
ELEX 7660 : Digital System Design
2018 Winter Term

System Verilog

Verilog expressions are similar to those in C with additional properties so they can better describe hardware. Verilog has
both parallel and sequential statements that allow it to better describe the behaviour of hardware. is lecture describes
Verilog types, operators and the evaluation of expressions as well as the most common Verilog statements. More details are
available in the System Verilog standard, IEEE Std 1800-2012.
Aer this lecture you should be able to: predict the size and value of a Verilog expression that uses the signals, constants
and operators described below; and predict the flow of control between the statements described below.

Types and Logic Values

Verilog 4-state types, such as logic, can have four
values: 0 (false), 1 (true), x (unknown) and z (high
impedance). ese are used for modeling logic.

2-state types such as bit and integer can have
values 0 and 1. ese are primarily used as counters
and array indices.

Numeric Constants

In addition to declaring the size and base as described
previously, constants (“literals”) can also be declared
as signed by prefixing the base with ’s’ (e.g. 4'shf for
a 4-bit -1). Decimal constants are treated as signed by
default.

A numeric constant can also include x (unknown)
or z (high-impedance) values. ese have useful
interpretations for synthesis (don’t-care and high-
impedance respectively) but when used in simula-
tions the result, in most cases, will be unknown (x).

e notations '0 and '1 are convenient abbrevia-
tions for a constant that is all-zeros or all-ones.

Signedness and Size

Variables and expressions can have a size (measured
in bits) and can be signed or unsigned. e behaviour
of some operators depends on the signedness of the
operands.

Signedness does not affect the values of the bits
(0 or 1) only how operators act on them. Negative
values of signed values are assumed to be in twos-
complement form.

Decimal literals are signed and based literals are
unsigned unless s is used with the base.

e result of an expression is unsigned unless all
the operands are signed.

Figure 11 shows how the size of an expression de-
pends on its operands.

Values are le-padded or le-truncated as neces-
sary. Padding replicates the sign bit only for signed
values.

Arrays

Variables may have multiple “packed” and “un-
packed” dimensions.

Packed dimensions are those given before the
signal name. ese bits are stored contiguously
(“packed”) and the packed item can be treated as a
scalar – a single number – in expressions. Packed di-
mensions typically model a word or bit fields within
a word (e.g. a 32-bit word composed of 4 bytes of 8
bits).

Unpacked dimensions appear aer the signal
name. ese bits may not necessarily be stored con-
tiguously. Unpacked dimensions model memories
where only one element can be accessed at a time.

In array references, the unpacked dimension(s) are
specified first, followed by the packed dimensions (if
any).

Array Literals

Array literals (constants) can be defined by grouping
the individual elements within '{...}. e quote
distinguishes array literal syntax from the syntacti-
cally similar concatenation operator.

1Tables are from the IEEE System Verilog Standard, IEEE Std
1800-2012.

lec3.tex 1 2018-01-23 00:00

Figure 1: Size of Expressions.

Examples

e examples below illustrate the rules described
above.

module ex12 ;
initial begin

logic [3:0] x ;
logic signed [15:0] y ;
logic [3:0] [7:0] z [15:0] ;

x = 4'b01xz ; //
x = -1 + 0 ; // x=15

y = -1 + 4'shf ; // y=-2
x = y ; // x=14

z[0] = '1 ; // z[0]=4294967295
z[0] = {4{4'b1}} ; // z[0]=4369
z[0][0][7] = 1 ; // z[0]=4497
z[15:0] = '{16{z[0]}} ; // z[*]=4497

end
endmodule

Exercise 1: What are the packed and unpacked dimensions

of each declaration?

Exercise 2: What are the signedness, size and value of each

constant and each expression above?

Operators

Figure 2 below lists the Verilog operators and Figure
3 their precedence. Operators that differ from those
in C and that are widely supported for synthesis are
described below.

Arithmetic vs Logical Shi Le shi always zero-
fills on the right. Arithmetic right shis (>>>)
replicate the sign bit if the result is signed. Log-
ical right shis (>>) always zero-fill.

Logical Reduction Operators ese unary (one
operand) operators apply a logical operation
to the bits of the operand. For example, to test
if any bit is set we can apply the or-reduction
operator.

2

Figure 2: Verilog operators.

