
ELEX 7860 : Wireless System Design
2021 Winter Term

Introduction to Coding

Coding

The term coding has three different meanings when
used in communication systems:

Source Coding Often called “compression,” source
coding attempts to reduce the data rate to more
closely match the information rate by removing
redundancy. This reduces the complexity of the
remainder of the communication system.

Security Techniques such as signatures and encryp-
tion can be used to ensure the integrity, authen-
ticity and the privacy of the information being
transmitted over the channel.

Channel Coding Used to detect and correct errors
introduced by the channel.

The first two are typically covered in courses in signal
processing and data communications respectively. In
this course wewill concentrate on the thirdmeaning.

Parity

Another technique for detecting errors in received
frames is for the transmitter to compute one or more
bits called “parity bits” and append them to the
frame. The receiver computes the parity bits itself
from the received data and compares them to the re-
ceived parity bits. If the computed and received par-
ity bits match then either there were no errors or the
received bits were corrupted in such a way the re-
ceived parity bits are valid for the received data.
The probability of the latter event is called the un-

detected error probability. Good error detecting codes
try to make this probability as low as possible.

Single Parity Bits

The simplest type of parity is a single parity bit. Typi-
cally the parity bit is computed as the modulo-2 sum
of all of the bits in the message.

Exercise 1: What is a modulo-2 sum? What is the modulo-2 sum of

1, 0 and 1? What is the modulo-2 sum if the number of 1’s is an even

number?

The modulo-2 sum can be easily computed as the
exclusive-or (XOR) of the bits.
A common use of a single parity bit is a parity bit

added to each ASCII character. Most serial interfaces
can be configured to compute and append a parity bit
to each ASCII character. This bit can be either the
sum of all of the bits (“even parity”) or it’s comple-
ment (“odd parity”).
The receiver computes the parity bit from the data

bits and compares the computed parity bit to the
transmitted parity bit. If the computed and received
parity bits match then there was either no error or
there were an even number of errors.

Block Codes

More complex channel codes usemultiple parity bits.
Each parity bit is computed from a different subset of
data bits. This makes the code more “powerful” in
the sense that it can detect (and potentially correct)
more errors.
A block code where each block of 𝑛 bits contains 𝑘

data bits is called an (𝑛, 𝑘) code:

data CRC

k n−k

k

Note that an (𝑛, 𝑘) code contains 𝑛 − 𝑘 parity bits.
A “code” is defined by the set of all possible 𝑛-bit

codewords.
Exercise 2: A (5,3) code computes the two parity bits as: 𝑝0 = 𝑑0⊕
𝑑1 and 𝑝1 = 𝑑1 ⊕ 𝑑2 where 𝑑𝑖 is the 𝑖’th data bit. What codeword

is transmitted when the data bits are (𝑑0, 𝑑1, 𝑑2) = (0, 0, 1)? How

many different codewords are there in the code? What are the first

four codewords? In general, how many codewords are there for an

(𝑛, 𝑘) code?

lec6.tex 1 2021-02-15 22:28



Hamming Distance

TheHamming Distance, 𝐷, is the number of bits that
differ between two code words.
The performance of a particular code is mainly

determined by the minimum (Hamming) distance
(𝐷𝑚𝑖𝑛) between any two code words in the code.
Exercise 3: What is the Hamming distance between the codewords

11100 and 11011? What is the minimum distance of a code with the

four codewords 0111, 1011, 1101, 1110?

Code Rate

The rate of a code is the ratio of information bits to
total bits, or 𝑘/𝑛. This is ameasure of the efficiency of
the code. Aswe addparity bits the code rate decreases
but, for a well-designed code, the minimum distance
and thus the error-correcting ability increases.
Exercise 4: What is the code rate of a code with 4 codewords each

of which is 4 bits long? Hint: If a code has 2𝑘 codewords, what is 𝑘?.
Exercise 5: The data rate over the channel is 50 Mb/s; a rate 1/2

code is used. What is the throughput?

