
ELEX 7660 : Digital System Design
2018 Winter Term

RTL Design

This lecture describes register transfer level (RTL) design, the most commonly-used digital hardware design method for
complex digital circuits.
After this lecture you should be able to: determine the circuit designmethod being used, select an appropriate designmethod,
and use RTL design to convert an algorithm into synthesizable Verilog.

Levels of Design

Digital logic circuits can be designed at various levels
of abstraction.
At the lowest level, structural, we specify circuit el-

ements such as registers, adders, etc. and how they
are to be interconnected. This is often done with
schematic capture but can also be done with an HDL.
For example, using Verilog we can instantiate mod-
ules that represent components from a library and
connect their ports using named signals.
At a higher level of abstraction, behavioral, we

specify the desired behaviour in the form of vari-
ables, expressions and sequential processes and allow
the logic synthesizer to select the required circuit el-
ements and how they are to be connected.
A behavioral design can include a clock and can

specify the operations performed on each clock cycle.
This is called Register Transfer Level (RTL) design.
This is the most common approach used today and
the one we will primarily use in this course.
We can also specify a behavioral model without

a clock. The synthesizer must then decide how to
schedule the steps of the algorithm. For example
whether the operations in a particular loop should
be done sequentially or if the loop should be “un-
rolled” and its operations done in parallel. The de-
signer may provide “hints” to the synthesizer to help
achieve the required design objectives. This level of
design is called High Level Synthesis (HLS) and the
input to the synthesizer is often in C instead of an
HDL.
The following diagram summarizes the different

levels at which we commonly design digital circuits:

structural behavioural

RTL HLS

logic design

Exercise 1: Which of these requires themost time and effort?

Least? Which gives the designer most control over the cost

and performance of the design? Least? Which produce(s) de-

signs that are portable to different implementation technolo-

gies (FPGAs, ASICs)? Which allow the same design to meet a

variety of speed/area targets?

Algorithmic State Machines

In principle, any sequential logic circuit could be de-
scribed as a single state machine, with its state being
the contents of all of its registers.
In practice, the design of complex digital circuits

is partitioned into relatively simple state machines
that control the operations of other logic circuits, in-
cluding registers that are thought of as storing data
rather than “state.” Such a state machine is some-
times called an Algorithmic State Machine (ASM) or
ASMD (“ASM with Data”).

ASMDesign

Since we are designing state machines to implement
algorithms, our starting point is the algorithm. Al-
gorithms can be described using flowcharts, pseudo-
code or executable code such as a C program. The
executable description has a number of advantages:
it can be written by subject-matter experts who may
not be familiar with HDLs or hardware design, it will
run faster than a simulation of an HDL description,
and the software can be used as an independent ref-
erence against which the hardware can be validated.
As example, we’ll design hardware to find the min-

imumvalue stored in amemory. Here’s the C code for
an algorithm to find the smallest value in an array of
four 3-digit values:

short imin (short x[])
{

short min=999 ;

lec5.tex 1 2018-02-13 11:03

for (int i=0 ; i<4 ; i++)
if (x[i] < min) min = x[i] ;

return min ;
}

#include <stdio.h>
void main () {

short x[]={700,800,30,900} ;
printf ("%d\n", imin(x)) ;

}

Registers. The first step is to identify the variables
required by the algorithm. Each variable will become
a register in the RTL description.
Unlike a C program where variables are limited to

certain sizes (e.g. char, short, int, or long), we
can use any number of bits for each register. Some
object-oriented languages have libraries that allow
writing bit-exact, arbitrary-precision descriptions of
algorithms that are executable.
Exercise 2: List the registers required to implement the

minimum-finding algorithm above.

Computations. The second step is to identify the
computations that are required by the algorithm.
These will typically correspond to assignments to
variables.
Exercise 3: List the computations required to implement the

minimum-finding algorithm above.

