
ELEX 7660 : Digital SystemDesign
2018Winter Term

Verification

This lecture describes how digital systems are tested.
After this lecture you should be able to select an appropriate verification strategy including: selecting simulation or hardware testing;
stimulus-only or self-checking testbenches; selection of test inputs; use of “known-good” models; use of BFMs; unit testing; regression
testing. vectors and test benches; distinguish between functional (RTL) and gate-level (timing) simulations; use delays and event
controls to generate waveforms.

Design Verification

Verification means testing a design to verify that it
meets requirements. Ҳe effort required to verify a
design often exceeds that required for the design.
Verification of larger designs involves several

groups:

requirements,
specifications,
 standards

subject
matter
experts

 test suites,
test vectors

verification
 engineers

h/w & s/w
 design
engineers

testbenchesDUT

 R.T.M.,
"tape out"

To “re-spin” an ASIC that has a errors that render
it unusable typically requires months and hundreds
of thousands (or millions) of dollars. Such errors
are often “fatal” to a project because the product
misses a market window or for financial reasons.
ASIC designers must therefore simulate their designs
carefully before “taping out” tomanufacturing.
On the other hand, recompiling an FPGA design

to fix an error may only take hours and in many
products a new FPGA configuration can be included
in a firmware update. Ҳis allows the FPGA design to
be updated even after the product is in the field. Ҳus
the risk posed by FPGA design errors is much lower
and this affects the choice of verification strategies.

Simulation vs Hardware Testing

FPGA designers have the option of testing the FPGA
hardware as well as simulating their designs.
Simulations have several advantages:

• simulators give more visibility into the operation
of the design than hardware (even when using
embedded logic analyzers such as SignalTap),

• compilation ismuch faster than synthesis,
• simulations can be easily automated (e.g. to run
nightly regression tests),

• it’s relatively easy to supply test data (“test vectors”)
toanFPGAbeingsimulatedandcollect andprocess
the results,

on the other hand:

• a simulation is orders of magnitude slower than
hardware, and so:

• a simulator cannot process input in real time,
• a simulation cannot model all details of the final
design (interfaces, power supplies, etc.).

Ҳus simulations tend to be used early in the design
process followed by testing on the final hardware
configuration.

Functional (RTL) versus Timing (Gate-Level)
Simulation

Ҳe following diagram shows the steps involved in
the design and verification of a digital logic circuit:

HDL

netlist

P
&

R

functional
simulation

timing
simulation

programming
file (FPGA)or
GDSII (geometry
for ASIC)

back-
annotation

delays

6

4

4
2

3

s
y
n
th

e
s
is

Ҳe logic synthesizer generates a netlist that
describes how the components (gates, flip-flops, etc)
are connected. Ҳe place and route (P&R) step places
the components at specific locations on the IC and

lec6.tex 1 2018-03-02 11:59

connects then using FPGA routing resources or the
metal layers of an ASIC.Ҳe P&R step determines the
delays between components.
Simulations can be used to verify the functionality

of a design and also that it will operate at the required
clock frequency.
Functional testing verifies the design by assuming

zero propagation delay through combinational logic.
Ҳis checks that the logical or functional design is
correct. Ҳis can be done before the design is mapped
into gates and placed on specific portions of the chip
because propagation delays do not affect the results.
Timing simulation verifies that the design will

behave correctly with the actual signal delays that
will appear in the final design. Ҳis requires that the
delays estimated from P&R are “back-annotated” to
the netlist.
Synthesis software uses models of the delays

through the device’s logic blocks and interconnects
along with timing constraints for external devices (to
be covered later) to guide the P&R process to try to
ensure that timing requirements will bemet.
FPGA designs typically rely on “static” (no simula-

tion) timing analysis (STA) to verify that the various
timing constraints will be met. However, timing sim-
ulations for FGPA designs can be used to check that
the designer has notmissed any timing constraints.
However, ASIC designs will typically run extensive

timing simulations to ensure the device will operate
properly before “taping out” and sending the device
to be fabricated.

Types of Testbenches

A simulation consists of the device (or design or unit)
under test (DUT/UUT), plus additional code called a
testbench that applies inputs to the DUT and checks
its output:

testbench

DUT

Stimulus-Only

Ҳe simplest testbench simply applies inputs to the
DUTanddumps the inputs and outputs to a file so the
they can be viewed by the designer. Ҳese are mainly
useful during the initial design process.

