
ELEX 7860 : Wireless System Design
2021 Winter Term

Internet of Things

Introduction

In this lab you will use a TI (Texas Instruments)
CC3200 Wireless SoC (System on a Chip) microcon-
troller to create a IoT (“Internet of Things”) device
that publishes the RSSI (Received Signal Strength
Indication) to a server using the MQTT (Message
Queueing Telemetry Transport) protocol.

IoT

The decreasing cost of IC technology is making it fea-
sible to add networking, typically wireless, to rela-
tively low-cost devices such as appliances, lighting,
sensors (e.g. thermostats), and many other devices.
This has been termed the “Internet of Things” (IoT).
This lab is solely concerned with a study of a typ-

ical IoT implementation. However, it should be un-
derstood that connecting these devices to the Internet
raises important questions of security, safety, reliabil-
ity and privacy.

TI CC3200 Microcontroller

The TI CC3200 is a typical microcontroller. It in-
cludes an ARM Cortex M4 CPU, embedded SRAM,
flash-erasable ROM, GPIO and serial interfaces to
peripheral ICs. To support its target market of
battery-operated devices it also has advanced power-
management features such as integrated switching
regulators and a 𝜇A-level sleep modes.
The CC3200 is also a wireless SoC – a combina-

tion of an application processor and a wireless in-
terface. The IC includes an independent processor
with its own memory and peripherals to handle the
TCP/IP and 802.11 (“WiFi”) protocols and the inte-
grated 802.11b/g/n (WiFi) transceiver.
Another example of a wireless SoC is the Espres-

sif ESP8266 that is priced at about $1 (the CC3200 is
about $5).

Arduino and Energia

The Arduino project was designed to help students
learn about microprocessors and programming. The
project includes a simple IDE (integrated develop-
ment environment) that cross-compiles a program
(called a “Sketch”) written in a subset of C++ on a
host and downloads it to an Atmel AVR microcon-
troller. Arduino includes libraries (called “Wiring”)
to abstract and simplify interfacing to common pe-
ripherals.
The Energia project extends Arduino to TI micro-

controllers.
Arduino and Energia are meant for educational

purposes. Larger projects typically use command-
line tools (make, cc, git, ...) that operate on files.
These tools allow building and testing to be auto-
mated by scripting and allow different vendors’ tools
to be used together.

MQTT

MQTT is a simpler alternative to the ubiquitous
HTTP protocol. MQTT was designed for efficient
transfer of small amounts of data to and from IoT de-
vices. A client device can “publish” data by connect-
ing to a “broker” server over TCP port 1883 and send-
ing a “topic” and associated data. Client devices that
have “subscribed” to these topics will then receive a
copy of the data.
A message’s “topic” is a string similar to a file sys-

tempath. In order to communicate, two devicesmust
agree on the broker to use, the topic name(s) and the
semantics and syntax (e.g. text, XML, JSON,…) of the
content.
A broker typically distributes messages as soon as

they are received. However, it’s possible for clients
to subscribe to a topic in a “persistent session” which
allows them to connect to the broker intermittently.
Although the MQTT protocol is relatively simple,

there are more details than can be covered here. For
example, messages can be exchanged with differ-
ent levels of reliability (QoS, Quality of Service) and
mechanism are available to queue messages for de-

lab5.tex 1 2021-03-25 23:27

vices that are not connected or to generate notifica-
tions for devices that disappear.
Brokers allow devices to stay in sleep mode except

when they need to communicate. This is important
for battery-powered devices. In addition, much of the
cost and complexity (e.g. authorization) can be cen-
tralized and shared among many devices.
Security is not part ofMQTT. It can be provided by,

for example, using TLS for encryption and signatures
for authentication.
There are many public MQTT brokers you can use

for testing (but not for this lab!) and many MQTT
brokers that run on systems ranging from routers to
“cloud”-based services.

Procedure

Install Energia, CC3200 Support and Host Drivers

The Energia IDE is probably already installed. If not,
download and unzip the Energia IDE to a convenient
location1. If you are working on a lab PC this will
probably be somewhere on the D: drive
A BSP (Board Support Package) is a set of config-

uration files and libraries that support a specific mi-
crocontroller and peripherals. Typically this includes
boot code that initializes the processor and memory.
A BSPmay also include libraries to provide interfaces
to peripherals.
The CC3200 BSP can be installed by running the

Energia IDE installed above and selecting Tools /
Board: / Boards Manager and then selecting
the Install button in the “Energia CC3200 boards”
section. Note that on Windows this installs the
BSP to /Users/.../AppData/Local/Energia15
instead of the location where Energia was installed.
You may also have to install OS drivers2. These

make the CC3200 board’s USB interface appear as a
serial port on the host to allow uploading code and
for use as a virtual serial port.

Hardware

Your instructor has already plugged the CC3200
board into a USB port and configured the jumpers for

1It may already be available on the J_ELEX_3521 folder
linked from the D: drive.

2You do not have to do this if Device Manager shows a
“CC3200LP Dual Port” COM port under “Ports (COM and LPT)”

you:

Build and Run a Hello World Program

It is suggested you first build and run a simple ex-
ample to ensure the software and hardware are con-
figured correctly. The following program will print
“Hello, world!” once per second:

void setup() { Serial.begin(9600); }

void loop() {
Serial.println("Hello, world!");
delay(1000);

}

Start Energia3 and under the Tools menu select:

• Board: CC3200-LAUNCHXL

• Port: the serial port that’s connected to the
CC3200 board (check the Ports section in Win-
dows’ Device Manager if you’re not sure).

