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Abstract—This paper presents a new, open-source method
for FPGA CAD researchers to realize their techniques on real
Xilinx devices. Specifically, we extend the Verilog-To-Routing
(VTR) suite, which includes the VPR place-and-route CAD tool
on which many FPGA innovations have been based, to generate
working Xilinx bitstreams via the Xilinx Design Language
(XDL). Currently, we can faithfully translate VPR’s heteroge-
neous packing and placement results into an exact Xilinx ‘map’
netlist, which is then routed by its ‘par’ tool. We showcase the
utility of this new method with two compelling applications
targeting a 40nm Virtex-6 device: a fair comparison of the
area, delay, and CAD runtime of academia’s state-of-the-art
VTR flow with a commercial, closed-source equivalent, along
with a CAD experiment evaluated using physical measurements
of on-chip power consumption and die temperature, over time.
This extended flow — VTR-to-Bitstream — is released to the
community with the hope that it can enhance existing research
projects as well as unlock new ones.

I. INTRODUCTION

Ever since Versatile Place and Route (VPR) introduced
to the academic community as an open-source project by
Betz and Rose in 1997 [1], a large number of research
groups across the world have since adopted it as the de-
facto FPGA CAD tool on which to base their experiments.
Given a pre-mapped logic netlist, VPR has enabled these
researchers to explore two types of innovations: (1) new,
theoretical FPGA architectures — for example, the structure
of a new logic block, and (2) to experiment with the different
packing, placement and routing algorithms that target these
architectures. In this paper, we provide researchers with the
ability to pursue (2) by allowing their CAD innovations to
be evaluated on real commercial FPGAs with minimal effort,
rather than just using theoretical models.

The latest evolution of VPR, version 6.0, forming part
of the Verilog-To-Routing (VTR) project, unifies a Verilog
synthesis (ODIN II) and tech-mapping (ABC) tool into a
complete flow capable of taking a circuit described in Verilog
all the way through to a place-and-routed FPGA [2]. Enabled
by this new support, this paper extends the Verilog-To-
Routing flow to allow the academic community to generate
high-quality, working bitstreams that can be programmed
onto commercially-available FPGAs. We believe there is
tremendous value in escaping the academic sandbox — up
until now, only closed, proprietary (and costly) CAD tools
could be used to target physical FPGAs. This disconnect is

highlighted in Figure 1, and has a number of disadvantages:
CAD innovations, commonly built upon VPR, that are made
by the research community cannot be applied to real industrial
applications unless adopted by the tool vendors, and there
exists no way to physically validate the models that exist in
VPR given that fabricating a custom FPGA is beyond the
means of most research groups.

Whilst the use-cases for this extended flow are many, in this
paper we explore two of the more prominent questions: how
do the current standard of academic CAD tools compare
to their vendor equivalents when targeting an identical
architecture, and is it possible to physically measure the effect
of CAD innovations? In the first application, because we
are targeting a near-identical architecture that is compatible
with vendor tools, we are able to make much fairer, and
more accurate, comparisons than have been done in the past.
Secondly, given that we are able to realize our circuits on
physical FPGAs, we can now make physical measurements
— we showcase this with a figure-of-merit which is receiving
an increasing amount of attention: power.

In this work, we will be targeting Xilinx devices ex-
clusively through using RapidSmith [3]: a framework for
creating human-readable netlists in the Xilinx Design Lan-
guage (XDL) format that can subsequently be converted
into the proprietary NCD representation native to the vendor
toolchain. There exists no reason why this approach would
not be extensible to devices from other FPGA vendors if the
necessary information is released in the future. An additional,
unique, feature of using Xilinx devices from the Virtex-5
family and above is the presence of a System Monitor block
which allows on-chip measurements of voltage and current
required for power consumption.
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Figure 1: Escaping the Academic Sandbox



Our objective is to enable this flow whilst making the
minimum set of modifications to the vanilla VTR project,
with the intention of providing a pure platform from which
researchers can extend their existing work onto real devices
without requiring a significant effort to port or re-base their
code. Furthermore, by providing a path to bitstream, we are
hopeful that this would invite industry to consider using the
VTR project in their own applications, and perhaps more
importantly, push for and even contribute their own new
features and improvements.

