Solutions to Final Exam

Question 1

(a) The free-space path loss in dB is given by

$$
-20 \log \left(\frac{c}{4 \pi \cdot f \cdot d}\right) .
$$

There were two versions of this question ($d=$ $300, f=6 \mathrm{GHz}$ and $d=600, f=3 \mathrm{GHz}$) both giving a path loss of $L_{\text {path }} \approx 97.5 \mathrm{~dB}$.
(b) The Friis equation where all quantities are in dB or dBm is:

$$
P_{R}=P_{T}+G_{T}+G_{R}-L_{\mathrm{path}} .
$$

There were two versions of this question: $G_{T}=$ $G_{R}=6 \mathrm{~dB}, P_{T}=100 \mathrm{~mW}=20 \mathrm{dBm}$ giving $P_{R} \approx-65.5 \mathrm{dBm}$ and $G_{T}=G_{R}=9 \mathrm{~dB}, P_{T}=$
$200 \mathrm{~mW}=23 \mathrm{dBm}$ giving $P_{R} \approx-56.5 \mathrm{dBm}$.

Question 2

There were two values of the maximum Doppler shift, $f_{m}=\frac{v}{c} f_{c}$:

- $v=20 \mathrm{~m} / \mathrm{s}, f_{c}=1 \mathrm{GHz} \Longrightarrow f_{m}=66.7 \mathrm{~Hz}$
- $v=30 \mathrm{~m} / \mathrm{s}, f_{c}=2 \mathrm{GHz} \Longrightarrow f_{m}=200 \mathrm{~Hz}$

A fading threshold of $\rho_{\mathrm{dB}} \mathrm{dB}$ relative to the mean is $\rho=10^{\rho_{\mathrm{dB}} / 20}$ (or $\rho^{2}=10^{\rho_{\mathrm{dB}} / 10}$) in linear units. There were two fading thresholds:

- $\rho_{\mathrm{dB}}=-13 \mathrm{~dB} \Longrightarrow \rho=0.224$
- $\rho_{\mathrm{dB}}=-16 \mathrm{~dB} \Longrightarrow \rho=0.158$
(a) The level crossing rate is given by:

$$
N_{R}=\sqrt{2 \pi} f_{m \rho e^{-\rho^{2}}}
$$

(b) The average duration is given by:

$$
\bar{\tau}=\frac{e^{\rho^{2}}-1}{\rho f_{m} \sqrt{2 \pi}}
$$

The following table gives the level crossing rate and fade duration for the four versions of the question:

| $\begin{array}{c}v \\ (\mathrm{~m} / \mathrm{s})\end{array}$ | $\begin{array}{c}\rho \\ (\mathrm{dB})\end{array}$ | N_{R} |
| :---: | :---: | ---: | :---: |
| $(\mathrm{~Hz})$ | | |\(\left.c \begin{array}{c}\tau

(\mathrm{s})\end{array}\right]\)| 20 | -13 | 35.6 | 1374×10^{-6} |
| :---: | :---: | ---: | ---: |
| 20 | -16 | 25.8 | 960×10^{-6} |
| 30 | -13 | 106.7 | 457×10^{-6} |
| 30 | -16 | 77.5 | 320×10^{-6} |

Question 3

The problem specifies a sampling rate $f_{s}=4 \mathrm{MHz}$, an FFT size of $N=256$ and an occupied bandwidth of 3.125 MHz .
(a) If $N_{\text {used }}$ subcarriers are used, the signal bandwidth will be $B=\frac{N_{\text {wsed }}}{N} f_{S}$ (or $B=\frac{N_{\text {wsed }}+1}{N} f_{S}$ depending on the definition of bandwidth). This results in $N_{\text {used }}=\frac{N B}{f_{s}}[-1]=\frac{256 \cdot 3.125}{4}[-1]=$ 200 or 199.
(b) The OFDM symbol duration is $T=\frac{N}{f_{s}}=$ $256 / 4=64 \mu \mathrm{~s}$
(i) With a 16 or $8 \mu s$ cyclic extension the symbol duration becomes

$$
80 \times 10^{-6} \mathrm{~s} \text { or } 72 \times 10^{-6} \mathrm{~s} .
$$

(ii) The symbol rate is the inverse of this: 12500 Hz or 13890 Hz .
(c) The overall bit rate will be the product of the number of subcarriers used, the OFDM symbol rate and the number of bits per subcarrier. There were four possible answers:

