipliers Memories

or1200 2963 691 25x25 72 779/800 298/475 1/18 2/12
mkDelayWorker32B 5580 2491 42x42 76 1064/1344 560/1302 0/50 41/42
stereovision1 10366 11789 43x43 70 278/1376 1365/1376 38/50 0/42
stereovision0 11462 13405 45x45 44 354/1485 1479/1485 0/66 0/42
LU8PEEng 21954 6630 59x59 86 216/1888 2583/2596 8/98 45/72
stereovision2 29849 18416 84x84 118 331/2688 3635/5208 213/231 0/154
bgm 30089 5362 69x69 88 289/2208 3419/3519 11/153 0/99
LU32PEEng 75530 20898 110x110 130 216/3520 8861/9020 32/378 150/252
mcml 99700 53736 119x119 86 69/3808 10436/10591 30/435 38/285

Table 1: Benchmark summary (values in bold indicate the limiting resource)

FPGA Architecture Parameter Value

Logic Cluster Size N 10
Lookup Table Size (non-fracturable) K 6
Inputs per Cluster I 33
Channel Segment Length L 4
Cluster Input Flexibility Fc_in 0.15
Cluster Output Flexibility (default: 0.10) Fc_out 0.20

Table 2: FPGA architecture used, based on Altera Stratix IV

assumptions, given that the memory blocks inside the Xilinx
Virtex family have built-in hard logic to implement FIFO
functionality [23] with which we can build a ring-buffer to
constantly record signal samples until halted by the trigger.
In the FPGA architecture used, the widest configuration for
each memory block is 72 bits (by 2048 entries) — this is
adopted for our trace-buffers.

Rather than operating on each circuit at their minimum
channel width, we inflate this value by a small amount, 30%,
in order to reflect a realistic commercial architecture in which
routing resources have been over-provisioned above the very
best-case; this is a common approach also taken by other
researchers such as [16]. To perform our experiments, we
use our custom version of VPR to install our trace-buffer
network incrementally — using only the spare resources not
used in the original mapping — in a similar manner to [8].
However, instead of employing these techniques to build a
custom point-to-point network, we have modified them to
build our overlay network whilst preserving the guarantee
that no existing circuit blocks nor routing are moved or re-
routed. We then sweep each circuit to find the maximum
number of times that all circuit signals can be connected to a
different trace-buffer pin, a parameter we refer to as network
connectivity. Once a feasible overlay network is found, we
record the signals connected to each trace-pin into a text file
which is subsequently used for matching at debug-time.

Currently, the VTR flow supports mapping circuits with
only a single clock-domain. However, we believe that our ap-
proach can be extended to those with multiple clock-domains

— given that each trace-buffer can only record signals from a
single domain, we can also build an separate virtual overlay
network to support all trace-buffers from each clock.

7.1 Compile-Time Construction
At compile-time, the virtual overlay network is constructed

once per circuit. The primary challenge in constructing this
overlay network using normal CAD tools is that these tools
are designed to build a circuit mapping where each and every
routing resource can, at most, be used once to connect one
net source to one (or more) net sinks. The proposed network

 Signal A: establish a new connection

A

B

A

B Signal B: share 
existing 

connection

Figure 7: Circuit signals can either establish new trace con-
nections (signal A) or share existing connections (signal B)

requires the reverse of this — we require multiple net sources
to feed (multiplexed) a single trace-buffer sink.

Within VPR 6.0’s routing stage, the PathFinder algorithm
is employed to iteratively resolve routing resources that be-
come overused, by slowly increasing their costs so that only
the most critical nets can afford them, through a process
known as negotiated congestion [12]. The goal of our algo-
rithms is to attempt to connect all circuit signals — both
combination and sequential — to the requested number of
trace-buffer inputs, using a directed-search strategy which
terminates whenever any input is found. However, rather
than directing each net towards its nearest trace-buffer so
that its routing wirelength, and hence any routing conges-
tion, is minimized, we have found experimentally that higher
network connectivity is possible if each circuit signal was
directed towards a randomly chosen trace-buffer. We believe
this is because it is beneficial to establish connections to
trace-buffers that circuit signals would not normally prefer
in order to fully utilize the flexibility provided by as many
trace-pins as possible; this also has the added benefit that
because signals are randomly distributed, higher quality sig-
nal to trace-pin matches, which are explained in the next
section, can be achieved.

