
ELEX 7860 : Wireless System Design
2020 Winter Term

Introduction to Coding

Coding

The term coding has three different meanings when
used in communication systems:

Source Coding Often called “compression,” source
coding attempts to reduce the data rate to more
closely match the information rate by removing
redundancy. This reduces the complexity of the
remainder of the communication system.

Security Techniques such as signatures and encryp-
tion can be used to ensure the integrity, authen-
ticity and the privacy of the information being
transmitted over the channel.

Channel Coding Used to detect and correct errors
introduced by the channel.

The first two are typically covered in courses in signal
processing and data communications respectively. In
this course wewill concentrate on the thirdmeaning.

Checksums

A simple way to check for errors in a frame of data
is to compute the sum of the byte (or word) values in
a frame of data. The sum is computed modulo1 the
maximum value of the check sum. The additive com-
plement2 of the sum is then appended to the packet
to ensure the sumof the values in an error-free packet
will be zero. This is the type of error-detection used
by TCP/IP frames used on the Internet.
Checksums are typically used by higher-level pro-

tocols since they are easy to compute in software.
However, there are many common types of errors,
such as insertion of zero words and transposition of
values that are not detected by checksums.
Exercise 1: Compute the modulo-4 checksum,𝐶, of a frame with

byte values 3, 1, and 2. What values would be transmitted in the

packet? What would be the value of the sumat the receiver if there

1“modulo-𝑁” means the remainder after dividing by𝑁.
2The “additive complement” is the value that would have to

be added to make the result zero (modulo-N).

were no errors? Determine the sum if the received frame was: 3,

1, 1, 𝐶? 3, 1, 2, 0, 𝐶? 1, 2, 3, 𝐶?

Parity

Another technique for detecting errors in received
frames is for the transmitter to compute one or more
bits called “parity bits” and append them to the
frame. The receiver computes the parity bits itself
from the received data and compares them to the re-
ceived parity bits. If the computed and received par-
ity bits match then either there were no errors or the
received bits were corrupted in such a way the re-
ceived parity bits are valid for the received data.
The probability of the latter event is called the un-

detected error probability. Good error detecting codes
try to make this probability as low as possible.

Single Parity Bits

The simplest type of parity is a single parity bit. Typi-
cally the parity bit is computed as the modulo-2 sum
of all of the bits in the message.
Exercise 2: What is a modulo-2 sum? What is the modulo-2 sum

of 1, 0 and 1? What is the modulo-2 sum if the number of 1’s is an

even number?

The modulo-2 sum can be easily computed as the
exclusive-or (XOR) of the bits.
A common use of a single parity bit is a parity bit

added to each ASCII character. Most serial interfaces
can be configured to compute and append a parity bit
to each ASCII character. This bit can be either the
sum of all of the bits (“even parity”) or it’s comple-
ment (“odd parity”).
The receiver computes the parity bit from the data

bits and compares the computed parity bit to the
transmitted parity bit. If the computed and received
parity bits match then there was either no error or
there were an even number of errors.

lec6.tex 1 2020-02-03 10:29



Block Codes

More complex channel codes usemultiple parity bits.
Each parity bit is computed from a different subset of
data bits. This makes the code more “powerful” in
the sense that it can detect (and potentially correct)
more errors.
A block code where each block of 𝑛 bits contains 𝑘

data bits is called an (𝑛, 𝑘) code:

Ρ�ΟΟ

Ρ

ΗΕΞΕ ∋6∋

Note that an (𝑛, 𝑘) code contains 𝑛 − 𝑘 parity bits.
A “code” is defined by the set of all possible 𝑛-bit

codewords.
Exercise 3: A (5,3) code computes the two parity bits as: 𝑝0 =
𝑑0 ⊕ 𝑑1 and 𝑝1 = 𝑑1 ⊕ 𝑑2 where 𝑑𝑖 is the 𝑖’th data bit. What

codeword is transmitted when the data bits are (𝑑0, 𝑑1, 𝑑2) =
(0, 0, 1)? How many different codewords are there in the code?

What are the first four codewords? In general, how many code-

words are there for an (𝑛, 𝑘) code?

Hamming Distance

TheHamming Distance, 𝐷, is the number of bits that
differ between two code words.
The performance of a particular code is mainly

determined by the minimum (Hamming) distance
(𝐷𝑚𝑖𝑛) between any two code words in the code.
Exercise 4: What is the Hamming distance between the code-

words 11100 and 11011? What is the minimum distance of a code

with the four codewords 0111, 1011, 1101, 1110?