Self-Checking

Once the initial testing is complete, it is necessary
to ensure that subsequent changes do not introduce
new bugs (“regressions”). Manually checking the
outputs after each design change would be tedious
and error-prone. Once the expected outputs have
been established, a testbench canbedesigned to check
the outputs itself and flag any differences.

Generating Test Vectors

Test vectors are the values to be applied to the DUT
and the expected outputs.
Ҳe test vectors can be generated by the testbench

itself (e.g. in a loop or or using a random number
generator) or they can be read from a file generated
by other software.

Inputs

Usually there are too many possible combinations of
inputs to be able to test all of them. However, enough
test vectors should be generated to ensure a reason-
able confidence in the correct operation of the design.
Test vectors should include:

1. typical input values,
2. minimum/maximum valid input values,
3. invalid inputs and
4. randomly-chosen values.

For example, when testing a tone generator de-
signed for frequencies between 300 Hz and 3 kHz
we might test it at frequencies of 1 kHz (typical),
300, 3 kHz (limits) and 0 Hz (invalid) and a range of
random frequencies.
Exercise1:What test inputsmight beappropriate for testing
a ႲႷ × Ⴙ-bit multiplier?
Coverage testing is another approach that can be

used to ensure an adequate number of test vectors.
A simulator can monitor the parts of the DUT that
are executed during a simulation and highlight the
parts of the design that were not used during the
simulation. Test vectors can then be added to ensure
more complete test coverage.

Outputs

For very simple designs it may be possible to compute
the correct outputs manually. But for more complex

2

designs thiswould take too longorbe tooerror-prone.
In this case the correct outputs have to be generated
by software.
Ҳis requires that there be a “known-good” soft-

ware model of the desired behaviour that has been
independently verified. How this is done depends on
the application.
For example, when testing a CPU there might be

application test suites of programs and the results of
running them. For a signal processor there could be
Matlab scripts that are known to produce the correct
output waveforms. Some standards include tests that
canbeused to check for conformance to the standard.
Andifhardwarealreadyexists (e.g. anexistingversion
of thedesign) it can sometimesbeused togenerate test
vectors (allowing the new design to replicate errors
or undocumented features in the original design).

Test Strategies

It’s oftenmore effective to test components of adesign
individually rather than the complete design. Ҳis
“unit testing” makes it easier to isolate the source of a
problem.
It’s often useful to start testing before a design

is complete. As each part of a design is completed,
testbenches, tests vectors and scripts are prepared
and added to the test suite for regression testing.
Running these tests manually would take too long

and be too error-prone. Scripts are used to automate
testing by compiling the code, running simulations
and summarizing the results.
Many EDA (Electronic Design Automation) tools,

including the FPGA design and test software from
Intel andXilinx canbe controlledby scriptswritten in
a simple scripting language called tcl (ToolCommand
Language, pronounced “tickle”). For example, the
various programs in the Quartus tool suite have em-
bedded tcl interpreters andmanyof the configuration
files are actually tcl scripts that set variables.
tcl is a very simple scripting language. Strings are

the only data type. Ҳe first word of each line is the
command to be execute. Commands within brackets
([]) are executed and the resulting string is substituted
in place of that command.
Exercise 2: What two tcl commands are executed by the
following tcl script: set x [expr 1 + 1]?

Verilog for Verification

Early integrated circuits were designed and laid
out by hand. As complexity increased it became
necessary to simulate these circuits before they
were manufactured to be reasonably sure that they
would work properly. Ҳe Verilog language (from
“verification” and “logic”) was designed to simplify
the simulation of these digital circuits.
It later turned out that a [a subset of] a language

designed tomodel hardware for simulation purposes
is also well-suited as the input language to a logic
synthesizer.
In this section we will cover a few additional

features of Verilog that are useful for simulation.