II. RELATED WORK

Perhaps most related to this current work is the Altera
Quartus II University Interface Program (QUIP) [4], which
allows researchers to inject and extract circuits from various
stages in the Quartus II CAD tool. Packed VPR circuits
can be converted into the Verilog Quartus Module (VQM)
format (though no tool currently exists to do so for the latest
hetereogeneous architectures) and manual circuit placement
is only possible through applying placement constraints and
then re-running the Quartus II placer. Currently, to our
knowledge no open-source tool is available to allow VPR 6.0
circuits to be automatically converted into an Altera bitstream
in the way this work does for Xilinx netlists. A previous
foray into opening up Xilinx Virtex-II devices (0.13um)
for research was made by the JHDLBits project [5] — a
combination of JHDL and JBits tools to enable both high-
level parameterized access for Xilinx primitives, as well as
low-level access directly into the FPGA bitstream. Besides
being restricted to targeting an obsolete Virtex-II architecture,
this work does not leverage the timing-driven VPR tool on
which a significant amount of CAD research is based.

More recently, a number of works such as GoAhead
and Torc [6], [7] have been created to aid dynamic partial
reconfiguration research into Xilinx devices using the XDL
interface — allowing users to interact with those FPGAs
in a way that is unsupported by the vendor tools. Torc
provides a high-level interface that allows users to manipulate
circuits at many different levels of the CAD flow — from an
industry-standard EDIF netlist through to a Xilinx bitstream
— but this does not include direct integration with VPR. An
alternative approach to open-access to FPGAs is taken by the
ZUMA project [8], which embeds an “FPGA-on-an-FPGA”
to provide an abstraction layer capable of implementing
the same bitstream on both Xilinx and Altera devices.
Unfortunately, the minimum area overhead of this additional
layer is 40X, impairing the utility of any physical on-chip
measurements of power or temperature.

III. VTR-TO-BITSTREAM

Presently, we utilize the VTR project (version 1.0) to
generate a partial FPGA circuit implementation — a syn-
thesized, packed, and placed netlist — before translating
that result into a proprietary Xilinx format which is then
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Figure 2: Proposed Toolchain

inserted back into the standard Xilinx ISE flow for routing,
timing analysis and bitstream generation. Although VTR and
VPR supports FPGA routing, due to the complex routing
structures that exist in Xilinx FPGAs, we currently omit this
feature and defer this task to the vendor tools. This flow is
illustrated in Figure 2.

The VTR project takes as its inputs an architecture
description (.xml), and a Verilog circuit description. The first
stage, ODIN II, is responsible for parsing and elaborating the
Verilog input into a technology-independent netlist, output
into the BLIF format. This stage is also responsible for
inferring hard multiplier blocks from the HDL ‘*’ operator
as blackbox primitives, as well as converting any instantiated
RAM instances into single-bit primitives consistent with the
provided architecture description.

Next, ABC performs logic optimizations and technology-
mapping on the input BLIF netlist so that all soft-logic
conforms to the maximum lookup-table size supported by
the FPGA architecture. The output of ABC is also a BLIF file.
In order to measure the state-of-the-art, we have checked out
the latest version of ABC toolkit (revision 1291 from [9]) that
supersedes the version packaged with VTR 1.0, and which
enables more aggressive logic optimizations to be performed
(in particular, the construction of functionally-reduced AIGs
for large circuits). Our experiments have shown these to
give a significant improvement to the area and delay of the
final implementation.