Code Rate

The rate of a code is the ratio of information bits to
total bits, or 𝑘/𝑛. This is ameasure of the efficiency of
the code. Aswe addparity bits the code rate decreases
but, for a well-designed code, the minimum distance
and thus the error-correcting ability increases.
Exercise 5: What is the code rate of a code with 4 codewords each

of which is 4 bits long? Hint: If a code has 2𝑘 codewords, what is 𝑘?.

Exercise 6: The data rate over the channel is 50 Mb/s; a rate 1/2

code is used. What is the throughput?

Codewords as Polynomials

Polynomials in GF(2)

A Galois field, denoted as 𝐺𝐹(𝑞), is a set of integers
and two operations that have certain properties. One
of the properties is closure – the result of any opera-
tion on two elements of the field is also in the field.
For example, 𝐺𝐹(2) includes two integers (0 and

1) and the addition andmultiplication operations are
defined as addition andmultiplicationwith the result
taken modulo-2.
Exercise 7: Write the addition and multiplication tables for

𝐺𝐹(2). What logic function can be used to implement modulo-

2 addition? Modulo-2 multiplication?

Instead of representing messages as a sequence of
bits we can also represent codewords as polynomials
with coefficients from 𝐺𝐹(2). For example, the poly-
nomial:

1𝑥3 + 0𝑥2 + 1𝑥1 + 1𝑥0 = 𝑥3 + 𝑥1 + 1

can be used to represent the codeword 1011.
Exercise 8: What is the polynomial representation of the code-

word 01101?

Polynomials are useful because many codes are
based on the mathematical properties of polynomi-
als, particularly polynomial factorization.
Note that it is the coefficients of the polynomial

that are important. The polynomial itself is never
evaluated and the variable 𝑥 that appears in these
polynomials is just a dummy variable. These poly-
nomials can thus also be viewed as binary numbers
or bit strings where the order of each term indicates
the bit position.

Polynomial Arithmetic

We can add, subtract, multiply and divide poly-
nomials with coefficients in GF(2). These opera-
tions are the basis for many useful communication-
related functions including convolutional codes for
FEC (Forward Error Correction), CRCs (Cyclic Re-
dundancy Checks), and PRBS (Pseudo-Random Bit
Sequence) generators.
Exercise 9: What is the result of multiplying 𝑥2 + 1 by 𝑥3 + 𝑥 if

the coefficients are regular integers? If the coefficients are values

in𝐺𝐹(2)? Which result can be represented as a bit sequence?

2



Digital Implementation of Polynomial Arith-
metic

Arithmetic on polynomials with 𝐺𝐹(2) coefficients
can be implementedwith simple digital logic circuits.
Flip-flops, organized as shift registers, store the bits
of the message (coefficients equal to 1 or 0) and XOR
and AND gates are used to compute modulo-2 addi-
tion and multiplication. The bits corresponding to
codeword(s)/message(s) can be input and output se-
quentially, bit by bit, into the polynomial arithmetic
circuits.
It’s much simpler to do arithmetic using polyno-

mials in GF(2) than using regular integers because
we do not need to compute carries when computing
results.

Cyclic Redundancy Checks

A Cyclic Redundancy Check (CRC) is a code used to
detect errors in a sequence of 𝑘 data bits. A “code-
word” of 𝑛 bits is transmitted for each 𝑘 data bits. The
length of the CRC is thus 𝑛 − 𝑘.
The algorithm used to compute the CRC is as fol-

lows:
The data to be transmitted, treated as a polynomial,

is multiplied by the polynomial 𝑥𝑛−𝑘. This increases
the order of each term by 𝑛 − 𝑘 (or equivalently, ap-
pends 𝑛−𝑘 zero bits). This new polynomial,𝑀(𝑥), is
divided by a generator polynomial, 𝐺(𝑥)3. The result
is a quotient and a remainder:

𝑀(𝑥)
𝐺(𝑥) = 𝑄(𝑥) remainder𝑅(𝑥)

We then replace the last 𝑛 − 𝑘 bits of𝑀(𝑥) (which
were zero due to us having multiplied by 𝑥𝑛−𝑘) with
𝑅(𝑥). This is equivalent to adding (or subtracting
since polynomial addition and subtraction are the
same for coefficients in GF(2)) 𝑅(𝑥) from𝑀(𝑥). This
ensures that the new polynomial will be divisible by
𝐺(𝑥).
Note that 𝑛−𝑘 is one less than the number of terms

in 𝐺(𝑥) since the remainder is always less then the
divisor. If we number the terms by the order of 𝑥,
then the highest order term will be 𝑥𝑛−𝑘.
The receiver carries out the same polynomial di-

vision operation on the combination of the message
3Generator polynomials “generate” other codewords, in this

case the CRC.

bits andCRC. If the remainder is not zero then at least
one of the bits must have changed and an error has
been detected.