Conditional Operator e result when the condi-
tional expression contains x or z is not what you
might expect (the rules are complex).

Equality e regular equality comparison opera-
tors (e.g. ==) return x if either operand contains

x or z.

e wildcard equality comparison (==?) ex-
cludes bits that are x or z in the right operand
from the comparison. e result is always 0 or
1.

3

Figure 3: Operator Precedence.

e 4-state comparison (===) compares the two
operands for an exact match, including x and z.

Concatenation Bits can be concatenated by sepa-
rating expressions with commas and surround-
ing them with braces ({}).
Concatenations of variables can be used on the
le hand side of an assignment.

Replication e syntax is similar to concatenation
but uses two pairs of nested braces and repeti-
tion value.

Array Slices e array subscript operator can be
used to extract contiguous portions (slices) of an
array. e bit order cannot be reversed.

Cast Although not an operator, a cast (') can be
used to change the type, size or signedness of an
expression.

Examples

module ex13 ;
initial begin

logic [15:0] x ;
logic signed [15:0] y ;

x = 16'hfff0 ; // x=65520
y = x >>> 1 ; // y=0x7ff8
y = signed'(x) >>> 1 ; // y=0xfff8
y = |y ; // y=1

x = 8'h4x ; // x=X
y = x == 8'h4x ; // y=X
y = x[6:3] === 7'b100x ; // y=1
y = x ==? 8'h4x ; // y=1
y = {x[7:4],x[6]} ; // y=0x0009

end
endmodule

4

Modules

Modules represent the top-level blocks of a hardware
description. A module includes declarations and
parallel (concurrently executing) statements between
module and endmodule. e module’s header de-
fines the module’s name, parameters and ports. Ports
can be in, out or inout (to model bidirectional sig-
nals).

When a module is instantiated, a signal can be
connected to module port by port order (sig); by
port name together with an explicit signal name
(.port(sig)), by port name with the signal name
implicit (.port) and using a wildcard (.*) that
matches all remaining matching port and signal
names. Expressions can be used instead of a signal
name.

Parameters

Parameters are named constants. ey are oen
included in the module’s declaration to allow cus-
tomization of each instantiation of a module. Param-
eters such as bus width or clock frequency are com-
mon.

Default values can be specified for parameters. As
with signals, the values of parameters can be specified
by position or by name.

e following example shows how parameters with
default values can be specified, how they can be used
to specify the dimensions of an array port and how
system functions such as $size(), $right() and
$clog2(x) (⌈log(x)⌉) can be used to compute pa-
rameter values in module instantiations:

module setbits #(M=7,L=0) (output [M:L] x);
assign x = '1 ;

endmodule

module ex18 ;
logic [31:16] x ;
setbits #(.L($right(x,1)),.M(31)) s0(x);

endmodule

struct, typedef and enum

System Verilog includes several data modeling fea-
tures derived fromC that can be used in declarations.

struct structures allow grouping variables (or sig-
nals) of different data types. Each is accessed
using a dot followed by the member name. In
System Verilog structs can be declared packed,
allowing them to also be treated as scalars, sim-
ilar to packed arrays.

typedef typedefs define user-defined types.

enum defines enumerated types that can take on one
of a set of values.

Functions

Functions can be declared in modules and can be
used to model combinational logic (only). Functions
allow the same logic to be re-used in multiple places.
Specialized combinational logic functions (e.g. 7-
segment LED decoder) are oen coded as functions.

Packages

Packages serve a purpose similar to header (.h) files
in C. Since function and data type declarations are lo-
cal to the module in which they are declared, to re-
use them across modules they should be declared be-
tween package/endpackage keywords. ese func-
tions and data types can then be made available by
using an import statement in a module:

package ex15pkg ;

typedef enum { INIT=1, ITER=2,
DONE=4 } state_t ;

typedef logic [3:0] nybble ;

typedef struct {
logic [7:0] r, theta ; } polar_t ;

// (slow) 32-bit priority encoder
function automatic logic [5:0]
pri(logic [31:0] x) ;
for (pri=32 ; pri>0 ; pri--)
if (x[pri-1]) return pri ;

endfunction

endpackage

module ex15 (input logic [15:0] irqs,
output logic [4:0] irq,
output logic active) ;

5

import ex15pkg::* ;

nybble [7:0] word32 ;

polar_t pos ;

assign pos = '{ 8'd255, 8'h7f } ;

assign irq = pri(irqs) ;
assign active = irq ? '1 : '0 ;

endmodule

e import statement (and declarations) can be
placed outside and before the module declaration. In
this case they apply to subsequent modules that are
compiled with the same command. is is not rec-
ommended because it’s not possible to tell from the
source which files should be compiled at the same
time or in which order.