The third and final stage of the VTR flow is VPR, which
is responsible for packing each of the LUTs and FFs into a
logic cluster, as well as multipliers and memories into their
most appropriate blocks. During packing, the objective is to
combine as many related logical elements into the same block
as possible, as doing so will reduce the distance that each
net will need to travel (its wirelength) and hence improve
timing. This packed netlist is written to an XML file with
a .net extension. Once all of this logic has been packed,
VPR then places them into legal locations on the FPGA,
again with the objective of reducing the total wirelength of
all nets in the circuit. The final placement is recorded in a
text-based .place format. The tech-mapped .blif netlist,
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Figure 3: VPR Logic Cluster Models

.net packing and .place placement is then fed into our
VTR-to-Bitstream tool. With the aid of RapidSmith [3], these
results are then faithfully translated into a single text-based
Xilinx XDL file which captures all LUT masks taken from the
.blif, their packing and all net connections as described in
the .net, as well as their exact placement sites on the FPGA
from .place. To maintain compatibility with RapidSmith,
our translator tool is built using the Java language.

With this .xdl netlist, the circuit can now enter the
standard Xilinx ISE flow by first converting this text-based
file into the native binary .ncd format by using the Xilinx
xdl tool with the -xdl2ncd switch. The resultant file can
then be provided to the Xilinx par router with the -k switch
to indicate that only routing is to be performed. It is
also worth pointing out here that for Virtex-5 and above
architectures, packing and placement is performed in a
combined fashion at the map stage of the ISE flow, and
can no longer be placed by par. The routed output is then
written to a different .ncd file, which can then be provided
to the bitgen tool to generate a bitstream that can be
programmed onto the device as normal.

A. Modelling the Logic Cluster (CLB)

In this work, we target the Virtex-6 architecture though
no fundamental reason exists why this technique would not
extend to past and future device families; XDL support exists
for the very latest Virtex-7 parts.

Key to the success of the flow illustrated in Fig. 2 is
a detailed VTR architecture description which captures as
many of the advanced features available in the physical
device as possible. Figure 3a shows the default VPR model
for a representative FPGA logic cluster containing N=10
BLEs (Basic Logic Elements), each of which supports a K=6
-input lookup-table which can be fractured into two 5-input

LUTs, each connected to its own dedicated flip-flop with a
multiplexed output. There are I=33 external inputs to each
logic cluster (derived from the rule-of-thumb: I = K

2 (N+1)),
which pass through a fully-populated local-routing crossbar
that allows any crossbar input to connect to any crossbar
output. This input set is also supplemented by a feedback
set made up of all 20 BLE outputs.

In contrast, our own VPR model for the Virtex-6 logic
cluster, which Xilinx calls a CLB, is shown in Figure 3b
and was derived from its user guide [10]. Here, each CLB
is actually divided into two SLICEs, each of which contain
four BLEs. In Xilinx architectures, each SLICE can be a
SLICEM or SLICEL type, with the former capable of also
implementing distributed memory, which are not currently
supported by VTR; hence we treat all SLICEMs as SLICELs
and use them as logic resources only. Each BLE in the Virtex-
6 contains a fracturable 6LUT (with O6 and O5 outputs) and
two FFs, but contains a much more flexible interconnect to
feeds its three outputs: a combinational only output (A), a
sequential output (AQ) and one dual-purpose output (AMUX).
In addition, an extra bypass BLE input (AX) exists to allow
either of the two FFs to be utilized independently of the LUT.
We feel that it is a true testament to the flexibility of the
VTR’s architecture description language that such a complex
structure can be captured without any modifications.

The intra-cluster local routing in our Virtex-6 model is no
longer fully-populated: firstly, the number of external inputs
I=56 — meaning that each BLE input pin can be reached
directly from the global interconnect — doing away with an
input crossbar altogether. Secondly, through careful study and
experimentation, we have been able to discover that each BLE
output can only connect to 6 LUT inputs (and conversely,
each LUT input can only be reached by 3 BLE outputs) —
the exact pattern found on the device is also modelled in our
architecture file. This matches previous research, which found
that fully-populated crossbars are not preferred due to their
large area costs [11]. Lastly, this architecture description is
populated with accurate (worst-case) LUT, CLB, IOB, DSP
and BRAM delays as reported in the Xilinx datasheet [12].

