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Information and Capacity

Model of a Communication System

The diagram above shows amodel for a communi-
cation system that includes the following1:

• information source - generates a sequence of
“messages,” taken from a limited set of possi-
ble values. These values might be a set of volt-
age levels that taken together convey a percep-
tible sound or image. The messages might also
convey more abstract information called “data”
which could represent, for example, the charac-
ters in a document or perhaps numbers whose
meaning is unknown (“opaque”) to the commu-
nication system

• transmitter - a device that converts themessages
into a time-varying voltage or current (a “sig-
nal”) that can be carried over the channel

• channel - carries the signal from the transmit-
ter to the receiver, often distorting it and adding
random signals called “noise”

• receiver - a device that attempts to recover the
messages that were transmitted

• data destination - (sometimes called a “sink”)
such as a person or computer that makes use of
the information

Exercise 1: Give an example of a communication system. If you

can, identify the source, transmitter, channel, receiver and desti-

nation.

1The diagram is from Claude Shannon’s fundamental paper,
“A Mathematical Theory of Communication,” The Bell System
Technical Journal, Vol. 27, pp. 379–423, 623–656, July, October,
1948.

Review of Random Variables

A random variable is one whose value cannot be pre-
dicted. Examples in communication systems are the
information generated by a source and the noise in-
troduced by the channel.
Although the value of a random variable cannot be

predicted, we can define certain properties of these
variables called statistics.
A statistic called the expected value of a random

variable𝑋, denoted by𝐸[𝑋] or �̅�, is the expected aver-
age value of𝑋 overmany “trials” (e.g. many different
instances of a noise source or many instance of time).
The 𝑛’th moment of 𝑋 is 𝐸[𝑋ᅕ] and the 𝑛’th cen-

tral moment is 𝐸[(𝑋 − �̅�)ᅕ]. The first moment is also
called the mean and the second central moment the
variance (often written 𝜎Ⴓᅂ).
Random variables can be discrete (e.g. bits) or con-

tinuous (e.g. voltage). The integral of the probability
density function between 𝑎 and 𝑏 is the probability
that the random variable will have a value between
these values.
Exercise 2: How would you represent a discrete r.v. in a pdf?

The definite integral of the pdf (∫∞Ⴜ∞ 𝑝ᅂ(𝑥)𝑑𝑥) is 1
because the probability that the rv has a finite value
is 1.

Stochastic Processes

We are often interested in random variables that are
functions of time. These are called stochastic pro-
cesses.
A stationary stochastic process is one whose statis-

tics do not vary with time. These are analogous
to time-invariant signals and are important for the
same reason – we only have to deal with relative de-
lays. There are various types of stationarity depend-
ing on which statistics are independent of time (e.g.
“‘strictly” or “weak-sense” stationarity).
Exercise 3: Is the radio noise generated by the sun a stationary

stochastic process? Under what conditions?

Many random processes are ergodic. This means
the ensemble and time statistics are the same. For
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example, consider an amplifier. If the statistics of the
noise generated by all amplifiers (of the same design)
evaluated at one instant are the same as the statistic
of the noise from one amplifier evaluated over time
then the noise is ergodic.
Exercise 4: Would the amount of data transmitted by cellular sub-

scribers be an ergodic stochastic process?

Multivariate Random Processes

We can define a two-dimensional probability density
function (pdf) 𝑝(𝑋, 𝑌) which is called the joint pdf of
the random variables 𝑋 and 𝑌.
If 𝑝(𝑋, 𝑌) = 𝑝(𝑋)𝑝(𝑌) then 𝑋 and 𝑌 are said

to be independent. This allows us to compute the
joint probability using themarginal probabilities. We
often deal with variables that are independent and
identically distributed (i.i.d.).
Exercise 5: Describe the shape of the joint pdf of two zero-mean

iid randomvariableswith uniformpdfs. What if they had triangular

pdfs extending between ±Ⴒ?
The covariance of two random variables is defined

as:

cov(𝑋, 𝑌) = E ԭ(𝑋 − E[𝑋])(𝑌 − E[𝑌])Թ .