Parallel Statements

A module can contain any number of the following
parallel statements, all of which execute concurrently.

always Procedural Blocks

always blocks execute the following statement in an
infinite loop. Execution of the next statement is oen
controlled by one of the following:

#number delays number before each execution. is
is not synthesizable but is useful for simulation.

@(expression) waits until the value of the expres-
sion (the “sensitivity list”) changes. is can be
used to model combinational, latched or flip-
flop logic.

e type of logic generated by the always block de-
pends on the the sensitivity list and which variables
are assigned to within the block.

If for some conditions variables are not assigned
to within the block then the language semantics re-
quire that memory be generated so that the previous
value is retained. is memory can be edge-triggered
(when the sensitivity list uses posedge or negedge)
or a latch (otherwise). On the other hand, if all vari-
ables in the sensitivity list are updated each time the
block executes then combinational logic is generated.

A commonmistake is to omit signals from the sen-
sitivity list or not assign to a variable. is results in
unintended latched logic.

To avoid this, System Verilog has three vari-
ants of the always procedural block: always_ff,
always_comb and always_latch that document
the designer’s intent. A warning or error is generated
if the sensitivity list or assignments within the block
would not result in the intended type of logic.

An always_comb does not need a sensitivity list –
the implied sensitivity list includes all signals that are
‘read’ within the block.

An always_ff block requires a sensitivity list that
includes posedge or negedge qualifiers on each sig-
nal.

initial Procedural Blocks

An initial block is executed once at the start of the
simulation. ese are only synthesizable when used
to initialize FPGA memory and registers.

Continuous assignment

An assign statement continuously assigns (con-
nects) the result of an expression to a net. It is a more
concise way to define combinational logic than using
always_comb but is limited to a single expression.

Sequential Statements

e following statements appear within always or
initial procedural blocks and execute sequentially
(one aer the other).

begin/end

ese keywords group statements that should be exe-
cuted together. ey are similar to braces in C. ey
also begin a new scope for declarations. ey can
be labelled so that any variables declared within the
block can be referenced (e.g. by simulators).

for/while/do/repeat/forever loops

efor, while anddo loops are the same as inC.e
repeat and forever statements execute a statement
a given number of times or forever. e break and
continue statements from C can also be used.

6

As shown in the first lecture, loops generate com-
binational logic and are only synthesizable when the
number of iterations is known at compile time. How-
ever, they are very useful when writing testbenches
for simulation.

Blocking and Non-Blocking Assignments

A blocking assignment (=) evaluates the RHS (right
hand side) and immediately sets the value of the vari-
able on the LHS (le HS).

A non-blocking assignment (<=) evaluates the
RHS but does not set the value of the LHS until the
next time step (typically, aer all sequential state-
ments have executed).

For example,

a = b ;
b = a ;

would set both a and b to the value of b while

a <= b ;
b <= a ;

would swap the values of a and b.
Recommended practice is to use non-blocking

assignments for sequential logic (in always_ff
blocks). is models the behaviour of flip-flops
whose outputs don’t change until the next rising clock
edge.

Blocking assignments are more convenient for de-
signing combinational logic (inside always_comb
blocks) as this matches programming language se-
mantics and allows use of intermediate results.

Assignments can synthesize combinational or se-
quential logic depending on the sensitivity list and
type of the enclosing always block as described
above.

Do not assign to the same signal from more than
one always block – the order in which always blocks
execute is undefined.

You can sometimes break these rules but your code
is more likely to have logical errors and the results
may not be repeatable (between simulators or from
simulation to synthesis).

if/else

e if/else statement syntax is similar to C and syn-
thesizes multiplexers trees whose hierarchy defined
by the order of the conditions.

case/casez

is is the equivalent of C’s switch statement. Be-
tween case and endcase are a sequence of expres-
sions, each followed by a colon and a statement.