B. Modelling the FPGA Layout

Another area where a disconnect lies between the accepted
academic FPGA model and commercial devices is when
considering the FPGA layout. In VPR, it is assumed that
the I/O blocks of an FPGA device follows its perimeter;
but whilst the number of I/O signals that can be supported
at each site — its capacity — can be adjusted from the
architecture file, its locations cannot be modified. In contrast,
Xilinx devices do not contain any horizontal rows of I/O
blocks along the top and bottom perimeters of the FPGA,
they can however contain multiple columns of I/Os which are
not just constrained to the sides. In the device that we chose
to target, three I/O columns exist: one at the left perimeter,
and two columns in the middle of the device. No I/Os exists



on the right side of the device (instead, the right perimeter
is occupied by PCIe and Ethernet cores) as seen in Figure 4.
We have successfully modified VPR to extend support for
describing I/O columns in the same manner as heterogeneous
blocks (RAM, DSP, etc.).

Besides possessing I/O blocks in different columns across
a device, in the Virtex-6 architecture these blocks can support
two I/O signals per site, but exist only in every-other (odd)
row. Furthermore, not all I/O sites may be bonded — or
connected — for every chip package: as an example, the
LX240T device that we target in this work is available in
the FF784 (with 400 user-accessible pins), FF1156 (600)
and FF1759 (720) package formats. For the FF1156, all I/Os
at and above row 200 are unbonded and hence unavailable
for designer use. In addition, large embedded hard-blocks
— such as CPUs or high-speed I/O cores — may also exist
as exceptions to the uniform device fabric. In our device,
an embedded CPU occupies a 5x80 tile region in the centre
of our device which can be seen in Fig 4b, on top of the
irregular I/O arrangement mentioned earlier. To support these
exceptions, it was necessary to modify the VTR architecture
file so that such regions of the device can be marked as
unavailable during placement.

C. Xilinx Architecture Support

Currently, our extended VTR-to-Bitstream flow supports:
Architecture

1) 6-input Lookup Tables fracturable into two 5-input LUTs
2) Two flip-flops per Basic Logic Element with LUT bypass
3) Global net (BUFG) support for clock distribution

Block RAM
4) Individually fracturable between a 36K or two 18Ks
5) Simple or True dual-port configuration
6) Configurable width/depth, from 1bit*32K to 72bits*512

DSP
7) 25x18 combinational multiplier
Missing from this list is support for carry-chains as

well as distributed LUT-RAM. Primarily, the key barrier
to supporting these advanced features lies with the upstream
VTR project, which currently do not infer these structures
from the HDL circuit description. Similarly, support for
utilizing Block RAM resources as FIFOs, for other DSP
functionality such as Multiply-Accumulate (MAC), barrel-
shifting and pattern matching, as well as high-speed I/O
interfaces are also missing. We believe that if new support
for any of the features discussed were to be added in a future
release of VTR, it would be trivial to extend them to the
bitstream level.

IV. FRAMEWORK

By default, VPR will perform packing and placement (and
routing) with the objective of minimizing area and delay —
in terms of logic blocks, placement wirelength, and routing

channel width — doing so allows designers to benchmark
the quality of their CAD algorithms in terms of these abstract
metrics. However, when targeting an existing device, there is
no flexibility to change the FPGA array size nor the number
of routing tracks that exist.

In this work, we will be targeting the Xilinx Virtex-6
xc6vlx240t-1ffg1156 FPGA device, which is included
on the ML605 Evaluation Kit. This device provides 38,000
slices (152,000 LUTs), 416 (15Mbits) Block RAM resources
and 768 DSP blocks, across a 100x240 tile array. Conve-
niently, the VTR architecture description allows for a fixed
FPGA size to be specified for the device (rather than an
auto-sizing aspect ratio) which was utilized. Targeting a
fixed FPGA size, as opposed to a minimum-sized FPGA,
means that it was not necessary to pack as densely as
possible — as long as the final implementation fits onto the
device. For this reason, when running VPR we have disabled
the default --allow_unrelated_clustering feature,
which otherwise packs each CLB as aggressively as possible
with unrelated logic solely to minimize area, with no apparent
benefits to timing.