Instead of building point-to-point trace connections, where
each routing resource can be used only once, we allow all
Vrouting multiplexers to be overused, with the understand-
ing that their select bits can be determined at debug-time.
During network insertion, circuit signals have two options: ei-
ther they can establish new connection to a new trace-input
(signal A in Fig. 7), or they can branch onto an existing
connection (signal B). A näıve approach would be to force
all signals to always take the latter option whenever a used
Vrouting node is encountered. However, we found that this
made the solution sensitive to the order in which nets were
routed: those processed first would be able to consume all
the resources that suited itself most, with no regard for other
nets, and hence causing all subsequent nets to work-around
those connections. This is not desirable; we need to allow
existing connections to be ripped up and relocated if it will
lead to a globally better solution.
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(b) mcml with 21 connections per signal

Figure 8: Signal fan-in for overlay network — histogram of the number of signals connecting to each input

This is accomplished by modifying the routing cost function
used by the neighbour expansion procedure in the directed
search routing algorithm used to build the network. Although
we do not wish to force nets, when encountering a Vrouting

node that is part of a different connection, to connect to
the same trace-pin, we do wish to make it preferential to do
so in order to minimize the routing search space and hence
runtime. By default, the routing cost function used for all
nodes inside VPR is:

cost = back cost + this cost + astar × expected cost (1)

where back cost is the congestion cost up to the current node,
plus the this cost of the node under consideration, and then
the expected cost to the target scaled by an aggressiveness
factor. Instead, for Vrouting nodes that are already part of
another connection, we omit the expected cost and discount
this cost by the occupancy of the new node, which indicates
how many nets are already using it:

cost′ = back cost +
this cost

node occupancy
(2)

The intuition here is that the more nets that already pass
through this node, the less likely it will be moved in subse-
quent routing iterations, and the more seriously the routing
algorithm should consider it. A lower cost causes the pre-
ferred node to be removed from the heap much sooner than
it would be otherwise, allowing the routing algorithm to
follow the established connection to the trace-pin, yet does
not force the router to take only this path. It must be noted
that the new cost of a node must not take a value less than
its predecessor (by discounting back cost or using a negative
value for this cost) otherwise the tool will enter an infinite
loop in which the cost of each node is endlessly reduced.

7.2 Debug-Time Matching
Given a designer-specified signal selection, we then process

the text file describing the overlay network to build a custom
bipartite graph containing only the desired signals, before
applying the Hopcroft-Karp algorithm (as implemented in [4])
to find a maximum matching. A downstream tool can then
be used to determine which signals to connect to which
trace-pins, and thus compute the routing multiplexer bits
required using a simple greedy algorithm. Subsequently,
these bits can then be statically or dynamically reconfigured
onto the FPGA.

In the absence of a large collection of realistic signal selec-
tions for each of our benchmark circuits, we have evaluated
the feasibility of our work using random signal selections.