A default value indicates the statement that
should be executed if none of the vales match.

By default a case statement synthesizes a multi-
plexer tree with each condition tested in sequence.
us the case semantics are the same as a sequence
of nested if-else statements.

Placing unique before case implies that exactly
one case expression will match. is allows the ex-
pressions to be tested in parallel resulting in faster
logic.

Placing priority before case implies that at least
one case expressionwillmatch and that the firstmatch
should be used.

Since both unique and priority imply that one
of the expressions will match, when these are used
there should be no default expression.

ecasez variant of thecase statement allows the
case expressions to include ? (or z) values which are
treated as “don’t care” bits. ere is also a casex vari-
ant where x (undefined) alsomatches anythingwhich
is usually not desired.

Interfaces

An interface groups signals. Interfaces are de-
fined by declaring signals between interface and
endinterface. A module can then declare an in-
stance of an interface and use it to connect other
modules. Individual signals from an interface are se-
lected using the same ‘dot’ syntax as structure mem-
ber names. For example, an SPI bus could be mod-
elled as:

interface spibus (input logic clk) ;
logic sclk, mosi, miso, ssn ;

endinterface

module master (spibus io) ;
logic x ;
assign io.mosi = 1 ;
assign x = io.miso ;

endmodule

module slave (spibus io) ;
logic x ;

7

assign x = io.mosi ;
assign io.miso = 2 ;

endmodule

module ex17 (input logic clk) ;
spibus io (clk) ;
master m0 (io) ;
slave s0 (io) ;

endmodule

Interfaces can also include type and function dec-
larations, and ports that allow connections to all con-
nections to that interface (e.g. for clock and reset sig-
nals).

Interfaces can also define variants (e.g. master
and slave) defined as modports, that include different
combinations of signals, each of which is declared as
an input or an output.

Other Language Topics

Variables and Nets, reg and wire

A variable can store a value. It models a register. A
variable can only be assigned within an always block.
A net does not store a value. It models a connection.
It must be driven by a continuous assignment state-
ment.

Earlier versions of Verilog used reg and wire dec-
larations instead of logic. Assignments in proce-
dural statements (within always blocks) must be to
“variables” declared reg. Other signals are “nets” and
are declared wire.

However, reg variables need not represent regis-
ters and wire signals oen originate in register out-
puts. us wire and reg convey little informa-
tion. Use SystemVerilog’s logic declarations instead
whenever possible.
Exercise 3: Should each of the following nets (or variables) be
declared wire or reg?

module test (a,b,c,d,q) ;
dff d0 (clk,d,q) ; // assume only q is an output
assign d = a & b ;
always@* clk = a & c ;
endmodule
Only nets may have multiple drivers (e.g. to

model buses with tri-state drivers). ere are vari-
ous flavours (wire, tri, wand, ..) each with different
“resolution functions” that combine multiple driving

values in different ways. Bidirectional (inout) mod-
ule ports must also be declared with net types.

Initialization

e ability to initialize registers modeled as ordinary
(“static”) variables depends on the target technology.
ASIC registers power up in undefined states andmust
be explicitly reset. However, most FPGA technolo-
gies allow the power-on values of registers to be be in-
cluded in the FPGA configuration data that is loaded
when the FPGA is powered on. In this case initializa-
tion of static variables is synthesizable.

Variables and functions can also be declared
automatic to define semantics similar to those for
dynamically allocated variables in conventional pro-
gramming languages. ese variables can be initial-
ized each time the block is executed. For example,
cnt below will be reset on each rising clock edge:

always_ff@(posedge clk) begin
automatic logic [7:0] cnt = '0 ;
// ...

end

$readmemh/$readmemb

ese system tasks allow large blocks of con-
stant data, in hex and binary bases respec-
tively, to be read from files. For example:
$readmemh("data.hex",memory); would read
hex values into the variable (array) memory from the
file “data.hex.”

System Tasks

Functions beginning with $ are system tasks. Some
examples: $display(), similar to C’s printf(),
can be used to print messages during simulation;
$finish and $stop can terminate a simulation.

Identifiers and ReservedWords

System Verilog has about 250 reserved words that
cannot be used as identifiers. Unfortunately, this in-
cludes many words that you might be tempted to use
as signal names (buf, time, wait, disable,...). e
language specification has a complete list.

8