Our experiments have shown that whilst keeping this option
enabled reduced the average number of logic slices used
by 18% when packing each CLB with the full 8 LUTs,
it also doubled the placement (bounding box) cost. More
importantly, we discovered that this resulted in only the
smallest benchmark circuit (bgm) being routeable on our
Virtex-6 device (which also does not have the luxury of
adjusting its routing channel width). Hence, we believe that
fully packing each logic cluster in this manner is unrealistic
— this is further reflected in the number of LUTs per slice
(presented later) that the vendor tools themselves return.

For each circuit, we randomly selected a pin location
for each I/O signal and constrained both the VTR and ISE
flows to use the same assignment, to emulate a realistic, but
worst-case, usage scenario. The only signal which was not
randomly placed in this manner was the clock pin, which was
fixed to the “J9” (56,119,1) location containing dedicated
paths to global clock buffer resources (BUFG) [13]. This was
necessary as currently, VPR does not have any understanding
as to where these clock-buffers are positioned on the FPGA,
and so is unable to optimize for this pad location. For our
ISE experiments, we also constrain the circuit to a clock
period of 1 ns in order to force the tools to work as hard as
possible, matching VTR behaviour.

V. APPL. 1: HOW DOES VPR COMPARE WITH ISE?

The first application that we chose to explore using VTR-
to-Bitstream was to answer the question: how does the
current standard of academic CAD tools compare with their
commercial equivalents? Rather than intend this to be an
apples-to-apples competition, we see this as an opportunity
for the academic community to learn from robust industrial-
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strength tools in order to identify broad areas on which future
improvement and research efforts should be focused.

For the initial step, we visualized how the placement of
a Verilog circuit input into the VTR flow differed from the
same Verilog fed into the Xilinx flow. Figure 4a shows the
placement generated by Xilinx ISE, when exported from
Xilinx FPGA Editor, whilst Fig. 4b visualizes the VPR
placement as displayed in its GUI. Lastly, Figure 4c shows
the same VPR result after it has been translated into XDL
and then .ncd, as viewed again from Xilinx FPGA Editor.
In all cases, we have only re-coloured, re-ordered and/or
changed the opacity of these figures to enhance their clarity.

Interestingly, the VPR placement looks vastly different to
the ISE placement both in terms of the number of blocks
utilized (this is quantified as being 15% more in the results
that follow) as well as in routing complexity (34% more
routing resources). At first glance, this result suggests that ISE
employs a more efficient high-level synthesis engine (which
is able to reduce the number of global nets) as well as a
more effective placement algorithm, which is able to produce
a more compact rat’s nest visualization. ISE’s disjointed
placement result also supports the assertion that analytical
placement techniques are used [14], which differ from the
simulated annealing approach taken by VPR.

Next, we compared key metrics between the two flows:
Table I shows the circuit quality between VTR-to-Bitstream
and Xilinx ISE for the four largest circuits supplied in
the VTR project, which occupies between 14–51% of our
LX240T FPGA device. Each circuit is represented by four
columns: “ISE” which represents a run of ISE at its default
settings, “ISE--” which represents an intentionally crippled
run where advanced features were disabled in order to make
for a fairer comparison, “VTR” for the VTR-to-Bitstream
flow, and a final “%” column which provides some context
for how much of the total device resources were consumed
by VTR. For “ISE--”, the tool was configured to match the
VTR flow as closely as possible: optimize for minimum area,
disable inference for carry-chains, shift-registers and FSM
extraction, as well as resource-sharing, global net promotion
and multiplexer-extraction. Comparison between VTR and
ISE is made in the final two columns, where the geometric
mean of their ratios are presented.