Max Comb&Seq. |Vtrace|
Circuit Conn. |Vsignals| Excl. Pins

or1200 15 3483 2 720
mkDelayWorker32B 5 7439 1 72
stereovision1 19 16211 11 3024
stereovision0 20 14937 12 3024
LU8PEEng 8 27657 3 1944
stereovision2 23 46646 - 11088
bgm 22 34966 66 7128
LU32PEEng 11 95026 1 7344
mcml 25 106555 4 17784

Table 3: Maximum network connectivity results

Although automated signal selection as proposed by [11,
10] may be used, these would only generate a handful of
data-points. Instead, we would like to understand how the
trace-buffer network fares for any signal that a designer may
wish to select by using a sufficiently large sample size. For our
experiments, we generated 100,000 signal selections randomly
each at a different fraction of the trace-buffer network’s ca-
pacity: from 0.1 to 1.0 in 0.1 increments. For example, if the
trace-buffer network had a total of 720 input pins as for the
or1200 benchmark, then we randomly generated selections
of 72 signals, 144, up to the full 720 for a total of 1,000,000
signal selections per circuit.

8. RESULTS

8.1 Maximum Network Connectivity
Table 3 shows the maximum network connectivity — the

maximum number of trace-input trees that each signal be-
longs to, the number of circuit signals and trace-buffer in-
puts that exist for each circuit. For all but one of the nine
benchmarks, not every internal signal could be incremen-
tally connected to the trace-buffer network due to routing
congestion. Upon further investigation, we found that only
nets absorbed locally within a logic cluster suffered from this
difficulty, caused by an inability to exit the cluster due to a
lack of free resources in its vicinity. Unlike those nets that
already had a presence on the global interconnect, for these
local nets a new global route needed to be made from scratch
using only the resources leftover from the original mapping.
In very rare cases, this would be impossible. The number of
signals that did fail in this manner are shown in the Excl.
column, and represents at most 0.2% of all available com-
binational and sequential circuit signals. The number of
trace-buffer inputs that exist for each circuit are also shown.
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Figure 9: Average match size — number of arbitrary signals that can be simultaneously forwarded by the overlay network to
trace-buffers; dotted lines indicate the requested number of signals, solid lines indicate the average number of signals matched

As described earlier, this network connectivity parameter
represents the guaranteed minimum number of signals for
which a designer can observe any combination of, though in
practice many more can be selected.

Figure 8a shows a histogram of the signal density at each
trace-buffer input for the mkDelayWorker32B benchmark cir-
cuit, which contains only a single free memory-block to be
reclaimed as a trace-buffer. In this circuit, all but five com-
binational and sequential signals can each be connected to 5
different trace-inputs. It would be expected that, on average,
each input-pin would be connected to 7438×5

72
≈ 517 signals,

though in this particular instance 35 trace-pins exist which
connect less than this value (with a minimum number of 5)
leaving 37 pins which connect 517 or more signals (including
a maximum of 1393 signals — almost 20% of all on-chip
signals). A histogram for the largest circuit at our disposal,
mcml, is produced in Fig. 8b, where it would be expected that
each trace-input would be the target of approximately 126
signals. Here, a smaller proportion (40%) of trace-inputs are
connected to by more than this value, indicating that there
are some trace-buffers which are easier to access (i.e. more
centrally located, as indicated in the histogram which shows
a vertical scan-line ordering across the chip) than others, or
that a tipping point is reached whereby it is cheaper for the
routing tool to create new branches onto existing trees than
to create entirely new trees.

If full observability into all circuits signals was strictly
necessary, it may be possible to achieve this by increasing
the channel width or the cluster output flexibility (Fc out).
We have observed that although increasing the channel width
slack from Wmin+30% to +50% had only a minimal effect on
its network connectivity, in five of the nine benchmarks, all
circuit signals can now be connected to the overlay network,
whilst of the remaining four circuits, at most only 5 signals
were impossible in the worst-case: bgm.

8.2 Average Match Size
Figure 9 shows the average match size returned by the max-

imum matching algorithm, where each data-point represents
a sample size of 100,000 randomly-generated signal selections.
This figure represents the average number of signals that
can be simultaneously forwarded across the overlay network.
The dotted lines of this graph show the number of signals
requested by a designer, whilst the solid lines represent the
average number of signals that can be forwarded across the
network for observation. Where the lines coincide indicate

Figure 10: Network connectivity and match quality for bgm

that a complete-match was made, where the lines diverge
indicate that only partial-match was possible.

