Solutions to Final Exam

Question 1

(a) The free-space path loss in dB is given by

$$-20\log\left(\frac{c}{4\pi\cdot f\cdot d}\right)$$

There were two versions of this question (d = 300, f = 6 GHz and d = 600, f = 3 GHz) both giving a path loss of $L_{\text{path}} \approx 97.5 \text{ dB}$.

(b) The Friis equation where all quantities are in dB or dBm is:

$$P_R = P_T + G_T + G_R - L_{\text{path}} \, .$$

There were two versions of this question: $G_T = G_R = 6 \text{ dB}, P_T = 100 \text{ mW} = 20 \text{ dBm giving}$ $P_R \approx -65.5 \text{ dBm}$ and $G_T = G_R = 9 \text{ dB}, P_T = 200 \text{ mW} = 23 \text{ dBm giving } P_R \approx -56.5 \text{ dBm}$.

Question 2

There were two values of the maximum Doppler shift, $f_m = \frac{v}{c} f_c$:

- $v = 20 \text{ m/s}, f_c = 1 \text{ GHz} \implies f_m = 66.7 \text{ Hz}$
- $v = 30 \text{ m/s}, f_c = 2 \text{ GHz} \implies f_m = 200 \text{ Hz}$

A fading threshold of ρ_{dB} dB relative to the mean is $\rho = 10^{\rho_{dB}/20}$ (or $\rho^2 = 10^{\rho_{dB}/10}$) in linear units. There were two fading thresholds:

- $\rho_{\rm dB} = -13 \, \rm dB \implies \rho = 0.224$
- $\rho_{\rm dB} = -16 \, {\rm dB} \implies \rho = 0.158$
- (a) The level crossing rate is given by:

$$N_R = \sqrt{2\pi} f_m \rho e^{-\rho^2}$$

(b) The average duration is given by:

$$\overline{\tau} = \frac{e^{\rho^2} - 1}{\rho f_m \sqrt{2\pi}}$$

The following table gives the level crossing rate and fade duration for the four versions of the question:

υ	ρ	N _R	τ
(m/s	s) (dB)	(Hz)	(s)
20	-13	35.6	1374×10^{-6}
20	-16	25.8	960×10^{-6}
30	-13	106.7	457×10^{-6}
30	-16	77.5	320×10^{-6}

Question 3

The problem specifies a sampling rate $f_s = 4$ MHz, an FFT size of N = 256 and an occupied bandwidth of 3.125 MHz.

- (a) If N_{used} subcarriers are used, the signal bandwidth will be $B = \frac{N_{\text{used}}}{N} f_s$ (or $B = \frac{N_{\text{used}}+1}{N} f_s$ depending on the definition of bandwidth). This results in $N_{\text{used}} = \frac{NB}{f_s} [-1] = \frac{256 \cdot 3.125}{4} [-1] = 200 \text{ or } 199$.
- (b) The OFDM symbol duration is $T = \frac{N}{f_s} = 256/4 = 64 \,\mu\text{s}$
 - (i) With a 16 or 8 μs cyclic extension the symbol duration becomes $80 \times 10^{-6} \text{ s or } 72 \times 10^{-6} \text{ s}$.
 - (ii) The symbol rate is the inverse of this: 12 500 Hz or 13 890 Hz .
- (c) The overall bit rate will be the product of the number of subcarriers used, the OFDM symbol rate and the number of bits per subcarrier. There were four possible answers:

N _{used}	$f_{ m symbol}$ (Hz)	bits subcarrier	bit rate (bps)
200	12.5×10^3	2	5 $\times 10^{6}$
199	12.5×10^3	2	4.975×10^{6}
200	13.89×10^{3}	4	11.110×10^{6}
199	13.89×10^{3}	4	11.056×10^{6}

Question 4

There were two versions of the question with the generator matrices:

$$G = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix} \text{ or } \begin{bmatrix} 1 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 \end{bmatrix}$$

for an (n, k) = (5, 3) FEC code.

(a) A systematic code has a generator matrix of the form:

$$G = \left[I_k \mid P\right]$$

and the parity check matrix can be obtained as:

$$H = \left[P^T \mid I_{n-k}\right]$$

Which in this case are:

[1	0	1	1	0]	or $\begin{bmatrix} 0\\1 \end{bmatrix}$	1	1	1	0]
H = [0	1	0	0	1	$r \begin{bmatrix} 1 \end{bmatrix}$	1	0	0	1

(b) The transmitted codeword is obtained as the matrix multiplication (using addition modulo-2) of the 1 × k data vector 1, 1, 0 with the k × n generator matrix *G*. The computations for the two generator matrices is as follows:

$$1 \cdot 1 \bigoplus 1 \cdot 0 \bigoplus 0 \cdot 0 = 1 \bigoplus 0 \bigoplus 0 = 1$$
$$1 \cdot 0 \bigoplus 1 \cdot 1 \bigoplus 0 \cdot 0 = 0 \bigoplus 1 \bigoplus 0 = 1$$
$$1 \cdot 0 \bigoplus 1 \cdot 0 \bigoplus 0 \cdot 1 = 0 \bigoplus 0 \bigoplus 0 \bigoplus 0 = 0$$
$$1 \cdot 1 \bigoplus 1 \cdot 0 \bigoplus 0 \cdot 1 = 1 \bigoplus 0 \bigoplus 0 = 1$$
$$1 \cdot 0 \bigoplus 1 \cdot 1 \bigoplus 0 \cdot 0 = 0 \bigoplus 1 \bigoplus 0 = 1$$

$1\cdot 1\oplus 1\cdot 0\oplus 0\cdot$	$0 = 1 \oplus 0 \oplus 0 = 1$
$1\cdot 0\oplus 1\cdot 1\oplus 0\cdot$	$0 = 0 \oplus 1 \oplus 0 = 1$
$1\cdot 0\oplus 1\cdot 0\oplus 0\cdot$	$1 = 0 \oplus 0 \oplus 0 = 0$
$1\cdot 0\oplus 1\cdot 1\oplus 0\cdot$	$1 = 0 \oplus 1 \oplus 0 = 1$
$1 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot$	$0 = 1 \oplus 1 \oplus 0 = 0$

]	Thus	the	СС	odewords	transmitted	are
	1,1,0	, 1, 1	or	1, 1, 0, 1, 0		

Question 5

When measured in dB, the output third-order intermodulation products are 2Δ lower than the desired signals and the desired signal is Δ below the output IP3:

In this question $2\Delta = 40$ dB and the desired signal level is 20 dBm. The output IP3 is $20+\Delta = 20+40/2 = 40$ dBm. 40 dBm is $1 \times 10^{40/10} = 10^4$ mW = 10 W.

Question 6

The noise figure of a cascade of two amplifiers is given by:

$$F = F_1 + \frac{F_2 - 1}{G_1} \,.$$

In this question we are given $F = 3.5 \,dB = 10^{3.5/10} = 2.239$, $F_1 = 2 \,dB = 1.585$ and in two versions of the question $F_2 = 6 \,dB = 4$ or $F_2 = 9 \,dB = 8$. Solving for G_1 :

$$G_1 = \frac{F_2 - 1}{F - F_1} = \frac{(4 \text{ or } 8) - 1}{2.239 - 1.585} = 4.6 \text{ or } 10.7$$

which are $10 \log(4.6) = 6.6 \, dB$ or $10 \log(10.7) = 10.3 \, dB$.