Codewords as Polynomials

Polynomials in GF(2)

A Galois field, denoted as 𝐺𝐹(𝑞), is a set of integers
and two operations that have certain properties. One
of the properties is closure – the result of any opera-
tion on two elements of the field is also in the field.
For example, 𝐺𝐹(2) includes two integers (0 and

1) and the addition andmultiplication operations are
defined as addition andmultiplicationwith the result
taken modulo-2.
Exercise 6: Write the addition and multiplication tables for𝐺𝐹(2).
What logic function can be used to implement modulo-2 addition?

Modulo-2 multiplication?

Instead of representing messages as a sequence of
bits we can also represent codewords as polynomials
with coefficients from 𝐺𝐹(2). For example, the poly-
nomial:

1𝑥3 + 0𝑥2 + 1𝑥1 + 1𝑥0 = 𝑥3 + 𝑥1 + 1

can be used to represent the codeword 1011.
Exercise 7: What is the polynomial representation of the codeword

01101?

Polynomial arithmetic allows for a simple descrip-
tion of various operations on codewords.

Note that it is the coefficients of the polynomial
that are important. The polynomial itself is never
evaluated and the variable 𝑥 is a dummy variable.
These polynomials can thus also be viewed as binary
numbers or bit strings where the order of each term
indicates the bit position.

Polynomial Arithmetic

We can add, subtract, multiply and divide poly-
nomials with coefficients in GF(2). These opera-
tions are the basis for some useful communication-
related functions including convolutional codes for
FEC (Forward Error Correction), CRCs (Cyclic Re-
dundancy Checks), and PRBS (Pseudo-Random Bit
Sequence) generators.
Exercise 8: What is the result of multiplying 𝑥2 + 1 by 𝑥3 + 𝑥 if

the coefficients are regular integers? If the coefficients are values in

𝐺𝐹(2)? Which result can be represented as a bit sequence?

Cyclic Redundancy Checks

A Cyclic Redundancy Check (CRC) is a code used to
detect errors in a sequence of 𝑘 data bits. A “code-
word” of 𝑛 bits is transmitted for each 𝑘 data bits. The
length of the CRC is thus 𝑛 − 𝑘.
The algorithm used to compute the CRC is as fol-

lows:
The data to be transmitted, treated as a polynomial,

is multiplied by the polynomial 𝑥𝑛−𝑘. This increases
the order of each term by 𝑛 − 𝑘 (or equivalently, ap-
pends 𝑛−𝑘 zero bits). This new polynomial,𝑀(𝑥), is
divided by a generator polynomial, 𝐺(𝑥)1. The result
is a quotient and a remainder:

𝑀(𝑥)
𝐺(𝑥) = 𝑄(𝑥) remainder𝑅(𝑥)

We then replace the last 𝑛 − 𝑘 bits of𝑀(𝑥) (which
were zero due to us having multiplied by 𝑥𝑛−𝑘) with
𝑅(𝑥). This is equivalent to adding (or subtracting
since polynomial addition and subtraction are the
same for coefficients in GF(2)) 𝑅(𝑥) from𝑀(𝑥). This
ensures that the new polynomial will be divisible by
𝐺(𝑥).
Note that 𝑛−𝑘 is one less than the number of terms

in 𝐺(𝑥) since the remainder is always less then the
1Generator polynomials “generate” other codewords, in this

case the CRC.

2



divisor. If we number the terms by the order of 𝑥,
then the highest order term will be 𝑥𝑛−𝑘.
The receiver carries out the same polynomial di-

vision operation on the combination of the message
bits andCRC. If the remainder is not zero then at least
one of the bits must have changed and an error has
been detected.

Computing the CRC

Computing the CRC requires polynomial division.
The process involves repeated subtraction of the gen-
erator polynomial from themessage polynomial. Un-
like regular division, to compute the CRC we only
need to compute the remainder.
Exercise 9: If the generator polynomial is 𝐺(𝑥) = 𝑥3 + 𝑥 + 1
and the data to be protected is 1001, what are 𝑛−𝑘,𝑀(𝑥) and the

CRC? Check your result. Invert any one to three bits of the message

and compute the remainder again. Add the generator polynomial, or

a shift of it, to the message and compute the CRC again.

Acircuit to perform the division of the polynomials
can be implemented using a shift register that holds
the result of the intermediate remainder after each
subtraction. The shift register only has to hold (𝑛−𝑘)
bits.