$N_{\text {used }}$	$f_{\text {symbol }}$ (Hz)	$\frac{\text { bits }}{}$	bit rate (bps)
200	12.5×10^{3}	2	5
199	12.5×10^{3}	2	4.975×10^{6}
200	13.89×10^{3}	4	11.110×10^{6}
199	13.89×10^{3}	4	11.056×10^{6}

$$
\begin{aligned}
& 1 \cdot 1 \oplus 1 \cdot 0 \oplus 0 \cdot 0=1 \oplus 0 \oplus 0=1 \\
& 1 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 0=0 \oplus 1 \oplus 0=1 \\
& 1 \cdot 0 \oplus 1 \cdot 0 \oplus 0 \cdot 1=0 \oplus 0 \oplus 0=0 \\
& 1 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 1=0 \oplus 1 \oplus 0=1 \\
& 1 \cdot 1 \oplus 1 \cdot 1 \oplus 0 \cdot 0=1 \oplus 1 \oplus 0=0
\end{aligned}
$$

Question 4

There were two versions of the question with the generator matrices:

$$
G=\left[\begin{array}{lllll}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right] \text { or }\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
0 & 0 & 1 & 1 & 0
\end{array}\right]
$$

for an $(n, k)=(5,3)$ FEC code.
(a) A systematic code has a generator matrix of the form:

$$
G=\left[I_{k} \mid P\right]
$$

and the parity check matrix can be obtained as:

$$
H=\left[P^{T} \mid I_{n-k}\right]
$$

Which in this case are:

$$
H=\left[\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right] \text { or }\left[\begin{array}{lllll}
0 & 1 & 1 & 1 & 0 \\
1 & 1 & 0 & 0 & 1
\end{array}\right]
$$

(b) The transmitted codeword is obtained as the matrix multiplication (using addition modulo2) of the $1 \times k$ data vector $1,1,0$ with the $k \times n$ generator matrix G. The computations for the two generator matrices is as follows:
$1 \cdot 1 \oplus 1 \cdot 0 \oplus 0 \cdot 0=1 \oplus 0 \oplus 0=1$
$1 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 0=0 \oplus 1 \oplus 0=1$
$1 \cdot 0 \oplus 1 \cdot 0 \oplus 0 \cdot 1=0 \oplus 0 \oplus 0=0$
$1 \cdot 1 \oplus 1 \cdot 0 \oplus 0 \cdot 1=1 \oplus 0 \oplus 0=1$
$1 \cdot 0 \oplus 1 \cdot 1 \oplus 0 \cdot 0=0 \oplus 1 \oplus 0=1$

Thus the codewords transmitted are $1,1,0,1,1$ or $1,1,0,1,0$.

Question 5

When measured in dB , the output third-order intermodulation products are 2Δ lower than the desired signals and the desired signal is Δ below the output IP3:

In this question $2 \Delta=40 \mathrm{~dB}$ and the desired signal level is 20 dBm . The output IP3 is $20+\Delta=20+40 / 2=$ 40 dBm .40 dBm is $1 \times 10^{40 / 10}=10^{4} \mathrm{~mW}=10 \mathrm{~W}$.

Question 6

The noise figure of a cascade of two amplifiers is given by:

$$
F=F_{1}+\frac{F_{2}-1}{G_{1}}
$$

In this question we are given $F=3.5 \mathrm{~dB}=$ $10^{3.5 / 10}=2.239, F_{1}=2 \mathrm{~dB}=1.585$ and in two versions of the question $F_{2}=6 \mathrm{~dB}=4$ or $F_{2}=9 \mathrm{~dB}=8$. Solving for G_{1} :

$$
G_{1}=\frac{F_{2}-1}{F-F_{1}}=\frac{(4 \text { or } 8)-1}{2.239-1.585}=4.6 \text { or } 10.7
$$

which are $10 \log (4.6)=6.6 \mathrm{~dB}$ or $10 \log (10.7)=$ 10.3 dB .