A number of key trends are visible in these results. Firstly,
in three of four cases, VTR uses more logic than default ISE
(on average 1.3X more slices and 1.6X more LUTs) and in
two cases more than ISE-- too (1.01X slices, 1.4X LUTs). We
believe that this is due to a more mature HDL front-end that
can optimize logic more efficiently, as well as original ISE’s
support for advanced architectural features. The increase in



bgm stereovision2 mcml LU32PEEng VTR/ VTR/
Metric ISE ISE-- VTR % ISE ISE-- VTR % ISE ISE-- VTR % ISE ISE-- VTR % ISE ISE--
Slices 6245 6922 5338 14 2400 3513 6631 17 13761 15388 15838 42 19585 27430 19406 51 1.28 1.01
LUTs 15406 19149 18234 12 5358 4867 18452 12 46324 52603 59583 39 50639 72417 62591 41 1.60 1.37
+ O5 and O6 1510 2241 3521 731 1517 8707 19592 9716 34333 10719 10013 14058 2.83 2.59
LUTs per Slice 2.5 2.8 3.4 2.2 1.4 2.8 3.4 3.4 3.8 2.6 2.6 3.2 1.24 1.35
Registers 6362 6319 3705 1 9420 11130 16764 5 18724 50058 50177 16 14777 16509 19656 6 1.39 1.01
RAMB36 - - - - - - - - 159 159 124 29 147 147 - - 1 1RAMB18 - - - - - - - - - - 70 8 6 6 300 36
DSP48 22 22 22 2 480 474 564 73 106 106 176 22 64 64 64 8 1.18 1.19
BUFG 16 1 1 1 1 1 3 1 1 1 1 1 0.38 1
IOB 289 48 331 55 69 11 216 31 - -
map time (s) 317 294 - 454 475 - 1417 1914 - 1317 1826 - - -
map mem (MB) 947 970 - 1373 1394 - 1939 2262 - 1862 2168 - - -
VPR time (s) - - 1728 - - 2570 - - 25856 - - 15757 9.06 7.80
VPR mem (MB) - - 2558 - - 2758 - - 3717 - - 3882 2.16 1.98
par time (s) 307 384 225 410 450 244 640 856 1075 740 854 787 0.94 0.78
par mem (MB) 1027 1060 1024 1479 1488 1199 1875 2039 2159 1833 2110 1806 0.98 0.92
Routing PIPs 391K 481K 401K 306K 314K 601K 1012K 1257K 1359K 1403K 1921K 1591K 1.32 1.09
Logic depth 14 22 25 6 15 13 52 113 133 84 190 133 1.99 0.95
T crit (ns) 7.75 9.80 19.61 15.4 15.81 16.42 30.08 57.96 101.58 48.37 85.87 101.07 2.09 1.44
% Routing Delay 74.4 78.1 71.4 7.6 27.8 87.0 55.8 80.1 80.2 70.7 81.2 87.0 2.10 1.32

Table I: VTR and Xilinx ISE comparison for Virtex-6 — “ISE--” column indicates a crippled instance for fairer comparison

the number of LUTs used is less than the number of slices
due to a large proportion of the logic generated by VTR
being combined into fracturable LUTs: 2.8X and 2.6X more
LUTs with both inputs (O5 and O6 entry) utilized for ISE
and ISE--. Equally interesting is that on average, VTR packs
more logic into each slice than either of the two vendor flows
— 1.2X and 1.4X — even though ISE-- is also optimizing
for minimum area. In terms of heterogeneous blocks, VTR
infers the same number of RAMB blocks (when considering
that each RAMB36 component can be fractured into two
RAMB18s) but approximately 1.2X more DSPs are used
than for ISE.