Detecting Added/Deleted Zero Bits

We can add or remove any number of leading ze-
ros coefficients to𝑀(𝑥) without affecting its value or
the CRC. To allow the CRC to detect missing/added
leading zero bits, most implementations require that
some initial data bits (typically the first 𝑛−𝑘) be com-
plemented.
Similarly, appending or deleting zeros to the end of

the message will also result in a zero remainder. We
can avoid this problem by complementing the CRC
before sending it. This generates a non-zero remain-
der but the value will be a specific value (the same for
all messages) if there are no errors.
Another way to detect missing/added lead-

ing/trailing zero bits is to include the length of the
message in the CRC computation.

Computing the CRC

Computing the CRC requires polynomial division.
The process involves repeated subtraction of the gen-
erator polynomial from themessage polynomial. Un-
like regular division, to compute the CRC we only
need to compute the remainder.
Exercise 10: If the generator polynomial is𝐺(𝑥) = 𝑥3+𝑥+1 and
the data to be protected is 1001, what are 𝑛 − 𝑘, 𝑀(𝑥) and the

CRC? Check your result. Invert the last bit of the CRC and compute

the remainder again.

Acircuit to perform the division of the polynomials
can be implemented using a shift register (SR) that
holds the result of the intermediate remainder after
each subtraction. The shift register only has to hold
(𝑛 − 𝑘) bits.
The diagram above4 shows a circuit that performs

polynomial division. The squares represent flip-flops
in the SR with the most significant bit of the inter-
mediate remainder in the right-most bit. The circles
labeled 𝑔𝑖 represent either a connection or no connec-
tion depending on the coefficient of𝐺(𝑥). The circles
with a plus represent modulo-2 addition (or subtrac-
tion) implemented using XOR gates. The input la-
belled 𝑎 is the message.

4From Error Control Systems by S. B. Wicker.

3



The SR bits are initialized to zero (or ones) so that
the first 𝑛 − 𝑘 (data) bits are loaded into the SR un-
changed (or complemented). At each subsequent
step in the division the generator polynomial (repre-
sented by the presence or absence of the connections
labelled 𝑔𝑖) is or isn’t subtracted by the xor gates from
the intermediate remainder in the SR depending on
the value of the most significant bit of the quotient
(rightmost bit of the SR). The next input bit is also
appended to the intermediate remainder. At the end
of the process the shift register holds the final remain-
der 𝑅(𝑥) which is appended to the message as the
CRC at the transmitter or checked at the receiver.

Checking the CRC

At the receiver the same circuit can be used to divide
the received message and the appended remainder
polynomial by the generator polynomial. If the re-
mainder is zero then the received polynomial must
be a multiple of the generator polynomial. This is al-
ways the case when we subtract the remainder 𝑅(𝑥)
from the message polynomial. Therefore if the re-
mainder in the SR is non-zero then there must have
been an error.

CRC Error Detection Performance

CRC error detection will fail only if the error pattern
is a multiple of 𝐺(𝑥).
If all the errors are located within an “error burst”

of length 𝑛 − 𝑘 then the error pattern cannot be a
multiple of 𝐺(𝑥) and is guaranteed to be detected.
However, the CRCwill also detect most longer bursts
since they are unlikely to be a multiple of 𝐺(𝑥).
Exercise 11: Is a 32-bit CRC guaranteed to detect 30 consecutive

errors? How about 30 errors evenly distributed within the mes-

sage?

A common situation is where the received bits
are completely random (e.g. noise being detected as
data). In this case the probability of not detecting
an error is the probability that a random sequence of
𝑛 − 𝑘 bits matches the required checksum.
Exercise 12: What is the probability that a CRC of length 𝑛 −
𝑘 bits will be the correct CRC for a randomly-chosen codeword?

Assuming random data, what is the undetected error probability

for a 16-bit CRC? For a 32-bit CRC?

Standard CRC Generator Polynomials

There are several CRCgenerator polynomials in com-
mon use. The most common lengths are 16 and 32
bits since these are multiples of 8 bits. All(?) IEEE
802 standards use the same 32-bit CRC polynomial
typically called “CRC-32”. The ITU has defined a
16-bit CRC generator polynomial (“CRC-16-CCITT”)
that is also used in various standards.

4


	Coding 
	Checksums 
	Parity 
	Single Parity Bits 

	Block Codes 
	Codewords as Polynomials 
	Polynomials in GF(2) 
	Polynomial Arithmetic 
	Digital Implementation of Polynomial Arithmetic 

	Cyclic Redundancy Checks 
	Detecting Added/Deleted Zero Bits 
	Computing the CRC 
	Checking the CRC 
	CRC Error Detection Performance 
	Standard CRC Generator Polynomials 