Sequencing. We must then define a state machine
to perform the computations in the correct sequence.
Each computation, or group of computations, is as-
signed to a different state. The state transition condi-
tions are defined by the looping and if/else constructs
in the algorithm.
Unlike a computer program, the hardware im-

plementation of an algorithm can schedule multiple
computations simultaneously. However, this may re-
quiremore hardware resources or longer propagation
delays before the result of the operation is available.
For example, the two initializations (min=999 and

i=0) could be done in parallel as could the condi-
tional assignment to min and the incrementing of i
(min=x[i] and i++).
It’s also possible that computations required for

branching (i<100 and x[i]<min) could be done in
parallel with other computations – again, assuming
sufficient hardware resources.

In this case we can define three states which we’ll
call init, test and done. The transition from init
to test is unconditional while the transition from
test to done is defined by the condition !(i<100).
The condition x[i]<min does not control a state

transition but instead controls the computation of
min which can be loaded with 999, min or x[i].
A diagram that includes the state transitions as well

as the operations of the datapath is called an ASM
chart. For this algorithm it might look as follows:1:

min=999
i=0

i++

min=x[i]

x[i]<min

init

test

done

i<100

Wecan also describe theASM in the formof a chart
with one row for each register and one columns for
each state. For the example above it might look like:

register init test done
i
min

Exercise 4: Fill in the table.

Interfaces. The C function has arguments and re-
turn values which seem to correspond to the inputs
and outputs of an ASM. However, unlike a C func-
tion, hardware input and output signals can change
during the execution of the algorithm. In addition,
there could bemultiple ASMs executing concurrently
and there must be ways to synchronize their oper-
ation. We will study these later. Finally, the ASM
needs clock and reset signals like any other logic cir-
cuit.

1Don’t worry about the details, we won’t use ASM charts in
this course.

2

ASM Implementation

In RTL terminology, the hardware that implements
computations is called the “datapath” while the hard-
ware that controls the sequence of computations is
called the “controller.”
The datapath consists of one register for each vari-

able. The input of each register is a multiplexer. The
inputs to the multiplexer are each of the possible ex-
pressions that can be assigned to that variable. The
multiplexer is controlled by the controller – the con-
troller selects the value to be assigned to each variable
in each step of the algorithm (i.e. in each controller
state):

D Q

state
clk

Exercise 5: Draw the datapath for the variables i and min.

ASM in Verilog

TheASMcan be described in SystemVerilog using an
always_ff block to implement a state register and
each datapath register. An enumerated variable al-
lows the use of symbolic names for the states.
The combinational logic that defines the next state

and each of the next register values is defined in
always_comb block(s).
Theminimum-finding code (for a 4-element array)

is shown below. Simulation results are shown in Fig-
ure 1 and the synthesized circuit in Figure 2.

module ex10 (output logic [9:0] min,
input logic reset, clk) ;

logic [9:0] min_next ;
logic [7:0] i, i_next ;

enum logic [1:0] { init, test, done }
state, state_next ;

logic [9:0] x[4] = '{ 700, 800, 30, 900 } ;

// controller state
always_ff@(posedge clk)

if (reset) state <= init ;
else state <= state_next ;

// datapath registers
always_ff@(posedge clk) begin

i <= i_next ;
min <= min_next ;

end

// datapath and next-state logic
always_comb begin

min_next = min ; // defaults
i_next = i ;
state_next = state ;
case(state)

init: begin
min_next = 999 ;
i_next = 0 ;
state_next = test ;

end
test: begin

if (x[i] < min) min_next = x[i] ;
i_next = i+1 ;
if (i_next >= 4) state_next = done;

end
default: ;

endcase
end

endmodule

Note the following:

• signals are defined for both the “_next” next-
state and the current-state values. This gives
access to both the input (combinational or
“Mealy”) and output (registered or “Moore”)
values of each register. This is a common idiom
in HDLs.

• default values are assigned at the top of the
always_comb block. This ensures that each sig-
nal is always assigned and that this block gener-
ates combinational logic. Inmany cases this also
simplifies the code.

Exercise 6: Find the following blocks in the schematic: the

min register, the x[] memory block, the i register, the state
state machine.