The following row of results compare the CPU and memory
requirements of the three flows. We have omitted the smaller
runtimes for the front-end of each flow (xst, ngdbuild for
ISE, and ODIN II and ABC for VTR) and concentrated on
comparing Xilinx’s map tool with VPR — both of which are
responsible for packing and placing the circuit. We translate
the VPR outputs into the .ncd format, after which both
placed results are then routed using Xilinx’s par tool. We
provide the CPU runtime and peak memory usage for all three
tools (measured using the /usr/bin/time tool, when run
on an Intel Core 2 Quad 2.8 GHz workstation with 8 GB
of RAM. Also reported are the number of routing PIPs
(resources) that each routed circuit mapping uses — we
present this as a very rough estimate for routing resource
utilization. These results show that VPR is up to 9X slower
than map, and consumes ∼2X more memory. Interestingly,
when the subsequent par routing stage is considered, VPR’s
placement result is perhaps even slightly easier to route than
for the Xilinx solutions. Furthermore, the number of PIP
routing resources required to implement the VPR result is
only a fraction more than for the vendor tool; however, a
strong correlation with logic utilization exists.

Lastly, the critical-path logic depth and delay are presented.
Here, we see a clear difference in the quality of the two
flows: VTR is on average 2.1X slower than ISE, and 1.4X
slower than ISE--. When compared to full ISE, VTR circuits
have twice the critical-path logic depth, which we believe
can be attributed to advanced architectural features such as
carry-chains. A fairer comparison can be made with ISE--
where many of these features are disabled; here, even though
the logic depth is approximately the same, the circuits are
still much slower. Given that the logic/routing proportion
of delay is similar between the ISE-- and VTR flows, we
can conclude that the packing and placement algorithms in
VPR are not as efficient as those in commercial tools, which
we expect to be highly-tuned and possess more complete
information for their particular architecture.

VI. APPL. 2: MEASURING PHYSICAL POWER

A second application that being able to program real
FPGAs unlocks is the ability to measure physical power
draw of circuits. Xilinx devices from the Virtex-5 family
and above contain a System Monitor block, built around
an Analog-to-Digital Converter, which allows physical on-
chip operating parameters, such as power supply voltages
and die temperature, to be acquired [15]. Given that VTR-to-
Bitstream allows the CAD tools which target physical FPGAs
to be modified, we can now accurately evaluate the effect of
power-optimizations, as opposed to just using models.

Typically, CAD researchers will use a flexible power model
(such as one described in [16]) to evaluate the effects of
their algorithmic innovations [17]. However, such vector-
less power models can be inaccurate — reference [16]
reported over-estimating the power of LUTs and under-
estimating switch-boxes, which may result in misleading
conclusions. In these situations, it would be desirable to
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Figure 5: FPGA physical on-chip measurements — (above) power consumption, (below) die temperature

validate any conclusions found with experimentally derived
physical measurements; Wilton et al. do so by experimentally
quantifying the impact of pipelining on FPGA power in [18].

In this work, we seek to measure the power profile, over
time, of the large LU32PEEng benchmark circuit both before
and after applying CAD optimizations when mapped onto the
Xilinx Virtex-6 device found on the ML605. In the absence of
a large, highly-pipelined benchmark, like reference [18] we
forcibly pipeline a circuit by inserting a flip-flop at the output
to every lookup-table (thereby changing the functionality of
the circuit, but maintaining its logic characteristics somewhat)
in order to boost its maximum clock frequency, as estimated
by static timing analysis, from 9 MHz to over 80 MHz (where
routing delay now dominates) and also stimulate the data
inputs of the circuit using vectors driven by a linear feedback
shift-register, which were verified to activate the circuit in
simulation. Due to these low-level circuit modifications in
VPR, we are unable to extract the identically pipelined circuit
to re-insert into ISE for a fair comparison; this remains a
topic for future work. In contrast to [18], due to architectural
support we are now able to report true device-level static
and dynamic power measurements, as opposed to board-level
values. Additionally, we are evaluating a modern, high-end
40nm FPGA, for which the balance of static and dynamic
power has shifted since the 0.13um device used previously.