Two randomvariables areuncorrelated if their covari-
ance is zero. This is a weaker condition than inde-
pendence (two rv can be uncorrelated but not inde-
pendent).

Functions of Random Variables

The pdf of a sum of two independent random vari-
ables is the convolution of the individual pdfs.
Exercise 6: What is the pdf of the sum of two zero-mean iid

uniformly-distributed rv’s whose pdf has a maximum value of 1?

The Central Limit Theorem states (roughly) that
the sum of a large number of independent random
variables tends to a distribution that has a Gaussian
distribution.
The second moment (power) of the sum of two in-

dependent random variables is the sum of their pow-
ers.
Exercise 7: Prove this.

The autocorrelation function of a stationary
stochastic process is defined by

𝑅ᅂᅂ(𝜏) = 𝐸[𝑋(𝑡)𝑋(𝑡 − 𝜏)] .

The autocovariance is similarly defined (by subtract-
ing the mean).
The autocorrelation function and the power spec-

trum of a random signal are a Fourier transform pair.

Information Theory

We can model sources as generating one of a lim-
ited number of messages. For example, the messages
might be letters, words, pixel values, or measure-
ments. Different messages will often have different
probabilities. The probability of a particular message
is the fraction of messages of that type.
Exercise 8: We observe a source that outputs letters. Out of

10,000 letters 1200 were ’E’. What would be a reasonable estimate

of the probability of the letter ’E’?

We define the information that is transmitted by a
message that occurs with a probability 𝑃 as:

𝐼 = − logႳ(𝑃) bits

For example, amessagewith a probability of ႲႳ con-
veys 1 bit of information. While one with a probabil-
ity of ႲႵ carries 2 bits of information. Thus, less likely
messages carry more information.

Entropy

The information rate (also known as the “entropy”)
of a source in units of bits per message can be com-
puted as the average information generated by the
source:

𝐻 ٯ=
ᅎ
(− logႳ(𝑃ᅎ) × 𝑃ᅎ) bits/message

where 𝑃ᅎ is the probability of the 𝑖’th message.
Exercise 9: A source generates four different messages. The first

three have probabilities 0.125, 0.125, 0.25. What is the probabil-

ity of the fourth message? How much information is transmitted

by each message? What is the entropy of the source? What is the

average information rate if 100messages are generated every sec-

ond? What if there were four equally-likely messages?

Mutual Information

The mutual information is defined as:

I(𝑋; 𝑌) = ٯ
ᅣ∈𝒴

ٯ
ᅢ∈𝒳

𝑝(𝑥, 𝑦) logႳ ԙ
𝑝(𝑥, 𝑦)
𝑝(𝑥) 𝑝(𝑦)ԥ

bits
channel use
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where𝑋 and𝑌 are the channel input and output ran-
dom variables,
Exercise 10: What is the mutual information ifᅂ andᅃ are inde-

pendent? If they are the same?

Capacity

Shannon defined the capacity of a channel as the
maximum mutual information between the input
and output of a channel:

𝐶 = max
ᅂ

𝐼(𝑋; 𝑌) .

where the maximization is over all possible distribu-
tions of 𝑋.
Shannon showed that it is possible to transmit in-

formation with an arbitrarily low error rate if the in-
formation rate is less than the capacity of the channel.
He also showed that it is not possible to achieve an ar-
bitrarily low error rate if the information rate exceeds
the channel capacity.
Shannon’s proof does not provide a means to de-

sign a system that can achieve capacity. It is therefore
an upper bound. Shannon’s work also hinted that
using error-correcting codes with long codewords
(to be discussed later) should allow us to achieve
arbitrarily-low error rates as long as we limit the in-
formation rate to less than the channel capacity.
In practice, attempting to transmit at information

rates above capacity results in high error rates.