• Programmer: dslite

Select File/New, enter the code above and
File/Save As... to save an Ardu.ino file.
Select Sketch/Verify/Compile (control-R) to

compile the code (there may be warnings).
Select Sketch/Upload (control-U) to Upload the

program to the CC3200’s flash memory.
Select Tools/Serial Monitor to open a window

to display the output from themicrocontroller’s serial
port. You should see the “Hello, world!” message dis-
played once per second.

3Do not use the Arduino IDE on the PC – it does not support
the CC3200.

2

https://github.com/mqtt/mqtt.github.io/wiki/public_brokers
https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations
https://en.wikipedia.org/wiki/Comparison_of_MQTT_implementations
http://energia.nu/download/
http://energia.nu/guide/install/windows/

Add an MQTT Publisher

Save your code under a new name and add MQTT
client code that does the following in the setup()
function:

• connects over WiFi using the network name
(ESSID) elex7860 and the WiFi password
lab4-iot4

and the following in the loop() function:

• creates a TCP connection to the host
test.mosquitto.org (note the spelling!)
at port 1883

• creates an MQTT connection

• publishes a message using the (case-sensitive)
topic elex7860/<secret> where <secret> is a
unique string given to you by the instructor. The
data should be an integer (probably negative)
containing the current RSSI in dBm.

• calls the yield(2000) method of the MQTT
client object. Since you are not subscribed to any
topics this will simply result in a delay of 2 sec-
onds.

• disconnects the MQTT connection

• disconnects the TCP connection

A <secret> is used rather than your name or ID
because everything uploaded to this broker is public
and can be read by anyone.
Compile, fix any errors and run the code on the

CC3200. The instructor will display the messages
being received by the broker. Inform the instructor
when you see your topic being displayed so that you
can get credit for completing the lab.

Lab Report

Your lab report should contain the code you used to
publish your secret and a screen capture of the serial
output showing the RSSI values. Re-run you code
and capture the initial portion showing the connec-
tion to WiFi access point and the initial RSSI trans-
missions.

4TheEnergia networking libraries do not support theEAP au-
thentication required by BCIT’s wireless network so a WiFi ac-
cess point has been set up during the lab for your use.

Appendix - Eclipse Paho MQTT C++ Client

The Energia CC3200 libraries include a C++ MQTT
client library. This library was adapted from the
Eclipse Paho project for embedded systems. The doc-
umentation is sparse; the best is probably that pub-
lished by the mbed RTOS project.
The Energia WiFi library is based on the Ether-

net library. Both are similar to the corresponding Ar-
duino libraries.
An incomplete program is provided below to re-

duce the time required to get your code working. It
does not include (intentional) logic errors so it should
be sufficient to read through the code, fix syntax er-
rors and modify it to meet the above requirements.
There are also several examples available in the En-
ergia IDE under Files/Examples/MQTT.
/*
lab5.ino - ELEX 7860 IoT MQTT example
Ed.Casas 2019-2-27

This code is incomplete and/or contains errors.
*/

#include <WifiIPStack.h>
WifiIPStack ipstack; // IP via WiFi

// initialization: set up WiFi connection

void setup() {

Serial.begin(9600);

WiFi.begin(ESSID, WiFi password) ;

while (WiFi.status() != WL_CONNECTED) {
Serial.print(".");
delay(300);

}

while (WiFi.localIP() == INADDR_NONE) {
Serial.print("+");
delay(300);

}

Serial.print (String("\nConnected to ") + WiFi.SSID() + " with IP=");
Serial.println(WiFi.localIP()) ;

}

#include <Countdown.h> // timeouts
#include <MQTTClient.h>

// continously publish RSSI

void loop()
{
int rc = 0;
char data[80] ;

MQTT::Client<WifiIPStack, Countdown> client(ipstack); // client

rc = ipstack.connect(brokerhostname , MQTT port); // connect to broker
rc || Serial.println("TCP connect returned " + rc) ; // should return true

rc = client.connect();
rc && Serial.println("MQTT connect returned: " + rc);

snprintf(data, 80, "RSSI=%d", WiFi.RSSI()) ;
Serial.println(String("publishing:") + data);

rc = client.publish("my/important/topic", data, strlen(data));
rc && Serial.println("MQTT publish returned: " + rc);

client.yield(2000) ;

rc = client.disconnect() ;
rc && Serial.println("MQTT disconnect returned: " + rc);

3

https://www.eclipse.org/paho/clients/c/embedded/
https://os.mbed.com/teams/mqtt/code/MQTT/docs/tip/classMQTT_1_1Client.html
https://energia.nu/guide/libraries/wifi/
https://energia.nu/guide/libraries/ethernet/
https://energia.nu/guide/libraries/ethernet/
https://www.arduino.cc/en/Reference/Libraries
https://www.arduino.cc/en/Reference/Libraries

rc = ipstack.disconnect(); // disconnect
rc && Serial.println("TCP disconnect returned: " + rc);

}

4

	Introduction
	IoT
	TI CC3200 Microcontroller
	Arduino and Energia
	MQTT

	Procedure
	Install Energia, CC3200 Support and Host Drivers
	Hardware
	Build and Run a Hello World Program
	Add an MQTT Publisher

	Lab Report
	Appendix - Eclipse Paho MQTT C++ Client