In Figure 9a, which corresponds to the mkDelayWorker32B

benchmark, it can be seen that the probability of observing
all of the desired signals decreases after approximately 40% of
the network capacity — that is, after 29 signals are selected
from a total capacity of 72. At full capacity, on average
only 54 of the 72 signals requested can be matched. This is
not a surprising result given the memory-constrained nature
of this circuit, which contains only one free memory-block
available for use as a trace-buffer. As stated in the previous
section, the average number of signals that each trace-pin is
expected to support for the mkDelayWorker32B circuit is 517
of the total 7439 signals; each time a trace-pin is used, 516
other signals are blocked from using this same pin, drastically
reducing the flexibility of the overlay network. In contrast,
the remaining non memory-limited circuits presented in Fig-
ures 9b and 9c show much more promising results: in most
cases, the network can fully connect up to 80–90% of the
trace-buffer capacity before conceding.

Figure 10 graphs how the number of signals observable
through the overlay network varies with the network connec-
tivity parameter, when applied to the bgm circuit. Intuitively,
the more times that each signal is connected to a trace-buffer
input, the less likely it will be blocked when a different signal
is picked. However, these results show that it may not be
necessary to connect each signal as many pins as possible —
reducing this network connectivity parameter to 10 or 15 has
no effect on the signals observable when requesting 90% trace
capacity, and only a 2 or 5% reduction at 100% capacity
when compared with the maximum connectivity value of 22.



(a) Compile-time: total VPR runtime for overlay network
insertion at various connectivities; connectivity=0 represents
baseline with no network or instrumentation

(b) Debug-time: maximum matching runtime, per selection

Figure 11: Runtime overhead

8.3 Runtime
Figure 11a shows the total VPR runtime for building the

overlay network, for each connectivity parameter possible, av-
eraged over 10 tries. An X value of zero indicates the baseline
measurement, which does not include any trace-buffers nor an
overlay network. X values greater than zero specify the total
runtime for the standard CAD stages: packing, placement,
routing, as well as the additional stage of incremental-routing
to embed our overlay network. The difference in runtime
represents the additional overhead of our overlay network;
on average this is a 34% increase on the baseline, and in the
worst-case this reaches 76% for stereovision2. As expected,
runtime increases with the network connectivity value, with
the gradient increasing more rapidly towards the tail-end of
each circuit as it reaches its breaking point. However, it may
not be necessary to push each circuit to this point as Fig-
ure 10 from the previous subsection showed. We anticipate
that with greater focus on optimizing the CAD algorithms,
we can further reduce this overhead.

The runtime for finding a maximum signal to trace-pin
match is charted in Figure 11b — this is the average time
required to recompute a matching network assignment to
support new signal selections. In the worst case, for the
largest mcml benchmark where the full trace-buffer capacity
is requested, a solution can be returned in less than 50 sec-
onds, with the relationship between runtime and the number
of signals requested appearing to be linear. This contrasts
with the time required to either fully or incrementally recom-
pile the circuit to create a new point-to-point trace-buffer
configuration: in the previous figure we observed 30,000 sec-

Original Instrum’ed
Circuit T cpd (ns) T cpd (ns) Change

or1200 21.6 21.9 +1.4%
mkDelayWorker32B 7.4 7.6 +2.7%
stereovision1 5.1 6.1 +19.6%
stereovision0 4.1 5.8 +41.4%
LU8PEEng 134.0 136.0 +1.5%
stereovision2 15.0 16.6 +10.7%
bgm 25.8 27.1 +5.0%
LU32PEEng 134.2 137.4 +2.4%
mcml 96.7 98.7 +2.1%
Geomean 23.6 25.7 +9.0%

Table 4: Effect of overlay network on critical-path delay

onds to fully compile an uninstrumented instance of mcml,
whilst reference [8] stated that approximately 2,000 seconds
was required to incrementally utilize 75% of the on-chip trace
capacity. Matching runtime can be improved further by im-
plementing our techniques in a more efficient programming
language instead of Python.