Initial Blocks

Initial blocks can generate clocks and reset signals as
in the following example:

‘timescale 1ns/1ns

module ex20 ;

logic reset, clk ;

initial begin

reset = ’0;

clk = ’0;

#5ns reset = 1;

#5ns clk = 1;

#5ns reset = 0;

clk = 0;

forever

#5ns clk = ~clk;

end

initial

#30 $finish ;

endmodule

generating the following clock and reset signals:

0 8 ns 16 ns 24 ns
clk

reset

Most Verilog testbenches run through their test
vectors sequentially using an initial process.
For simple DUTs each test vectors sets the inputs

and the code waits for an event indicating the DUT

3

https://en.wikipedia.org/wiki/Tcl

output is valid or for a fixed delay. Ҳe code then
compares the DUT output to the desired result.
For more complex DUT’s the testbench needs to

apply test vectors through “transactions” on a bus
functionalmodel (BFM).Ҳesebuses canbeprocessor
(e.g. NiosII, ARM) or peripheral (e.g. SPI, USB) buses.
For example, a testbench may generate memory
read/write cycles on a processor bus or generate and
respond to a sequence of message on a peripheral
bus according to a particular protocol. In most cases
simulation IP is available for these buses.

Simulation Time Control

Delays

Delays are not synthesizable. Ҳey are used to model
the behaviour of devices (e.g. propagation delays
through gates) or to create waveforms in testbenches.
In this course we only cover the latter.
Ҳe syntax #𝑛 before a sequential statement sus-

pends execution of that block for simulation time 𝑛.
However, this canbe changedwith the‘timescale

directivewhich takes twovalues: thedefaultunits and
the resolution as shown in the example above. Ҳe
default units are used if no unit is specified in a delay.
Resolution specifies the quantization of time events.

Event Control

Ҳe event control expression @(event) before a state-
ment pauses execution until event. Ҳe event can be
posedge or negedge before a signal name or just the
signal name. Ҳe latter refers to any change in the
signal value. Multiple events can be given separated
by or.
We have used event controls to control execution

of always_ff procedural blocks but they can also
be used in simulations to synchronize execution of
procedural blocks.

wait()

Ҳewait() controlpauses executionof theassociated
statement until the specified condition is true.
Exercise 3: What’s the difference between wait(x) y=’1;

and @(x) y=’1;?

Delay in RHS of Assignments

Putting a delay or event on the right-hand side (RHS)
of the assignment causes the RHS to be evaluated im-
mediately and anupdate scheduled after the specified
delay or event. Ҳis can be used in a non-blocking
assignment to schedule a future change to a signal.

Input/Output

For printing messages during simulations, the
$display() (or $write()) system tasks can be used.
In addition to the $readmemh() system task that

reads a complete data structure directly into mem-
ory, System Verilog supports C-style file I/O using
similarly-named system tasks such as $fopen(),
$fread(), etc. Ҳese can read and write text or
binary files (or to/from strings). Ҳese are more
practical when reading or writing large files. See that
standard for details.

Boundary Scan and JTAG Interfaces

As the number of pins on IC packages grew and
pin pitch decreased it became more difficult to test
assembled printed circuit boards using “flying probe”
or “bed of nails” testers.
On the other hand, increased IC density made it

possible to add test circuit to each IC pin that allows
the pin to be disconnected from internal logic and set
or read under external control.
“JTAG” (Joint Test Action Group) is a standard

originally developed for boundary-scan testing of
ICs. It is a clocked serial interface that passes data
through a long chain of flip-flops (i.e. a shift register).
Each flip-flop can thus set or read the state of one pin.
A JTAG port has serial data in (TDI) and out (TDO)

pins, a clock signal (TCK) and a test-mode-select
(TMS) signal that is used to switch between the
interfaces’s control- and data-transfer modes. Ҳe
data pins pass data serially between all the devices on
a board while the clock and mode select signal are
applied in parallel to all devices1:

1FromWikipedia.

4

JTAG interfaces can also be used to program
FPGAs, PLDs and various type of memory. Ҳey are
alsoused to interfacewithon-chipdebugging features
such as logic analyzers, software debuggers, consoles
and others.

Assertions

An assertion is a declaration that something is true.
Assertions can be used to detect logical errors in
Verilog simulations. Assertions added to code to
check that conditions that the designer expects to be
true are, in fact, true.
Whenanassertionfails thesimulationstopsandthe

locationof the failedassertion isprinted. Ҳedesigner
must then figure out the cause of the problem.
Assertions simplify finding bugs because the

problem is isolated to a specific portion of the code.
Assertions are not synthesizable and are ignored

by synthesizers.
Assertions can be included at the start and end of

procedural blocks to check that all inputs and outputs
are within expected ranges and consistent.
For example, if a module’s x input is always ex-

pected to lie between 300 and 3000, wemight include
code such as:

always_comb begin

assert(x >= 300 && x <= 3000) ;

end

5