Digital Implementation of Polynomial Arithmetic

Arithmetic on polynomials with 𝐺𝐹(2) coefficients
can be implemented with simple digital logic cir-
cuits. Flip-flops, organized as shift registers, store the
bits of the message (coefficients equal to 1 or 0) and
XOR gates compute modulo-2 addition. The bits cor-
responding to codeword(s)/message(s) can be input
and output sequentially, bit by bit, into the circuits.
It’s much simpler to do arithmetic using polyno-

mials in GF(2) than using regular integers because
we do not need to compute carries when computing
results.
A circuit which can compute the CRC for the 4-bit

generator polynomial in the example above is shown
below:

DQ DQ DQ

clock

data (MSB first)

1 1 10

The shift register bits are initialized to zero so that
the first 𝑛 − 𝑘 (data) bits are loaded unchanged. At

each subsequent step in the division the generator
polynomial is subtracted by the xor gates from the in-
termediate remainder in the shift register if the left-
most bit is 1, otherwise the intermediate remainder
is unchanged. After a total of 𝑛 clock cycles the shift
register holds the 𝑛 − 𝑘 bits of the final remainder,
𝑅(𝑥). This is shifted out at the transmitter (as an ap-
pended CRC) or checked (for zero) at the receiver.

Checking the CRC

At the receiver the same circuit can be used to divide
the received message and the appended remainder
polynomial by the generator polynomial. If the re-
mainder is zero then the received polynomial must
be a multiple of the generator polynomial. This is al-
ways the case when we subtract the remainder 𝑅(𝑥)
from the message polynomial. Therefore if the re-
mainder in the shift register is non-zero then there
must have been an error.

CRC Error Detection Performance

CRC error detection will fail only if the error pattern
is a multiple of 𝐺(𝑥).
If all the errors are located within an “error burst”

of length 𝑛 − 𝑘 then the error pattern cannot be a
multiple of 𝐺(𝑥) and is guaranteed to be detected.
However, the CRCwill also detect most longer bursts
since they are unlikely to be a multiple of 𝐺(𝑥).
Exercise 10: Is a 32-bit CRC guaranteed to detect 30 consecutive

errors? How about 30 errors evenly distributed within the message?

A common situation is where the received bits
are completely random (e.g. noise being detected as
data). In this case the probability of not detecting
an error is the probability that a random sequence of
𝑛 − 𝑘 bits matches the required checksum.
Exercise 11: What is the probability that a CRC of length 𝑛−𝑘 bits

will be the correct CRC for a randomly-chosen codeword? Assum-

ing random data, what is the undetected error probability for a 16-bit

CRC? For a 32-bit CRC?

Detecting Added/Deleted Zero Bits

We can add or remove any number of leading ze-
ros coefficients to𝑀(𝑥) without affecting its value or
the CRC. To allow the CRC to detect missing/added
leading zero bits, most implementations require that

3



some initial data bits (typically the first 𝑛−𝑘) be com-
plemented.
Similarly, appending or deleting zeros to the end of

the message will also result in a zero remainder. We
can avoid this problem by complementing the CRC
before sending it. This generates a non-zero remain-
der but the value will be a specific value (the same for
all messages) if there are no errors.
Another way to detect missing/added leading/-

trailing zero bits is to include the length of the mes-
sage in the CRC computation.

Standard CRC Generator Polynomials

There are several CRCgenerator polynomials in com-
mon use. The most common lengths are 16 and 32
bits since these are multiples of 8 bits. All(?) IEEE
802 standards use the same 32-bit CRC polynomial
typically called “CRC-32”. The ITU has defined a
16-bit CRC generator polynomial (“CRC-16-CCITT”)
that is also used in various standards.

4


	Coding 
	Parity 
	Single Parity Bits 

	Block Codes 
	Codewords as Polynomials 
	Polynomials in GF(2) 
	Polynomial Arithmetic 

	Cyclic Redundancy Checks 
	Computing the CRC 
	Digital Implementation of Polynomial Arithmetic 
	Checking the CRC 
	CRC Error Detection Performance 
	Detecting Added/Deleted Zero Bits 
	Standard CRC Generator Polynomials 