8.4 Circuit Delay
A comparison of the critical-path delay before and after

inserting our virtual overlay network on each of our bench-
mark circuits is shown in Table 4. Currently, because our
CAD algorithms are routability-driven rather than timing-
driven, on average the network incurs a 9.0% penalty to the
critical delay, with a worst-case of 41.4% for stereovision0

which has the shortest critical-path. We believe that these
results may be a little on the conservative side due to the
nature of the circuits and CAD tools involved, where the
majority of the critical-path delay — between 53% and 89%
(geomean at 72%) — is made up of logic delay rather than
routing delay.

Given that we add our overlay network incrementally, that
is, only after the original user circuit is fully-compiled, the
critical-path delay of the newly instrumented design is due
entirely to the connections added by this network. If the
observability that the trace infrastructure provides is not
required, the circuit can revert to operating at its original,
uninstrumented, clock frequency. During prototyping, how-
ever, it is unlikely that circuits will be operated at this max-
imum frequency, perhaps limited by off-chip (inter-FPGA)
communication and hence timing degradation may not be
a critical issue. Despite this, one promising direction for
future work is to apply pipelining techniques to the overlay
network in order to reduce its effect on delay — a technique
particularly relevant for this application because any increase
in signal latency will not affect its observability.

9. CONCLUSION
FPGAs are increasingly being used as prototyping plat-

forms. Compared to software simulators, these prototypes
can achieve significantly higher operating frequencies allow-
ing designers to increase their verification coverage by several
orders of magnitude. When unexpected or erroneous circuit
behaviour is detected, designers begin a debugging proce-
dure so that they may understand the root cause of their
anomaly. However, the key challenge with debugging FPGA
prototypes is their lack of built-in observability; unlike sim-
ulation, designers cannot simply probe any signal of their
choice. One common solution to this problem is to insert
trace-buffer instrumentation; these blocks seek to record a



small, predetermined subset of signals into on-chip memory
for subsequent analysis.

Existing academic work [8, 6], and many of the current
commercial offerings [24, 1] require a designer to preselect
the signals they wish to observe at compile-time, after which
point-to-point connections are made for each signal to a trace-
buffer. In this work, we have proposed a method which aims
to allow designers to look at any subset of combinational
or sequential signals in their circuit at debug-time, relieving
them of the need to predetermine a selection beforehand. Due
to on-chip memory constraints, it is not possible to make a
dedicated trace connection for each signal; hence, we pass
each signal through an overlay network which multiplexes
these connections between the available trace-buffers, thus
allowing this signal selection to be deferred to debug-time.
Unlike a similar approach adopted in [19], we do not use soft-
logic for this purpose, opting instead to utilize switch- and
connection-box routing multiplexers that form part of the
FPGA fabric. Because we reclaim these routing multiplexers
from those that were leftover in the original circuit mapping,
the area overhead of our work is essentially zero.

Due to routing requirements, it would be impractical to
build a fully-populated crossbar network in which all inputs
can be forwarded to all outputs; hence we build a blocking
network in which only a reduced amount of connectivity
exists. To decide which of the input signals to connect to the
output trace-pins, we apply a maximum matching algorithm
to the bipartite graph that represents our network to find the
optimal solution with the highest number of observed signals.
Once this assignment has been determined, the configuration
memory of those routing multiplexers are reconfigured using
either static or dynamic techniques. Our experiments have
shown that for the majority of the benchmark circuits that
were investigated, we were able to build an overlay network
connecting to over 99.8% of all circuits signals whilst increas-
ing initial CAD runtime by an average of 34%. However,
once this network has been built, it can be reconfigured as
many times as necessary to forward any set of signals through
the overlay network to approximately 80–90% of the on-chip
trace capacity, in no more than 50 seconds.
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