Examples

One example of a channel is the Binary Symmetric
Channel (BSC). This channel transmits discrete bits
(0 or 1) with a bit error probability (BER) of 𝑝. The
capacity of the BSC in units of information bit per
“channel use” (transmitted bit) is :

𝐶 = 1 − (−𝑝 logႳ 𝑝 − (1 − 𝑝) logႳ(1 − 𝑝))

which is 0 for 𝑝 = 0.5 (when each transmitted bit
is equally likely to be received right or wrong) and 1
when 𝑝 = 0 (the error-free channel) or when 𝑝 = 1
(a perfectly inverting channel).
Exercise 11: What is capacity of a binary channel with a BER of ᆫ

ᆲ
(assuming the same BER for 0’s and 1’s)?

For a continuous channel corrupted by Additive
White Gaussian Noise (AWGN), the capacity can be
shown to be:

𝐶 = 𝐵 logႳ ԙ1 +
𝑆
𝑁ԥ

where𝐶 is the capacity (b/s), 𝐵 is the bandwidth (Hz)
and ᄽ

ᄸ is the signal to noise (power) ratio.
Exercise 12: What is the channel capacity of a 4 kHz channel with

an SNR of 30dB?

Some systems using modern forward error-
correcting (FEC) codes such as Low Density Parity
Check (LDPC) codes can communicate at very low
error rates over AWGN channels with SNRs only a
fraction of a dB more than the minimum required by
the capacity theorem.
Exercise 13: What do the Nyquist no-ISI criteria and the Shan-

non Capacity Theorem limit? What channel parameters determine

these limits?

Themutual information of a channel, and thus the
capacity, depends on many factors. These include in-
clude the statistics of additive noise and interference,
fading, feedback channels (allowing the transmitter
to change how it encodes information), multiple par-
allel channels (e.g. diversity), as well as modulation
and coding (which define 𝑋).

Bit and Frame Error Rates

The bit error rate (BER, 𝑃ᅉ) is the average fraction of
bits that are received incorrectly.
When these bits are grouped into “frames” we are

often interested in the average fraction of the frames
that contain one or more errors. This is known as the
FER (Frame Error Rate). Sometimes frames include
additional bits that allow us to detect most, but not
all, errors. We usually want the UEP (Undetected Er-
ror Probability) to be very small (e.g. one undetected
error per many years).
Exercise 14: You receive 1 million frames, each of which contains

100 bits. By comparing the received frames to the transmitted

ones you find that 56 frames had errors. Of these, 40 frames had

one bit in error, 15 had two bit errors and one had three errors.

What was the FER? The BER?

Compression

When data is not random andwe canmake use of the
redundancy to reduce the amount of data that needs
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to be transmitted. Both lossless and lossy compres-
sion are examples of “source coding.”

Lossless. Some types of data contains redundancy
such as sequences of bits or bytes that occur more of-
ten than others. This type of data can be compressed
before transmission and then decompressed at the re-
ceiver without loss of information. An example of
this “lossless” compression is the ‘zip’ compression
used for computer files.
Another definition of information rate is “themin-

imum data rate, assuming the best possible lossless
compression”. Lossless compression does not reduce
the information rate but it may reduce the bit rate.

Lossy. Data representing speech and video can of-
ten be compressed with little degradation because
humans cannot perceive certain details of sounds and
images. These details can be removed resulting in
lower data rates. Examples of these “lossy” compres-
sion techniques include “MP3” for compressing au-
dio and MPEG-4 for video.

4


	Model of a Communication System 
	Review of Random Variables 
	Stochastic Processes 
	Multivariate Random Processes 
	Functions of Random Variables 

	Information Theory 
	Entropy 
	Mutual Information 
	Capacity 

	Examples 
	Bit and Frame Error Rates 
	Compression 