Exercise7: Eachnumber in the Fibonacci sequence is the sum

of the previous two. Write an algorithm to compute the values

of the sequence that are less than 100 and stop. Ignore the

first two (both 1). What registers are required? What compu-

tations? Draw the state transition diagram for the controller.

Write the System Verilog code.

Converting a C program to Verilog would appear
to be a simple mechanical operation. However, in
more complex designs it’s possible to trade speed (the

3

0 1 us 2 us 3 us 4 us 5 us 6 us 7 us

xx 01 10

xx 00 01 10

xx 00 01 02 03 04

xx 00 01 02 03 04

XXX 999 700 30

XXX 999 700 30

clk

reset

next[1:0]

state[1:0]

i_next[7:0]

i[7:0]

min_next[9:0]

min[9:0]

Figure 1: Simulation results.

Selector0

SEL[2..0]

DATA[2..0]
OUT

WideNor0

Selector1

SEL[2..0]

DATA[2..0]
OUT

Selector2

SEL[2..0]

DATA[2..0]
OUT

Selector3

SEL[2..0]

DATA[2..0]
OUT

Selector10

SEL[2..0]

DATA[2..0]
OUT

Selector4

SEL[2..0]

DATA[2..0]
OUT

Selector11

SEL[2..0]

DATA[2..0]
OUT

Selector5

SEL[2..0]

DATA[2..0]
OUT

Selector15

SEL[2..0]

DATA[2..0]
OUT

Selector6

SEL[2..0]

DATA[2..0]
OUT

min[9..0]

Selector7

SEL[2..0]

DATA[2..0]
OUT

Selector16

SEL[2..0]

DATA[2..0]
OUT

Selector8

SEL[2..0]

DATA[2..0]
OUT

Selector17

SEL[2..0]

DATA[2..0]
OUT

Selector9

SEL[2..0]

DATA[2..0]
OUT

min[0]~reg[9..0]

D

CLK

SCLR
10'h0

Q

<

LessThan0CIN1'h0

A[9..0]

B[9..0]

OUT
Selector12

SEL[2..0]

DATA[2..0]
OUT

Selector13

SEL[2..0]

DATA[2..0]
OUT+

Add0CIN1'h0

A[7..0]

B[7..0]8'h1

OUT[7..0]

min_next~[9..0]
0

1

state

Add0

Add0

Add0

Add0

Add0

Add0

Add0

Add0

clk

reset

init

test

x

SYNC_RAM

WE
1'h0

ENA1
1'h1

CLR1
1'h0

PORTBWE
1'h0

PORTBENA1
1'h1

PORTBCLR1
1'h0

DATAIN[9..0]
10'h0

WADDR[1..0]
2'h0

RADDR[1..0]

PORTBDATAIN[9..0]
10'h0

PORTBWADDR[1..0]
2'h0

PORTBRADDR[1..0]

PORTBDATAOUT[0]

PORTBDATAOUT[1]

PORTBDATAOUT[2]

PORTBDATAOUT[3]

PORTBDATAOUT[4]

PORTBDATAOUT[5]

PORTBDATAOUT[6]

PORTBDATAOUT[7]

PORTBDATAOUT[8]

PORTBDATAOUT[9]

DATAOUT[9..0]

Selector14

SEL[2..0]

DATA[2..0]
OUT

i[7..0]

D

CLK

SCLR
8'h0

Q

clk

reset

0

1

2

3

4

5

6

7

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

...
...

1:0

1:0

...
...

...
...

...
...

...
...

...
...

Figure 2: Schematic.

maximum possible frequency of the clock) and area
(the amount of logic required) when implementing
an algorithm.
The RTL design method requires the designer to

explicitly make speed/area tradeoffs by allocating
more or less parallel logic and scheduling the com-
putations into more or fewer controller states.
At one extreme would be a design using a pro-

grammable processor that has a minimum of com-
binational logic (e.g. an ALU) but each computation
or state change (branch) typically takesmultiple clock
cycles. At the other extreme are large combinational
logic circuits that can implement an algorithm (e.g.
multiplication) in one clock cycle.

4