Figure 5 shows on-chip measurements for power con-
sumption and die temperature, as acquired using the built-in
System Monitor block and logged using Xilinx ChipScope
software. The exact same pipelined LU32PEEng (BLIF)
circuit was used, but with and without a simplistic power-
guided CAD optimization. These results show a profile of
both metrics over time, during which we dynamically alter

the circuit’s clock frequency by using the on-chip MMCM
clock manager and dedicated clock multiplexing resources
to re-synthesize a 200 MHz reference, thereby emulating a
processing unit adapting to a varying workload. In this work,
we seek only to showcase the utility of being able to evaluate
such applications when real bitstreams can be generated,
therefore our CAD optimization is simplistic in that it merely
considers the activity of each affected net (as estimated using
ACE 2.0 [16]) during clustering and placement costing by
giving high activity blocks more criticality. The results show
a small, but noticeable, 3% power saving at 80 MHz, which
correlates with the die temperature. We anticipate that, with
more advanced CAD optimizations, further power savings
can be measured.

VII. FUTURE WORK AND CHALLENGES AHEAD

The current status of this VTR-to-Bitstream project is that,
due to its complexity, routing is deferred to proprietary Xilinx
tools. Supporting this final stage would allow researchers
to test new routing algorithms and perform experiments
across the entire FPGA CAD flow. One of the key challenges
with this task is that VPR is unable to model the intricate
global routing architecture present on Xilinx devices. For
example, Virtex-6 switch boxes contain a diverse mix of
short, medium and long routing tracks, some of which
are allowed to connect directly to CLB inputs, whilst
others can only be used for turning. In addition, flexible
“bounce” points exist to allow routing tracks, as well as
CLB input and feedback connections, to make indirect
connections. These cannot be modelled by the scalable,
but homogeneous, routing architecture supported currently.
We believe this would be possible if newer versions of
VPR allowed this routing architecture to be described with



the same flexibility as its logic blocks. This would then
enable applications which require low-level access to routing
resources: [19] proposes that circuits be rapidly re-compiled
using incremental techniques for debug insertion.

In this paper, we used the xdl tool to perform “xdl2ncd”
translation — however, a reverse path “ncd2xdl” also exists.
This feature would allow users to decode binary Xilinx
netlists in order leverage ISE’s front-end, such as its HDL
synthesis engine, or its packing or placement algorithms
for further research. Lastly, whilst we have been able to
verify that the VTR-to-Bitstream flow functions correctly
from end-to-end for small circuits (for example, a state
machine which drives an LED display according to the
switches on our ML605 board) we would like to extensively
verify much larger circuits. This would be possible by using
post-synthesis (gate-level) simulation, or by using formal
verification techniques, both of which can be enabled by the
netgen tool that is provided by Xilinx ISE.

VIII. CONCLUSION

FPGA CAD research has typically been conducted using
open-source academic tools, such as VPR and VTR, which
allow designers to apply their innovations to theoretical FPGA
architectures. This work proposes an alternative: rather than
evaluating these improvements using only the models present
in those tools, the VTR-to-Bitstream extension presented in
this paper allows researchers to validate their work on real,
commercial devices on which physical measurements can be
taken. Unlike previous work which allows a path to bitstream,
our work is built on top of the de-facto VTR flow with only
a minimal set of modifications, lowering the barrier to entry.
Currently, the project is capable of exporting a packed and
placed (but unrouted) circuit from the Verilog input fed into
VTR, which can then be imported into Xilinx ISE flow for
routing, timing analysis, and bitstream generation.

We have showcased the utility of this project with two
compelling applications: firstly, a comparison of the existing
VTR flow with its commercial equivalent, Xilinx ISE. Results
showed that VTR produced circuits that were competitive
with ISE when comparing their area utilization, but was ∼2X
slower for delay. Analysis indicates that this discrepancy
is due to several unsupported architecture features, such as
carry-chains, as well as more efficient (and highly-tuned)
CAD algorithms. Our second example application was to
physically measure the on-chip power consumption and die
temperature of the FPGA, for the same circuit with and
without a simplistic CAD power optimization added to VTR;
measured results showed that when enabled, a 3% power
and 0.5◦C temperature reduction was achieved.

We hope that the research community will find this project
useful in their own work, and encourage interested parties
to download the VPR-XDL translator tool, the VPR patch
and the Xilinx architecture file used in this work from:
http://ece.ubc.ca/∼eddieh.
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